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Abstract. We provide a complete system of invariants for the formal classification
of unfoldings ¢(x, x1, ..., x,) = (f(x, x1, ..., Xy), X1, ..., x,) of complex analytic
germs of diffeomorphisms at (C, 0) that are tangent to the identity. We reduce the formal
classification problem to solving a linear differential equation. Then we describe the formal
invariants; their nature depends on the position of the fixed points set Fix ¢ with respect to
the regular vector field d/dx. We get invariants specifically attached to higher dimension
(n > 3), although generically they are analogous to the one-dimensional ones.

1. Introduction

We provide a complete system of invariants for the formal classification of n-parameter
unfoldings of complex analytic germs of diffeomorphisms at (C, 0) that are tangent to
the identity. Consider coordinates (x, x1, . . ., x,) in C**!. Denote by Diff(C"*!, 0) the
group of complex analytic germs of diffeomorphisms at (C"*!, 0). We define the group

Diff,,(C"*1, 0) = {¢ € Diff(C"™!,0): x; o p = x; forany 1 < j <n}
of parameterized diffeomorphisms. The group

9
Diff,, (C"*!, 0) = {q) e Diff,,(C"*1, 0) : w
X

(0,...,0):1}

is the set of unipotent elements of Diff ), (C"*1,0). If ¢ € Diff, » (C™*1, 0) then we say that
¢ is a unipotent parameterized diffeomorphism (or up-diffeomorphism for brevity). Let
¢ € Diff), (C™+1,0). We have that (3(x o ¢)/dx) (0) =1 if and only if the unperturbed
diffeomorphism ¢y, =...—y,—0 € Diff(C, 0) is tangent to the identity. Thus the elements of
Diff,, (C"*+1, 0) are exactly the n-parameter unfoldings of germs of diffeomorphisms that
are tangent to the identity.
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The complex analytic germs of diffeomorphisms in one complex variable are well
known. Those germs whose linear part is not periodic are formally linearizable. On the one
hand they are analytically linearizable if the linear part is not a rotation. On the other hand
we find ‘small divisor problems’ [3, 13, 18, 20], leading to very complicated dynamics if
we deal with non-linearizable diffeomorphisms whose fixed point is of indifferent type.

The study of diffeomorphisms with periodic linear part can be reduced to that of
diffeomorphisms that are tangent to the identity where we know the formal, topological
[4, 8] and analytical [9, 19] classifications. The only topological invariant is the order of
contact with the identity; this discrete invariant plus a numerical invariant called residue
(cf. §5.1) make up a complete system of formal invariants. The analytical classification
is more complicated; we can express the invariants as a collection (changes of charts) of
one-variable germs of diffeomorphisms [11]. The number of changes of charts is twice the
order of contact with the identity.

A natural generalization of germs of diffeomorphisms at (C, 0) are their unfoldings. We
are interested in the formal classification of unfoldings, i.e. elements of Diff), €+, 0).
We denote the fixed points set of a diffeomorphism ¢ by Fix¢. Consider ¢ €
Diff,,((C”H, 0) such that (d(x o ¢)/9x) (0) is not a root of unity. The function linear
part d(x o ¢)/9x : Fix ¢ — C is the only formal invariant attached to ¢ as in the one-
dimensional case. Thus the task of obtaining a formal classification in Diff), (C™*1,0) can
be reduced to exhibiting a complete system of formal invariants for up-diffeomorphisms.

We denote by Diff(C"*!,0), Diff,(C"t!,0) and Diff,,(C*!, 0) the formal
completions of Diff(C"*!, 0), Diff,(C"*!, 0) and Diff,, (C"*1, 0) respectively.

A unipotent ¢ € Diff(C"*!, 0) is the exponential of a unique formal nilpotent vector
field (see §3 for definitions), the so-called infinitesimal generator, that we denote by log ¢.
Consider ¢ in Diff,, (C™*1, 0); we have that log ¢ is of the form (x o ¢ — x)u 3/dx where
i € C[[x, x1, ..., x,]] is a unit. The infinitesimal generator of ¢ can be extended to Fix ¢,
more precisely.

PROPOSITION 1.1. Let ¢ =exp((x o ¢ — x)it 8/9x) € Diffup((C”H, 0). Then i belongs
to the projective limit lim_ C{x, x1, ..., x,}/(x 0 @ — x)7.

In other words, for any j € N there exists u; € C{x, x{, ..., x,} such that i — uj
belongs to the ideal (x o ¢ — x)J.

We say that a germ of analytic variety at (C"*!, 0) is fibered if it is a union of
orbits of 9/9x. By definition p € Diff (C™*1,0) is normalized with respect to f = 0 (for
feCix, x1,...,x,}) if p€Diff,(C"*!,0) and j, =1d & x 0 p — x € I(y) for any
non-fibered irreducible component y of f =0.

PROPOSITION 1.2. Let @1, ¢ € Diffup((C”H, 0). Assume that ¢1 and @, are formally
conjugated. Then there exist o € Diff(C*t!, 0) and a normalized & Diff,, (CaN)}
(with respect to x o ¢y — x = 0) such that (6 oc) o1 = @20 (6 00).

The last proposition implies that up to analytic change of coordinates every pair
of formally conjugated up-diffeomorphisms are conjugated by a normalized element of
Diff ), (C"*+1,0). We study the equivalence relation ~, in Diff,,, (c"tL, 0) given by @1 ~
@2 if @1 and ¢, are formally conjugated by a normalized transformation with respect to
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Fix ¢1. In particular @1 ~ ¢, implies Fix ¢; = Fix ¢». Moreover, the ideals (x o ¢1 — x)
and (x o ¢ — x) of the fixed points sets of ¢; and ¢, coincide.
Every class of equivalence is contained in a set

Dy = {g € Diff,,(C"*!, 0) : (x 0 ¢ — x)/f is a unit}.

The set Dy is composed by the unfoldings of parabolic diffeomorphisms with fixed points
set f =0. Let us remark that we do not suppose that f =0 is reduced; for instance we
have D, ND,> =#. The classes of the equivalence relation ~, are connected sets in the
compact-open topology. As a consequence, to determine whether or not there exists a
formal normalized conjugation between up-diffeomorphisms can be reduced to solving a
linear problem. More precisely, we can associate to ¢1, ¢2 € D the homological equation

80t_l 1 1
ax  f\ay )’

where log g; =ii; f 9/dx for j e{l1,2}. Let [T/ f]l.j 19, Fj’."f be the irreducible
decomposition of f. By choice F; =0 is fibered for 1 < j < g whereas f; =0 is non-
fibered for 1 <k < p. We say that the homological equation is special (with respect

to f) if there exists a solution of the form o = ,é/(]_[§.7:1 f;ji1 ;1.:1 F;”j) where 3 S
Cl[x, x1, ..., x,]]l. Such a solution is also called special. We have the following

proposition.

PROPOSITION 1.3. Let @1, 92 € Dy C Diffu,,((C"“, 0). Then @1 and ¢> are formally
conjugated by a normalized transformation if and only if the homological equation
associated to @1 and @> is special.

Let ¢ =exp(it f 3/9x) € Dy. The formal 1-form dx /(i f) is the dual of log ¢ in the
relative cohomology of the vector field d/9x. Moreover there exists u in C{x, x1, . .., x,}
such that # — u € (f) by Proposition 1.1. Therefore we obtain

dx dx lu—u

af uf au f
Since the right-hand side does not have poles then the formal properties of dx/(itf)
and dx/(uf) are the same. The only formal invariant of ¢ € Dy C Diff,,(C, 0) for the
normalized conjugation is the residue of dx/(uf) at 0. The generalization of this invariant
in the higher dimensional case is the collection of residues of dx/(uf) at Fix ¢. This
collection defines a meromorphic function in every non-fibered irreducible component
of f=0.

There are other invariants which are purely related to higher dimension. For a non-
zero f € C{x, x1, ..., x,} we define the additive group Fr(f) of homological equations
da/dx = A/f (for A € C{x, x1, ..., x,}) such that (A/f) dx has vanishing residues. It
can be considered as an additive subgroup of C{x, xy, ..., x,}. Moreover we denote by
Sp(f) the subgroup of Fr(f) of special equations.

dx.

THEOREM 1.1. A complete system of formal invariants for the normalized conjugation
in Dy C Diffu[,(C"+1, 0) is composed by the residue functions plus the complex vector
space Fr(f)/Sp(f).
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For Dy C Diffy, ((C”“, 0) with n <1 the only invariants are the residues; in
other words we have Fr(f)/Sp(f)=0. The situation is different in higher
dimension; for instance for fj= (xo — xx1)? and D f, C Diff,,), (C3,0) we have that
dimc Fr(fo)/Sp(fo) =1. Moreover we have dimc Fr(f)/Sp(f) <+oo for Dy C
Diffy,, (C3,0). Thus besides the residue functions there are only finitely many linear
invariants. In spite of that Fr(fp)/Sp(fo) ~ C{x3, ..., x,} is infinite dimensional if D
is considered as a subset of Diff,, (C”+1, 0) forn + 1> 4.

The nature of Fr(f)/Sp(f) depends on the evil set S(f) of f. This set is the union of
the orbits of d/9x contained in non-fibered irreducible components y of f = 0 such that
f € I1(y)?. For instance we have S((x — xx1)%) = {x; = xo = 0}.

Consider the set

Kn)={feClx,xi,...,xx}: f(0)=(3f/0x) (0) =0},
endowed with the Krull topology. The set
Emn)y={feKmn): f(x,0,...,0)#£0}

is open and dense in K(n). Moreover we have S(f) =0 for any f € E(n). The
reciprocal is not true; for instance we have S(x1) = S (xlz) = () since x; = 0 is fibered and
S(xy —xx1) =@ since xo — xx1 € (x2 — xxl)z.

PROPOSITION 1.4. Let 0# f € C{x, x1, ..., x,} such that S(f) =0. Then we have
Fr(f)/Sp(f)=0.

THEOREM 1.2. Fixn € N. There exists a dense open subset E(n) of K (n) such that for
f € E(n) the residue functions provide a complete system of formal invariants for the
normalized conjugation in Dy C Diff,, (C"*1) ).

Theorem 1.1 and Proposition 1.4 imply that the residue functions provide a
complete system of formal invariants for the unfoldings ¢ € Diff,, (C"*1, 0) of parabolic
diffeomorphisms @)y, —...—x,—0 of finite codimension. Theorem 1.2 just reflects the fact that
such unfoldings are generic.

A large part of this paper is devoted to dealing with the infinite codimension case, i.e.
unfoldings of the identity map. Why such a large generality? In order to understand
the properties of an unfolding, we can try to desingularize it by using blow-ups. Even if
we consider an unfolding ¢ of a finite codimension parabolic diffeomorphism we obtain
unfoldings of the identity map throughout the desingularization process. This strategy can
be successfully used in the following two settings.

Topological. In [14] a complete system of topological invariants is provided for one-
parameter unfoldings of parabolic germs of diffeomorphisms. The invariants are analogous
in the finite and infinite codimension cases. The desingularization techniques are an
ingredient in the proof of the completeness of the invariants.

Analytic.  In [10] Mardesic, Roussarie and Rousseau provide a complete system
of analytic invariants for unfoldings of generic parabolic diffeomorphisms. Such a
result was generalized by the author for unfoldings of finite codimension parabolic
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diffeomorphisms [15]. Moreover, we provide a geometric interpretation of the system of
invariants [15]. It is based on the notion of infinitesimal stability of the unfolding, whose
definition and properties are obtained via a desingularization approach.

Voronin classifies analytically germs of diffeomorphisms ¢ € Diff(CZ, 0) such that
¢y=0 =1d and jk<p is of the form (x + yk, y) for some k€N (see [6]). The
diffeomorphism ¢ is not necessarily an unfolding. He points out that both his invariants
and the EcalleVoronin ones are based on the lack of pseudo-convexity of the space of
orbits. This property is shared by the unfoldings of finite codimension parabolic germs.
Then, the existence of a unified approach for the analytic classification of unfoldings
of parabolic diffeomorphisms is possible regardless of whether or not they are of finite
codimension. Even more, as Voronin’s paper suggests, such an approach can be fruitful for
general unipotent germs of diffeomorphisms.

2. Notation and definitions
We deal with complex analytic germs of diffeomorphisms defined at (C"*!, 0). Consider
coordinates (x, x1, . .., x,). Consider a set W C C"*!. We define the ring Gy of germs
of holomorphic functions in a neighborhood of W.

We say that a variety 8 C C"t! is fibered if it is a union of orbits of 8/dx, or in other
words if there exists a system of generators of the ideal 7/ (8) not depending on x.

We define the group

Diff,,(C"!, 0) = {¢ € Diff(C"™,0): x; 09 =x; V1 < j <n}

of parameterized diffeomorphisms. We denote by Diff,(C"*!, 0) the subgroup of
Diff(C"*!, 0) of unipotent germs of diffeomorphisms. An element ¢ of Diff (C"*L0) is
unipotent if its linear part is unipotent, in other words if j'¢ has the unique eigenvalue 1.
Let us remark that Diff,(C, 0) is the group of diffeomorphisms in one variable that
are tangent to the identity. An element ¢ of Diff) (C™*1,0) is unipotent if and only if
(0(x o @)/dx) (0) = 1. We will study the elements in the group

Diff,,(C™*!, 0) & Diff, (C"*!, 0) N Diff, (C"*!, 0)

of unipotent parameterized diffeomorphisms. For the sake of simplicity we will usually
replace the expression ‘unipotent parameterized diffeomorphism’ with the shorter up-
diffeomorphism. The groups that we have just defined have formal completions; we will
denote them Diff,,(C"*+!, 0), Diff, (C"*!, 0) and Diff,, (C**", 0).
Given f € C{x, x1, ..., x,} we consider the set
Dy = {¢ € Diff,,,(C"*!, 0) : (x 0o ¢ — x)/f is a unit}
of up-diffeomorphisms whose fixed points set is f = 0.

Let ¢ € Diff,, (C"*L, 0). Given P € Fix ¢ we define gp as the one-dimensional germ
POV =5 (P)) considered in a neighborhood of P.

The unipotent germs of diffeomorphisms are related with nilpotent vector fields. We
denote by X'(C"*!, 0) the set of germs of complex analytic vector fields which are singular
at 0. We denote by Xy(C"+!, 0) the subset of X(C"*!, 0) of nilpotent vector fields, i.e.
vector fields whose first jet has the unique eigenvalue 0. The formal completions of these
spaces are denoted by X'(C"t!, 0) and Xy(C"*!, 0) respectively.
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3. Basic properties of the unipotent parameterized diffeomorphisms
We denote by exp(zX) the flow of the vector field X. It is the unique solution of the
differential equation

%exp(tX) = X (exp(tX))

with initial condition exp(0X) = Id. The flow can be developed in power series. Such a
property allows one to define the formal flow for formal vector fields. We define X%(g) =
and X/*1(g) = X/ (X (g)) for any j > 0. The flow of X can be expressed in the form

exp(tX):(ZﬂX (x) Z jXJ(xl)’ Z jX](xn)>.
=0 =0

For any formal nilpotent vector field X the sums defining exp(t)A( ) converge in the Krull
topology. The exponential application is by definition exp(l)A( ). The next proposition is
classical; it relates formal nilpotent vector fields and formal unipotent transformations.

PROPOSITION 3.1. The exponential application induces a bijective mapping from
Xn(C", 0) onto Diff,(C"*, 0). Moreover, if X € Xy(C",0) then every component of
exp(tX) belongs to C[t] [[x1, . . ., x,]]-

Definition 3.1. We call infinitesimal generator of a formal ¢ € Diff,(C", 0) the only
formal nilpotent vector field X whose exponential is ¢. We denote X by log ¢.

The formal classifications of up-diffeomorphisms and of their infinitesimal generators
are equivalent tasks. Indeed we can express the formal properties of ¢ in terms of log ¢.

3.1. Infinitesimal generator of a up-diffeomorphism and fixed points. A up-
diffeomorphism preserves the fibration dx; = - - - = dx,, = 0. Somehow its infinitesimal
generator has to preserve the same fibration too.

PROPOSITION 3.2. Let ¢ € Diff, (C"*1, 0). Then ¢ € ﬁi?fp (C"*1,0) if and only iflog ¢
can be expressed in the form f 9/dx for some f € C[[x, x1, ..., x,]].

Remark 3.1. Since the infinitesimal generator f d/dx of p € EEfu,, (C"*1, 0) is nilpotent
then f(0) =0and (3 f/9x) (0) =

Proof of Proposition 3.2. The implication < is a direct consequence of the formula
defining exp(log ¢).
Let us prove the implication =. The components of

exp(t log @) = (@o(t, X, X1, ..., Xn)s oo @u(t, X, X1, ..., Xp))
belong to C[¢] [[x, x1, ..., x,]] for 0 < j <n. Since ISi\ffp((C”“, 0) is a group then
i, x,x1,...,xp)=xj forallt€Z and 1 < j <n. For 1 < j <n the power series

@; — x; is identically O because it is O for ¢ € Z and it is polynomial in . Since

xj oexp(t log ¢) — lim 0= 0
t _t%()

(log ) (x) = lim

for 1 < j < n, then log ¢ is of the form f8/8x. O
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A up-diffeomorphism ¢ has a fixed points set x o —x =0; it is a germ of a
hypersurface if ¢ # Id. We prove next that the fixed points set of ¢ and the singular set of
log ¢ coincide.

PROPOSITION 3.3. Let ¢ = exp(f d/0x) be a up-diffeomorphism. There exists a formal
unit i € C[[x, x1, ..., x,]) suchthatx op —x =uf.

Proof. We define

ho=x,hi=f,....,hjs1=foh;/dx forall j>0.

We have ¢ = (Z?io hj/jl, x1, ..., xy). Since f d/0x is nilpotent then hj/f belongs to
the maximal ideal of C[[x, x1, ..., x,]] for j > 2. We define u =1+ Zi‘;z hj/(j!f).
Clearly the series # is the unit we are looking for. O

4. Formal transversality of the infinitesimal generator
The infinitesimal generator of a up-diffeomorphism can be extended to the fixed points
set. Roughly speaking, the infinitesimal generator is convergent in the tangent directions
to the fixed points set but it can diverges in the transverse direction. We introduce some
definitions to make this very simple idea rigorous.

The formal completion of a complex space (U, ®(U)) (U is a topological space and
O (U) is its sheaf of analytic functions) along a subvariety V given by a sheaf of ideals /
is the space (U, @I(U)) where

A . BOW)
O1(U) = lim — .

Throughout this paper we consider three types of formal transversality.

Definition 4.1. Let V C (C™*!, 0) be a germ of analytic variety given by an ideal (V). A

series ¢ € C[[x, x1, ..., x,]]is:
. transversally formal along V (or equivalently, and in short, t.f. along V) if g €
hm(— C{xy Xlsevns xn}/I(V)J;

° uniformly transversally formal along V (or u.t.f. along V) if g belongs to
lim O(U)/I(V)J for some neighborhood of the origin U; or

o uniformly semi-meromorphic along V (or u.s.m. along V) if ¢ belongs to
lim (O(U))I(V)/I(V)j for some neighborhood of the origin U. Note that
(O(U))(v) is the localized ring of holomorphic functions in U with respect to the
ideal 1 (V).

For the u.s.m. definition we suppose that V is irreducible. In general we say that g is
u.s.m. along V if g is u.s.m. along every irreducible component of V.

The analytic spaces that we complete are (0, C{x, x1, ..., x,}), (U, O(U)) and
(U, (OWU))(vy) respectively. We say that X e X(@C 1 0) is tf. along V if all
the functions X(x), X(x1), ..., X(x,) are t.f. along V. The other kinds of formal

transversality for formal vector fields are defined in an analogous way.
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Definition 4.2. Denote the fixed points set of a diffeomorphism ¢ by Fix ¢. Let ¢ be a
up-diffeomorphism and consider an irreducible component y of Fix ¢. We say that y is
unipotent with respect to ¢ if d(x o ¢)/dx =1 in y.

If y is unipotent then the germ of ¢ at P is unipotent for any P € y. Later on we prove
that its infinitesimal generator depends analytically on P € y or more precisely that log ¢
isu.t.f. along y.

The germ ¢p (§2) is embeddable in a formal flow except if (d(x o ¢)/dx) (P) is a root
of the unit different from 1 and @p is not periodic. As a consequence there is no hope in
general for log ¢ to be u.t.f. along the non-unipotent components of Fix ¢. Nevertheless, if
@p can be embedded in a formal flow for any P € y contained in an irreducible component
y of Fix ¢, then log ¢ is u.t.f. along y. We will make clear and prove the previous
assertions.

4.1. One-dimensional results. The next results are well known and they are included
here for the sake of clarity.

PROPOSITION 4.1. Let t € Diff(C, 0) such that j't #1d. Then t is the exponential of a
formal vector field if and only if it is formally linearizable.

Proof. Let X = (Z‘]’-oz1 ajxj) d/0x be a formal vector field such that T = exp(f(). Since
jlt =e%x and j't #1d then ay # 0. The linear part is a complete system of invariants
for the elements of X (C, 0) with no vanishing linear part. As a consequence there
exists 0 € lSi\ff((C, 0) such that 64(ajx 9/0x) = X. By taking exponentials we obtain
6o j] T=To00.

Suppose that 6 o jlt =7 06. Since j't =exp(cx 8/dx) for any ¢ € C such that
e“ = (9t/0x) (0) then T = exp(G4(cx 3/0x)). O

PROPOSITION 4.2. Let t € Diff(C, 0) with j't not periodic. Assume that we have
tr =exp(X) =exp(Y) for X, Y € X(C, 0) such that j'X = j'Y. Then X =Y.

Proof. We can suppose that t = ] 17 by Proposition 4.1. It suffices to prove that X = J i1X.
Since j ¢ # 0 there exists 6 € Diff (C, 0) such that 6,( J1X )= X. By taking exponent1als
we obtain 6 o T =7 o 6. Since 7 is linear and not periodic the center of T in Diff (C,0)is
the linear group. Therefore & is linear, which implies that j X =6,( j 1X)=X. O

PROPOSITION 4.3. Let t € Diff(C, 0) such that jlr is periodic and t is linearizable.
Suppose we have h o T o h=1(x) — jlt(x) = O(x**) for some h € Diff(C, 0) and some
k > 1. Then there exists o € Diff(C, 0) such that j*o = j*h and o o1 00~ = jl1.

Proof. It suffices to prove thatif t — jlz = O (x*+1) there exists o € Diff(C, 0) such that
goT= jll' ooando(x) —x = 0(xk+1). We denote jlr = ax and the period ofjlr by
q. Since 77 is formally conjugated to (j! 1) =1d, then t9 = 1d. We are done by defining
o(x) =92, » T/ (x)/al)/q. 0
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4.2. Division neighborhoods, and convergence by restriction. We work in domains
in C"*! in which the components of Fix ¢ behave like their germs at 0. Consider
g€C{x, x1,...,x,}. We say that a domain U containing the origin is a division
neighborhood for g if:

° there is a decomposition g = gll1 e gﬁ’ of g into irreducible factors in the ring
C{x, x1, ..., xy}suchthat g; € O(U) for 1 < j <r;and
. the regular part of g; = 0 is connected in U forany 1 < j <r.

The definition of division neighborhood is intended to extend the division of germs to
bigger domains. More precisely, if U is a division neighborhood for g, then

a=gbwhereac O(U)and b e C{x, x1,...,x,} — beOW).

The following results can be immediately deduced from the definition of division
neighborhood.

LEMMA 4.1. Let U be a division neighborhood for g and consider a domain V- C U such
thatU N{g =0} =V N{g=0}. Then V is a division neighborhood for g.

LEMMA 4.2. Let U be a division neighborhood for g. Consider an analytic set S # 0.
Then U \ S is a division neighborhood for g.

The last lemma is trivial since we cannot break the connectedness of the regular parts by
removing sets of real codimension at least 2.

It is not difficult to find a division neighborhood for f =x o ¢ — x. Let (y1, .. ., Yn+1)
be a set of coordinates such that any irreducible component y of Fix ¢ can be expressed
as the vanishing set of a monic Weierstrass polynomial in the variable y;. Let
(c1,...,cny1) €RT x ... x RT. Every polydisk ﬂ;fJ__r%{lyﬂ < ¢j} small enough such

that
n+1

Iyl=c}n [ Mlyjl <e}n{f=01=0
j=2

is a division neighborhood for f.
We define a new concept, which is simpler to handle than the formal transversality; it is
a sort of formal transversality at the O-level.

Definition 4.3. We say that h € C[[x, x1, . .., x,]] converges by restriction to y if there
exists 1’ € C{x, x1, ..., x,} such that 2 — h’ belongs to I(y) where I(y) is the ideal of
y. If V C y is aneighborhood of 0 in y we say that i converges by restriction to y in V if
I’ can be chosen holomorphic in a neighborhood of V.

Let 9 =exp((x o — x)u 9/0x) € Diff,, (C"*1, 0). The proof of the formal transver-
sality of log ¢ along an irreducible component g =0 of Fix ¢ is based on an induction
process and the analysis of the Taylor expansion of the exponential mapping. In every
induction step it suffices to prove the convergence of a certain formal power series by

restriction to g =0. More precisely, suppose that there exists uy € C{x, x1, ..., x,}
such that & = u, + g%v for some v € C[[x, xi, ..., x,]]. Then the existence of uy+| €
C{x, x1, ..., xy} such that & — uy1] € (g‘“'l) is equivalent to the convergence of v by
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restriction to g = 0. The next couple of lemmas are of technical type and they are used to
carry out this approach.

LEMMA 4.3. Let h be an irreducible element of C{x, x1, ..., x,}. Consider series
ceC[[x, x1,...,x,]] and d € C{x, x1, ..., xn} \ (h). Suppose that ¢d converges by
restriction to h = 0. Then ¢ converges by restriction to h = 0.

There is also a uniform version of the previous lemma but we have to be careful
with the setting. We keep the notation in the previous lemma. We consider coordinates

(1, - -+ » Ynt1) such that

h=v(y1, s Yas1) O + Y€_lal—1()’2s cees Ynk1) F oo+ a2, - Yat1))s
for some unit v and some functions a; (0<j</-1). For a generic point
(yg, e, ySH) the number of points in 2(y1, yg, e, y,?H) = (01is /. We enumerate them
a1 (Y2, oo s Ynt1)s - (V2 oo, Ynt1). We define

l
A(h,d)=<]"[(doaj) [ (a,,—ak)z)(yz,...,yn+1>.
j=l

I1<j<k<l

The function A(h, d) is well defined since it is symmetric in ¢, . . ., ¢4; it is holomorphic
in A(h, d) # 0 and continuous in a neighborhood of the origin. By Riemann’s theorem
A(h, d) is holomorphic in a neighborhood of the origin. It is a type of discriminant
function. Given a holomorphic function co defined in a neighborhood of D N {h =0}
and the remainder c; of the Weierstrass division of co/d over h, we have that A(h, d)c; is
still holomorphic in a neighborhood of D N {h = 0}. The function A is an auxiliary tool to
prove Lemmas 4.3 and 4.4.

There exists a division neighborhood D = Dy x D> . ,4+1 C C x C" for h such that
Dy, .. n+1 is a division neighborhood for A. Given any neighborhood of the origin W the
set D can be chosen to be contained in W. Suppose that d converges in a neighborhood of
D N {h = 0}. In this context we prove the following result.

LEMMA 4.4. If ¢d converges by restriction to h=0in D N{h =0} and d & (h) then ¢
converges by restriction to h =0 in D N {h = 0}.

Proof of Lemmas 4.3 and 4.4. 1t is clear that Lemma 4.4 implies Lemma 4.3. Consider a
holomorphic function co defined in the neighborhood of D N {h = 0} such that ¢d — cp €
(h). The next step is using the Weierstrass division. We want to divide co/d by h. The
remainder of that division is

_ ZI: co(aj(y2, ..., Ynt1)) [lez; O1 — a2, oo yut1))

o A2, yarD) Tl yug) =y, - Ynt1))

The function AR is holomorphic in a neighborhood of the origin and since A does not
depend on y; then AR is the remainder of the Weierstrass division [(Acg)/d]/h. We
define R to be the remainder of the Weierstrass division ¢ / h; it is a formal power series.
We have

Aco— ARd € (h) and Aéd — ARd € (h).
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Since d ¢ (h) we obtain AR — AR € (h). Both AR and AR are polynomials in the
variable y; whose degree is less than or equal to / — 1. Therefore, we have AR = AR
by uniqueness of the Weierstrass division. The function A divides the / coefficients of
the polynomial AR. As a consequence R is convergent in the neighborhood of the origin.
Since Dy, »+1 is a division neighborhood for A then R is defined in C x Dy ,41. The
series ¢ converges by restriction to 27 =0in D N{h =0} since¢ — R=¢ — Re(). O

We relate formal transversality along an analytic hypersurface with formal transversality
along its irreducible components.

LEMMA 4.5. Let f be an element of C{x, x1, ..., x,}. Then it in C[[x, x1, ..., x,]] is
tf. (respectively u.t.f.) along f =0 if and only if u is t.f. (respectively u.t.f.) along every
irreducible component of f = 0.

Proof. The implication = is obvious. Let us prove the implication <.

Suppose we are in the u.t.f. case; the proof for the t.f. case is simpler. Let f =
flnl - fl”’ be the decomposition of f into irreducible factors in C{x, x, ..., x,}. We
choose coordinates (yi, ..., ys+1) such that f; =0 can be expressed up to a unit as
a monic Weierstrass polynomial in the variable y; for any 1 < j <. We can choose
a polydisk D= D; x Dy, n+1) N {f =0} =@. Moreover,
we can suppose that D is a division neighborhood for every f; and D; . 41 is
a division neighborhood for every A(f;, fx) with j #k. Finally we suppose that
i €lime O(D)/(fj)* forany 1 < j <1.

Let F:]_[i:1 /¥, Suppose we have u € O(D) such that i —u € (F). Fix
jef{l, ..., 1I}; it suffices to prove the existence of a function v € O(D) such that
iw—ve(fjF). We claim that (i — u)/f;‘j converges by restriction to f; =0. There

.....

exists uq; € O(D) such that @ —u,; belongs to (f j“i“) by hypothesis. Denote
w= (uaj — u)/fc.lj; we have (i —u)/f;'j —we€(f;). By Lemma 4.4 the series
(t —u)/F converges by restriction to f; =0 in D N{f; =0}. As a consequence there
exists b(y1, ..., yu1) € O(C x Dy ny1) CO(D) such that (&t —u)/F —b e (f)).
This implies that i — (u + bF) € (f; F). O

The next lemma provides a handy characterization of u.t.f. functions. Lemmas 4.5 and
4.6 allow one to simplify the calculations intended to prove formal transversality of the
infinitesimal generator of a up-diffeomorphism ¢.

LEMMA 4.6. Let V.C C"t! be a germ of an analytic hypersurface at 0. Then a series
g €Cllx, x1, ..., x,1] is u.t.f along V if and only if ii belongs to lim Gynw/I(V)/
(see §2) for some neighborhood W of the origin.

Proof. The implication = is obvious.

Consider coordinates (y1, . . ., yn+1) such that I (V) = (h) for some monic Weierstrass
polynomial 2 € C[y1][[y2, ..., yn+1]] in the variable y;. Choose a polydisk D = D x
,,,,, n+1 C C x C" inthe variables (yq, . .., Yp+1) suchthat (0D X D> ,41) NV =0.
Moreover, we choose D such that it is a division neighborhood for 4 and DNV C W.
We denote 7 (y1, ..., Yu+1) = (y2,..., yn+1). There exists a function b; € Gynw
such that g — b; € (h/) for any j € N. Since h/ is a monic polynomial in y; we can

,,,,,
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consider the remainder g; of the Weierstrass division b; /hj . Since bj € Gpny then
gj € O~ Y (DN V) c OD) for any j € N. Clearly g is u.t.f. along V. O

Remark 4.1. The results in this section can also be set out in the uniform semi-
meromorphic case with minor adjustments. For the sake of simplicity we omit such a
formulation.

4.3. Main results. Let us fix ¢ =exp((x o — x)ut 3/9x) € Diffup((C”+1, 0) and an
irreducible component y of Fix ¢. Denote f =xo¢ —x. Consider an irreducible
equation g =0 of y.

Definition 4.4. We call m(y) the multiplicity of y in f =0, i.e. the greatest m € N such
that g™ divides f.

Suppose y is unipotent (see Definition 4.2). The germs ¢p (see §2) are tangent to the
identity and then embedded in a formal flow. It turns out that such a formal flow depends
holomorphically on P € y or more precisely that log ¢ is u.t.f. along y (Proposition 4.4).

The situation is more interesting if y is non-unipotent. Denote 7 = d(x o ¢)/0x.
Given P € y such that T(P) ¢ 2™ iQ \ {1} there exists a formal vector field X p satisfying
op = exp(Xp) (Proposition 4.1). We choose X = log ¢, hence X has vanishing linear
part. Indeed X p is well defined for P € y \ T_l{(ez’”Q \ {1}} in a neighborhood of O if
we require that the linear parts of Xp tend to 0 when P tends to 0. Roughly speaking
X p is analytic on P for P € y \ T~'(S!) (Lemma 4.7). The singularities of the mapping
P — Xp defined in y are meromorphic or more precisely log ¢ is u.s.m. along Fix ¢
(Proposition 4.5). Proposition 4.7 implies that, whenever ¢p is embedded in a formal flow
for any P € y, then P — X p can be extended analytically to the whole y; in other words
log ¢ is u.t.f. along Fix ¢.

Denote f/g"™) by h. We choose a set of coordinates (yi, ..., yp+1) and a
polydisk D = Dy x D3, n+1 C C x C" in the variables (y1, . . ., Ys+1) such that (dD; x
Dy, n+1) Ny =0 and:

° ¢ is holomorphic in D;
° up to a multiplicative unit g is of the form

g=y+ Yi_lazfl(yz, v Yug) oot ao(y2, - -, Yaa1)s

where a;(0) =0forany 0 < j </ —1;

. D is a division neighborhood for f = 0; and

° Dy, .. n+1 1s a division neighborhood for A(g, h).

If y is a non-unipotent component (see Definition 4.2) there are two more conditions:

° Dy, . 41 1s a division neighborhood for A(g, df/dx); and

° In(d(x o ¢)/9x) is a holomorphic function defined in D such that the set {d(x o
@)/dx =1} N (D N y) is connected.

This notation is fixed throughout this section.

PROPOSITION 4.4. Let ¢ be a up-diffeomorphism and let y be a unipotent irreducible
component of Fix ¢. Then log ¢ is u.t.f. along y.
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Proof. It suffices to prove that i belongs to lim G pn, /1 (y)/ (see §2) by Lemma 4.6.

We have (log (p)-/ x) € (g’”(V)“‘lh) (see Definition 4.4) for j > 2. It is a consequence
of g dividing dg/dx if y is fibered or m(y) > 1 in the non-fibered case. By the Taylor
expansion for the exponential mapping there exists a formal series w such that

o= +ag""h+wg" I h xi, L xg).

Henceu; =1=(xoqp —x)/f € O(D) satisfies & — u;j € (g).

We proceed by induction. Suppose that it = uy + g*0 where uy, € Gpny; the result
is already proved for « = 1. We want to find a similar expression for o + 1. It suffices
to prove the existence of v € Gpn, such that 0 — v € (g) since then ugy1 =uy + g%v
satisfies i — uq 11 € (g*T!). We have

xo@=xoexplugf 0/0x) + g* "V i 4 gt A

for a certain formal series A. The vector field ug f 9/0x is defined in a neighborhood of
D Ny and it vanishes in y. Therefore, its exponential is defined in a neighborhood of
D N y. We define

= (x 09 — x 0 explue f 8/3x))/g**" ).

We obtain that d € Gpn), by Lemma 4.1 since D is a division neighborhood for f and
then for g. We have ht — d € (g), thus hd converges by restriction to ¥ in D Ny. By
applying Lemma 4.4 we get that ¥ converges by restriction to y in D N y. Then there
exists v € G pn, such that b — v € (g). O

Letus fix ¢ = exp((x o ¢ — x)ii 3/9x) € Diff,, (C"*+1, 0) and an irreducible component
y of Fix ¢. We can express i in the form )2, u?;gj where ui’ eClhyi1l[[y2, - - - Ynstll
is a polynomial in y; such that deg, u)]/ <l —1 for any j>0. These properties
characterize the sequence {u’;} since ug is the remainder of the Weierstrass division /g,

the series u’l/ is the Weierstrass remainder of [(&i — ug )/gl/g, and so on.
We define E} = E] =@ and

[e] ‘] [e]
E{:{Qey;ﬂlqgks.t. <M> (Q):l}\{mzl},
0x 0x

for any k > 2. We define m(y1, ..., Ynt1) = (2, ..., Yut+1). The obstruction for ¢ to
be u.t.f. along y is the obstruction for the linearizability of the germs ¢p (see §2) for
P ey \{9(xogp)/dx =1} (see Proposition 4.1). Since the lack of linearizability of ¢p
implies that (d(x o ¢)/dx) (P) € e21Q for any P € y, itis natural that the singularities of
u}; are located over 7 (E ,’: ).

LEMMA 4.7. (Generic expression) Let ¢ =exp(ii f 3/dx) be a up- diﬁ‘eomorphism and
let v be a non-unipotent irreducible component of Fix ¢. Then u’, j is holomorphic in

n*](D2 ,,,,, n+1 \n(E}/)) for any j=>0. In particular uj € C{x, x1, ..., x,} for any

Jj = 0. Moreover, we have
()
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in the neighborhood of every point in
—1 Y
y N |:D \ 7 (U 7 (E7 ))}
Jj=0
Proof. The proof is based on the analysis of the Taylor expansion of the exponential
mapping. We have

xo‘ﬂ—()C-i-Z ) n*(ag/0x)c! )e(gz), (1

and then 9(x o ¢)/0x — etohds/ox ¢ (g). We deduce that ugh dg/0x converges by
restriction to ¥ in D Ny. By Lemma 4.4 there exists u6 € Gpny (see §2) such that

ug — u6 € (g). Since ug)’ coincides with the remainder of the Weierstrass division u/g

uOth/ax

,,,,,

We are going to prove the result by 1nduct10n on j. The result is true for ug . Suppose
that u); is holomorphic in n_l(Dz 1\ n(EV)) for any j < a. We will prove that ug

v=>0 —u)/g*.

Let By = Hy = x; we define I§j+1 =ugh Bﬁj/ax and Hj 1 =ugh dH;/dx for j > 0.
The next step in the proof is proving by induction that B i (j = 0) can be expressed in
the form

Bj=H; + 0 niul " (8g/0x)/ 7' C; + g 2hD;,

where D ; belongs to C[[x, x1, ..., x,]] and C; € C. The relations defining the sequence
are Co=0and C; = (a + 1)Cj_1 + 1 for any j > 0. The induction result is immediate
for j =0and j = 1. We can develop

Bjy1 = (0B;/0x) (u+ g*)gh

to obtain

. OH; 9 [ 0g\/ ! .
By = atlpiy f -2 C; h+ g*tlho)y,
i+ [ax tox ( <8x) j )| (ush+ g™ o)

modulo (g**2h). By using u — ug € (g) and equation (1) we get
dH;/8x — ulh! (3g/dx)) € (g).
This leads us to the desired expression
Bjp1 — [Hjp1 +ugh?™ (9g/9x)7 g5 (1 + Cj (o + 1)] € (8% T2h)
for I§j+1. We note that C; = ((a + 1)/ — 1)/a. We have
Ciud ™ hi=V(3g/ox)I~

xo<p_xoexp(ugh8/3x)+z y h g,
Jj!
j=1
modulo (g%2h). We simplify to obtain
La+1 — L)h a+l14
xo@— |xoexplugh d/dx) + ( Yhg”" v € (g%"2h).
augh 0g/ox
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Since u is defined in a neighborhood of (D N y) \ n_l(n(Ez;_l)) and ugh 9/0dx vanishes
on y, then x o exp(ugh 8/dx) is defined in a neighborhood of (D N y) \ 7! (n(Eg:_l)).
We have the inclusion

foxo@)/ox=1}NDNy={L=1}NDNy C{uph dg/ox =0},

since otherwise {d(x o ¢)/dx = 1} N D N y is not connected. As a consequence we obtain
that (L — 1)/(uph dg/0dx) is never vanishing in D N y. The function
K & xo@ —xoexp(ugh d/dx) a uph dg/ox

I +L4---+L L L—1

is holomorphic in a neighborhood of (D Ny) \ (n_l(n(EZ_l)) U E}). The polydisk D
is a division neighborhood for g. By Lemmas 4.2 and 4.1 the series K’ = K /g*! is a
holomorphic function in a neighborhood of (D N y) \ (r ! (JT(EZ_I)) U ED).

Since (K’/h)h converges by restriction to y in (D Ny) \ 7~ Y7 (EL)) then so does
K’/h by Lemmas 4.4 and 4.2. The series u), is the Weierstrass remainder of the division
[K'/h]/g. Therefore ul is holomorphic in n’l(Dz,_,_,nH \ T(ED)).

Since x op —x o exp((Zl —o U g"‘ Dgh 8/9x) € (g**1) we can apply Lemmas 4.2
and 4.1 to prove the existence of a holomorphic function M,, defined in a neighborhood of
(DNy)\ 7 ' (x(EY_,)) and such that

xow—xoexp((Zu}/ «= 1)gh 8/8x> g% T'Mm,.

j=0

The previous equality running on « € N implies that

0 0
= Vol oh—
o=en( (e’ Jon )

in the neighborhood of every point in

-1 v
ﬂ[D\n (Un(Ej)>]. O
j=0

Remark 4.2. There is not always uniform formal transversality. The infinitesimal generator
of = (x+y—x2 ) is not utf. along y ={y=x2}. We claim that pp (see §2)
cannot be embedded in a formal flow if P € | J >0 E;’ C Fix ¢. Otherwise ¢p is formally
conjugated to jlgp (Proposition 4.1) and then periodic; that is not possible since gp is
nonlinear and polynomial. We obtain that log ¢ is not u.t.f. along y since 0 € | J =0 E;/

Consider ¢ =exp(if 8/0x) € Diff,, (C"*1 0) and let y be a non-unipotent (see
Definition 4.2) irreducible component of Fix ¢. When calculating the coefficients of the
linearizing mapping of ¢ p for P € y we obtain fractions whose denominator is of the form
((@(x 0 @)/0x)P — 1) (P) for some p € N. The obstructions to the linearizability of ¢ p for
P € y lead to the lack of u.t.f. character of the infinitesimal generator of ¢ along y (see
Proposition 4.1). It is then natural to think that log ¢ has meromorphic nature. Indeed, this

is the case; the functions u; are meromorphic for any j > 0.
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PROPOSITION 4.5. Let ¢ =exp(if 0/0x) eDiffup((C”“, 0) and let y be a non-
unipotent irreducible component of Fix ¢. The coefficients of u); in C{yz, ..., yut1} are
meromorphic in Dy . 41 for any j > 0.

Proof. We denote L = e“(V)th/ax; we know that L — d(x o ¢)/dx € (g). Let P be a point
of (DNy)\{L=1}. Since {L=1}Ny ={df/dx =0} Ny then f =0 is transversal to
d/0x in P. In particular y is smooth at P and it is the only irreducible component of Fix ¢

passing through P. We can find new coordinates (z, xi, . . ., X;) in the neighborhood of
P such that 9/9x and g = 0 become 9/9z and z = 0 respectively. In these coordinates ¢ is
of the form
Q@ X1, X)) = (@] (X1, X))z ay(xn L X)Z X ).
Consider a small enough open neighborhood W(P) of P in DNy, which is

parameterized by (xq,...,x,). We ask that all — 1 never vanishes in W(P); this
is possible since L(P)# 1. We claim that there exists o such that 6 ' opoo =
(allz, Z1, . . ., Zn) Of the form

0 .

o= <Z+Zaj(x1,...xn)zf,x1,...,xn),
j=2

where o is holomorphic in W(P) \ E}/_ | and meromorphic in W (P) for any j > 2. We
are going to construct a sequence of diffeomorphisms (¢x) such that ¢; = ¢ and ¢y is of
the form

o0
1 k j
(pk=<a1(-x11"'axn)z+ Z aj(-x17"'axn)zjs-xla"'7xn>7

j=k+1

where aj‘. is holomorphic in W(P) \ EZ_I and meromorphic in W (P) for any j > 2. There

k+1

exists tx = (2 + br+1(x1, - - ., Xp)Z", X1, . . ., Xp) such that

zorl:l o Qi O Tk —all(xl, .., Xp)Z € (zk+2).

Moreover, 7 is unique and ((a{)kJrl - a{)ka = a,’{‘H. By hypothesis, bg41 is
holomorphic in W(P) \ EZ and meromorphic in W(P). We define the diffeomorphism
Qk+1 = rk_l o ¢ o 7. Consider o =lim;_, o 71 0 - - - 0 T; where the limit is considered
in the Krull topology. Clearly o; is holomorphic in W(P) \ E;L] and meromorphic in

W (P) for any j >2. Then we define Yp = (ug)’h(ag/ax)) ©, x1,...,x,)z0/0z. We
have ¢ = exp(oYp) since (allz, X1, ..., x,) =exp(Yp). We obtain
0 >, . . 1\ 0
0xYp = ([(u%h%) 0, x1, ..., %) (1 + ;]szj l)z] oo ])8_1

We can change coordinates to obtain

00
o Yp = (ug + Z U;)(xls cee xn)g]>gh
=1

d
ax’

where v;) e O(W(P)\ E;./) and is meromorphic in W(P) for any j > 1.
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Fix Q € W(P) such that 7 (Q) ¢”(UjeN E;’ U{L =1}). There exists an open
neighborhood W’ of Q in W(P) such that ]T(UJ»GN E;/ U{L=1}) and 7w(W’) are
disjoint. This implies that the series ug + Y52, u?gj and uf + 332, vfgj belong

to lim. Gy /I(W')". By Proposition 4.2 applied to the fibers of dx; =---=dx, =0
we obtain
o . o0 .
wh + Y ulgl =uh +y vPel. 2)
j=1 j=1

We deduce that u} — v{ =0 contains W’. Thus we can extend the meromorphic function
(u’ll)h/ to W(P). By considering every point P & y N {3f/dx = 0} we get that (”)1/)“/ is
meromorphic in

(DNy)\(E] N{of/ox=0D=DnNy.

We can apply the Weierstrass division theorem to obtain that u}ll is meromorphic in
is meromorphic in
(DNy)\(E] N{af/ax=0)=DnNy,

for j > 1. Thus u’ is meromorphic in 7 =" (D2, . »+1) for any j € N. |

PROPOSITION 4.6. Let ¢ € Diffup((C"“, 0). Then log ¢ is t.f. along Fix ¢. Let y be an
irreducible component of Fix ¢. If y is unipotent (see Definition 4.2) then log ¢ is u.t.f.
along y. Anyway, it is always u.s.m. along y.

Proof. The results on y are a consequence of Propositions 4.4 and 4.5 and Lemma 4.7.
Then log ¢ is t.f. along Fix ¢ by Lemma 4.5. o

We claim that the obstruction for log ¢ to be u.t.f. along a non-unipotent component y
is the existence of germs ¢p for P € y (see §2) which cannot be embedded in a formal
flow.

PROPOSITION 4.7. Let ¢ =exp(ii f 9/9x) € Diff,, (C™+1,0). Consider a non-unipotent
irreducible component y of Fix ¢. Then log ¢ is u.t.f. along y if and only if there exists a
neighborhood of the origin U such that ¢p (see §2) is embedded in a formal flow for any
PeynU.

Proof. The implication = is trivial. We denote L = "0h98/9x  We define the set
F=yN[{dL ANdg=0}U{L = 1}]. Since the function L is non-constant in y then F is
a proper analytic subset of y. We can suppose that the origin belongs to every irreducible
component of F' N D by shrinking D. Moreover we can suppose that ¢y is embedded in a
formal flow for any Y € y N D. Next, we use the strategy in the proof of Proposition 4.5

in order to show that u; is analytic in 7 YDy i1 \ w(F)) for any j > 0. Since u;/

.....
,,,,,

.....

Riemann’s theorem.
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Let P be a point in (D Ny) \ F. There exists a system of coordinates (z, x, . . ., X»)
in a neighborhood of P (see proof of Proposition 4.5) such that g =0 and d/0x become
z =0 and 0/0z respectively. Consider a neighborhood W(P) of P in D Ny such that
W(P)NF =4¢.

Consider the notation in the proof of Proposition 4.5. Let r € N; suppose alj‘. and by
are holomorphic in W(P) for all k <r, j>k+1and 1 <qg <r. We claim that b,
is holomorphic in W(P) and then a;H € O(W(P)) for any j>r+2. We have
[a% ((all)r — DIbr41=a;; by the proof of Proposition 4.5. Consider any point
Q € W(P) such that (all(Q))r =L(Q) =1. The diffeomorphism ¢¢ is linearizable
by Proposition 4.1. There exists an element of 4 € Diff(C, 0) such that 2! o pooh=
all(Q)z and j"h = j"((t; o- - - 0 T,—1) @) by Proposition 4.3. Now

(oot 1)y oh=z+Cr(QH + 0@
for some C,1(Q) € C. By construction we obtain
[a1(Q) (@[ ()" = DIC41(Q) = a/,1(Q).
Therefore the set a;. = 0 contains the set (all)r = 1. We have
¢ =FNW(P)D{dal Adz=0}NW(P).

Since al1 does not depend on z then da} never vanishes in W(P). Therefore any
hypersurface al1 = cte is locally irreducible in W(P). Since a;, €] (a} — ) for every

r-root of the unit  then

_ 4y _ iy
al(@) =1 al [lr_al =2

is analytic in W(P). By proceeding as in the proof of Proposition 4.5 we obtain

br+l

irreducible components of F adhere to 0 and 0 ¢ n(E}/) then the codimension of 77 (F) N

n(E;./) C Dy, n+1 is greater than or equal to 2. By Hartogs’ theorem u;/ is analytic in

7Dy u41) for j > 0. Hence i = > %0 u’;gj is u.t.f. along y. O

.....

5. Formal classification

The goal of this section is to provide a complete system of invariants for the formal
classification of up-diffeomorphisms. More precisely, we describe the formal moduli
modulo analytic change of coordinates.

5.1.  Nature of the residue functions. The formal invariants attached to the germs ¢p
(see §2) for P € Fix ¢ are included in the formal invariants of the up-diffeomorphism ¢.
In this subsection we describe the nature of such invariants.

Lett = exp(fz(x) a/dx) € Diff, (C, 0). We define the order of contact v(t) between t
and Id as the order of the function t(x) — x at O; it does not depend on the choice of the
coordinate x. There exists X = h(x) d/dx € An(C, 0) such that 7(x) — exp(h 9/9x) (x)
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belongs to the ideal (x2"(")). We consider the dual form of log 7, i.e. the unique formal
meromorphic form & such that d(log 7) = 1. The form & = dx /h(x) can be expressed as
 + a(x) dx where w is the dual form of X and a € C[[x]]. We define the residues Res(t)
and Res(log 7) as the residue of @ at 0. These residues coincide with the residue of w at 0
since @ — w has no poles. Moreover, the couple (v(t), Res(t)) provides a complete system
of formal invariants in Diff, (C, 0). These definitions can be extended for t € Diff, (C, xq)
by applying them to (x — xg) o T o (x + xg) € Diff, (C, 0).

Fix ¢ € Diff,, (C"*1,0). Let y be a unipotent non-fibered irreducible component of
Fix ¢. We have ¢p € Dift, (C, P) forany P € y but Q — Res(¢) is not continuous in y.
An example is provided by ¢ = exp(x2(x — y)? 3/dx), we have that Res(¢(,y)) = 2/y3if
vy # 0 whereas Res(¢(0,0)) = 0. We define

S= {P €y :v(pp) > min v(goQ)}.
Qey

The set S is a proper analytic subset of . The function Res, (¢) : ¥ \ § — C defined
by Res, (¢) (P) =Res(gpp) is analytic. Later on we prove that Res,, (¢) can be extended
meromorphically to the whole y as in the example. Let y be a non-unipotent irreducible
component of Fix ¢; we define Res,, (¢) : y — C given by

1
Res, (¢) (Q) = .
! In([3(x 0 ¢)/3x1(Q))
where we choose the determination of log such that log 1 = 0. This definition makes sense,
since for Q = (xo, x?, cey x,?) € y such that (3(x o ¢)/0x) (Q) & ¢?"1Q we have that the

residue of (log (p)| i 0) € )E((C, X0) is equal to Res, (¢) (Q).
J= J

1 (rj=x

PROPOSITION 5.1. Let ¢ =exp(ti f 9/0x) € Diffup((C"“, 0) and let y be a non-fibered
(see §2) irreducible component of Fix ¢. Suppose that y is transversal to 3/0x in a
neighborhood of 0. Then Res,, (¢) is a meromorphic function of y.

Proof. Up to a change of coordinates o = (x + h(xy, ..., X,), X1, ..., X,) We can
suppose that y = {x = 0}. Since # is convergent by restriction to y then &#(0, x1, ..., x,)
belongs to C{xy, ..., x,}. We can express f in the form Z;’iv fitaa, ..., xn)x? where

v =minpey, v(pp); in fact we have that f,(P) # 0 if and only if v(pp) =v for P € y.
Thus Res,, (¢) is holomorphic in y \ {f, = 0}.
We consider the transformation

X(Z’x]a ~--a-xl’l)=(zfv(-xla --~7xn)5-x17 --~7-xn)-

Then x is a change of coordinates outside of f, =0. We define the diffeomorphism
1

@ =X~ o@o x;weobtain
© . A 9
¢:exp<mo X) (ﬁ)”(z” + ) fj(fv)]_(u+1)zj>—>.
. az
j=v+l
We define ¢ = exp((log ¢)/f,). Since (&t o x — ) (0, x1, . .., x,) =0 then the function
(x1, -+, X2) = V(Q(0,x,,....x,)) is equal to the constant v. Hence the function Res,, (@) :
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y — C is holomorphic in a neighborhood of the origin. Note that f,, does not depend on
z; thus we obtain

Res, (9) = Res; (¢) = Res, (9)/f, .

Clearly Res,, (¢) is a meromorphic function of y. o

PROPOSITION 5.2. Let ¢ € Diff, (C"*1,0) and let y be a non-fibered irreducible
component of Fix ¢. Then Res,, (@) is a meromorphic function of y.

Proof. Suppose that y does not contain orbits of d/dx. As a consequence there exists an
irreducible Weierstrass polynomial

H=x"+a G, oo o age, .oy x)

such that y = {H = 0}. We denote 7 (x, x1, ..., x;) = (x1, ..., X5). Let D be the critical
locus of the projection m},,. We denote by DD the critical locus of the projection 7|p.
The analytic set DD has codimension at least 2 in y. By Proposition 5.1 the function
Res,, (¢) is meromorphic in y \ D. Suppose that Res, (¢) is meromorphic in y \ DD.
Then there exists a polynomial R = ZI;;Q) bj(xi, ..., x,)x7 such that Res, () = R}y,
by the Weierstrass division. The coefficients b; (0 < j <k — 1) are meromorphic in a
neighborhood of the origin deprived of w (D D). Since the codimension of 7 (D D) is at
least 2 in C" then b is meromorphic in a neighborhood of the origin forany 0 < j <k — 1.
Thus Res,, (¢) = R|;, is meromorphic.

Let Pe D\ DD. The set D is transversal to d/dx at P and then smooth. Since
dim D =n — 1 then there exist coordinates (z, zi, . .., 2Zn) centered at P such that 9/9x
and D become d/0dz and {z = 0} N {z1 = 0} respectively. We consider the ramification

k!
T(Z’Z]9ZZ7"'7Z}1):(Z’Z1 7Z2""7Zn)‘

The set T~'(y) is the union of at most k hypersurfaces in the neighborhood of P,
all of them being transversal to d/dz. The function Res, (¢) o T = ResTfl(y)(T*w) is
meromorphic in 7~!(y) by Proposition 5.1. We undo the ramification to obtain that
Res,, (¢) is meromorphic in a neighborhood of P and thenin y \ DD.

If y contains orbits of d/dx we can reduce the situation to the previous one by blowing
up fibered submanifolds of y. We are done since the field of meromorphic functions in y
is invariant by blow-up. O

Next we express the function Res,, (¢) in a convenient way.

LEMMA 5.1. Let ¢ € Diffy, (C™*1,0) and let y be a non-fibered irreducible component of

Fix ¢. Then there exist A € C{x, x1, ..., x,}and B € C{xy, ..., x,} such that Res, (¢) =
(A/B)y.

Proof. There exist A’, B'e C{x, x,...,x,} such that Res,(¢)=(A"/B"), by
Proposition 5.2. We denote 7 (x, x1, ..., xp) = (X1, ..., xy) and Z =y N {B' =0}. Let
g =0 be an irreducible equation of y. We have dim Z <n — 1 and then dim 7(Z) <
n — 1. Consider & in C{x1, ..., x,} such that h|;(z) = 0 but h,, # 0; that is possible since

y is non-fibered. We obtain
helZ(g, B) =— he(g B) = KW' =Jg+KPB,
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for some m € Nand J, K € C{x, x1, ..., x,}. The function

A KA’ KA’

B KB +Jg I

is equal to Res,, (¢) in y. O

5.2.  The homological equation. We can linearize the problem of formal classification
of up-diffeomorphisms. It can be reduced to deal with equations of the form

da A
ax f’
where A, f € C{x, x1, ..., x,}. This equation is called the homological equation.
Definition 5.1. Consider the decomposition fll] e I[)” F"' - F;" of f into irreducible
factors. We suppose that f; = 0 is non-fibered and Fj = 0 is fibered for all 1 < j < p and
1 <k < gq. Moreover we suppose that Fi € C{x1, ..., x,} for 1 <k <¢g. Now we define
fn= le f;j and fr =[[7_, F;"*. We say that a meromorphic germ of function « is
special with respect to f if it can be expressed in the form
_ B
T -l =1 .
fll e fpp fF
for some B in C{x, x1, ..., x,}. A homological equation da/dx = A/f is special if it

has a special solution (with respect to f). Most of the time we drop the expression ‘with
respect to f’ since it is clear from the context.

Definition 5.2. Let f = fr fy € C{x, x1, ..., x,,} (see Definition 5.1). We say that the
homological equation da/dx = A/f is free of residues if the one-dimensional 1-form

(;;N(x’ A x,?)) dx € Ql(ﬂ{x]' =x?}>

j=1

has residue zero in the neighborhood of every point P = (x?, x?, ce x,?) such that
fn(P)=0and fy(x,x), ..., x0)#0.

Clearly a special homological equation is free of residues. Roughly speaking in the
rest of this subsection we study the gap between the concepts of ‘free of residues’ and
‘special’ for homological equations. We determine generic conditions in which free of
residues implies special (see Lemma 5.2, Corollary 5.1 and Proposition 5.5). Moreover,
in the remaining cases we prove that every free of residues homological equation admits a
meromorphic solution (Proposition 5.3).

Generically a free of residues homological equation dor/dx = A/f is special and, in
particular, in the finite codimension case, i.e. f(x,0,...,0) 0.

LEMMA 5.2. Let E =[0a/dx =A/f] be a free of residues homological equation.
Suppose that fn(x, 0, ..., 0) 0 (see Definition 5.1). Then E is special.
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Proof. We can suppose that fr (see Definition 5.1) is a unit since, provided a special
solution o’ of da’/dx = A/fy, the function « = &’/ fF is a special solution of E. Consider
a small neighborhood V' x W of the origin in C x C" contained in the domain of
definition of E. We can suppose that V' is simply connected. Let V C C be a simply
connected open set such that 0 ¢ V C V’. We can suppose that (V x W) N {fy =0} =@.

The equation E has a solution &« € O(V x W). It can be extended to the set (V x W) \
{ fy = 0} by analytic continuation since the residues vanish. Consider a point Q € { fy =
0} such that 9/0x is transversal to fiy =0 at Q. There exist coordinates (z, 21, ..., Zn)
centered at Q such that 9/0x and fy =0 become 9/dz and z =0 respectively. By
integrating with respect to z we obtain a special solution ¢ in the neighborhood of Q.
Now d(a — ag)/0x =0 implies that @ — ap is holomorphic in a neighborhood of Q.
Hence « is special in a neighborhood of Q. Since d/dx is transversal to fy = 0 except at
a set whose codimension is greater than 1, then « is a special solution of E. o

COROLLARY 5.1. Forn =1 (i.e. A, f € C{x, x1}) we have that a homological equation
oa/dx = A/f is free of residues if and only if it is special.

In general the vanishing of the residues does not imply the existence of a special
solution. An example is given by da/dx =1/(z — xy)z. On the one hand it is free of
residues since o = 1/((z — xy)y) is a solution. On the other hand there is no special
solution 8/(z — xy) since otherwise we obtain 1 = (d8/dx) (z — xy) + By € (y, 2).

Definition 5.3. Let f = fn fr € C{x, x1, ..., xp} (see Definition 5.1). Let ]_[j.’=1 fll’ be
the decomposition into irreducible factors of fy. We define the evil set S(f) of f as the
union of the fibered varieties contained in l_[l,->1 fj =0. The set S(f) is analytic and of
codimension at least 2.

We want to obtain a solution as close as possible to be special for a free of residues
equation da/dx = A/f. The obstruction is somehow located in the evil set S(f) (see
Proposition 5.5). Moreover, a free of residues dar/dx = A/ f always admits a meromorphic
solution of the form B/J where § is special and J vanishes to order big enough in S(f).

PROPOSITION 5.3. Let E =[da/0x = A/f] be a free of residues homological equation.
Let H € C{xy, ..., x,}\ {0} vanishing in the evil set of f. Then there exists k € N U {0}
depending only on f such that da/dx = (AH®)/f is special.

5.2.1.  Proof of Proposition 5.3. The proof is based on a reduction to the case S(f) =0
by doing a sequence of blow-ups centered in fibered manifolds. We associate a cocycle
8O(E ) to E and then we prove that E is special if and only if the class of 80(E ) in a certain
cohomology group H' is zero. Anyway, the class of 8°(E) is always vanishing when we
consider the right group of homology. As a consequence we find a meromorphic solution
of E.

Let ]_[’/.’:1 f]l.j be the decomposition in irreducible factors of fy (see Definition 5.1).
We define the following sheafs:
° ORr(f) of functions & such that cf/(fi . .. f) is holomorphic;
° Op(f) is the subsheaf of Og( f) of first integrals of d/dx; and
° Op(f) is the quotient sheaf Or(f)/Op(f).

https://doi.org/10.1017/50143385707000867 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385707000867

Formal classification of up-diffeomorphisms 1345

The sheaf Og(f) is the sheaf of special functions. Note that the sheafs Or(f), Op(f)
and Og(f) do not change if we replace f with fr [T, , 7

The vanishing of the residues of E implies that f; divides A if [; = 1. By replacing
E with da/dx = (A/ Hl,—:l D/ (fr Hlj>1 f]l.j) we can suppose that /; > 1 for any
l<j=<p

Consider a small polydisk A € C"*! such that A € O(A). Now for every ¥ € A\
S(f) there exists a solution ay € Og(f) of E defined in a neighborhood Uy of Y by
Lemma 5.2. For another Y’ € A\ S(f) we have 9(ay — ay/)/9x =0 and thenay — ay’ €
Op(f) (Uy NUy:). Therefore E defines a unique section in HO(A \ S(f), Oo ().
Conversely, let B € HO(A\ S(f), Op(f)); we have that f 9B/dx is holomorphic in
A\ S(f). Since cod S(f) > 2 then f dB/dx can be extended to A. Thus do/dx =
(f aB/dx)/f is a free of residues homological equation defined in A. We have proved
the following result.

LEMMA 5.3. Fix f e C{x, x1, ..., x,}. The free of residues homological equations
defined in A of the form da/dx = A/f are in a bijective correspondence with
HO(A\S(f), Og(f)).

The exact sequence 0 — Op(f) LN Or(f) LS Oo(f) — 0 provides the long exact
sequence

0 = HOA\S(f). Op(f) 1> HOAN S(F). Or ()
0
L HOAN S(f), Op(f)) S H AN S, Op(f) = - .

The set of special equations of the form da/dx = A/f is the image of p°. We have

HYAN\S(f). Op(f)) &
H (A\S , O .
= PEBN S, Oxpyy AN O

Since the existence of the evil set is itself an obstruction for the vanishing of
HY A\ S(f), Op(f)) we try to remove it by blow-up. Consider a sequence of blow-ups
1, T, ..., g centered at fibered varieties. In other words the center of 7 is fibered, the
center of 715 is a union of orbits of (71)*(9/0x) and so on. We denote w = o - - - 0 Ty.

After a finite number of blow-ups we can obtain @ such that the strict transform f;
of f; =0 does not contain orbits of @w™*(9/0x) forany 1 < j < p. Let ]_[j=1 F/m’ be the
irreducible decomposition of fr. The divisor [ f o @] is of the form

p q s
[foml=) LiIfil+Y milFjl+ > cjlHjl.
j=1 j=1 Jj=1

where ﬁj is the strict transform of F; = 0. We have that w! S = U‘}:l H; where
H; is a fibered hypersurface and c; € N for any 1 < j <s. We define k = max << cj.
We obtain

q s
[(H* fr) o] =kIH1+ Y m;[F;j1+ ) t;[Hjl.
i=1 j=1

J

where H is the strict transform of H = 0 and tj>k>cjforany 1 <j <s.
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Consider a polydisk A and the sheafs Op(f o @), Or(f o @) and Og(f o w). We

have
HO@ (M), Op(fom)) & |
Z O H @A), Or(Femyy @A) Op(Fom)).

The polydisk A is of the form Ag x A’ C C x C". Moreover, the choice of @ implies that
@ N Ay x A) = Ay x @~ L(A"). We obtain

H' (@~ (A), Op(H" fp) o)) ~ H' (@~ (A), O).
We can prove by using the expression of the blow-up in coordinate charts that
H'(w~1(A"), O) = H'(A', O). This implies that
H'(@ ' (A), Op((H" fF) 0 @) =0.

Since
q K}
Op(fow)=0p (Z m;[F;]+ Z Cj[Hj]> C Op((H* fr) o ),
=1 =1

then for any homological equation da/dx = A/f such that A € O(A) we can find a
meromorphic solution 8" in O(w~1(A)) such that

P q s
(oo <K[H1+ ) ;= D [fj14 D mjlFj1+ Y 1;[H;].

=1 =1 =1

By blowing down we obtain a solution 8/(H* fr Hlstp fll.j_l) of the equation do/dx =
A/f for some B € O(A). ’

5.2.2. Relation between free of residues and special. Given f € C{x, x1, ..., x,} we
are interested in the properties of the quotient (free of residues/special) of homological
equations and in particular under what conditions on the evil set S(f) it is O or a finite
dimensional complex vector space.

Definition 5.4. Let f e C{x, x1,...,x,}. Let Fr(f) be the set of free of residues
homological equations of the form do/dx = A/f for some A € C{x, x1, ..., x,}. We
define Sp(f) as the subset of Fr(f) of special equations. We denote the set H°(A \
S(f), Og(f)) of free of residues homological equations defined in A by Fr(f, A) and its
subset p*(HO(A \ S(f), Or(f))) of special equations by Sp(f, A).

The next proposition is straightforward.

PROPOSITION 5.4. Let0# f € C{x, x1, ..., x,}. We have
Frif) _ o HYA\S(), Oo(f)
Sp(f) = pUHAUANS(), Or(S))
We have Fr(f)/Sp(f) =0 for small evil sets.

PROPOSITION 5.5. Suppose cod S(f) > 3. Then a free of residues da/dx = A/f is
special.
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Proof. Tt suffices to show that H'(A\ S(f), Op(f)) =0 for any polydisk A small
enough. We have Op(f) ~ Op(fn) = O where O is the sheaf of holomorphic functions
in C". The sheaf O is coherent and then the first homology group does not change
by removing analytic sets of codimension at least 3 (see [17]). We obtain H!(A \

S(f), Op(f) =0. O

Denote by e(A) the canonical mapping from Fr(f, A)/Sp(f, A) to Fr(f)/Sp(f).
The next proposition makes clear that Fr(f)/Sp(f) behaves like a space of germs.

PROPOSITION 5.6. There exists a fundamental system (A f)j <N of open neighborhoods of
the origin such that e(A ;) is injective for any j € N. In particular we have

Fr() | Eri s
SP(H) 3y SPUL A

Proof. We can suppose that fr is a unit without lack of generality. Therefore we have
Op(f) = O where O is the sheaf of holomorphic functions in C".

Consider the subset S’(f) of S(f) of points at which S(f) c C" is smooth and of
codimension 2. We define A; = V; x VJ’? such that:
° (Vj)j <N 18 a sequence of open neighborhoods of 0 € C;
° (V;’)jGN is a sequence of open neighborhoods of 0 € C"; and
° all the connected components of S’'(f) in VJ’? adhere to O for j € N.

Fix j e N.  We have to prove that E € Fr(f, Aj) and e(A;) (E) =0 imply that
E € Sp(f, Aj). Consider the element 6°(E) of Hl(Vj" \ S(f), O) (see §5.2.1). For
every open set U C ij’ \ S(f) we define 8°(E, U) as the image of °(E) by the canonical
mapping

H'(VI\S(f), 0) > H' (U, 0).

We define S”(f) as the subset of S’(f) whose elements P € S”(f) satisfy the property
that there exists an open neighborhood Up C V;’ of P such that 8°(E, Up \ S(f)) =0.
This property is equivalent to the existence of a neighborhood of V; x { P} where E has a
special solution.

By definition S”(f) is open in S'(f) N V. We claim that S”(f) is closed in §’(f) N
V;l. Let Qe S"(f)N(S'(f)N V;‘). There exists a coordinate system (yi, ..., yn)
centered at O such that S(f) is given by y; =y, =0 in a neighborhood of Q. We
denote K5 = (;_;{lyk| < 8}; we fix § > 0 such that K is contained in V;’. Denote Kés/ =
Ks\ {y; =0} for j € {1, 2}; then K, U K? is a Leray covering of K; \ S(f) for O. Thus,
there exists a special solution h; € Or(f) (V; x Ké‘) of E for any k € {1, 2}; moreover
8O(E, K5\ S(f)) is given by the function h; — h; € (’)(1(5l N K52). As a consequence
h1 — hy can be expressed in the form

hi—hy= Y ai(ys, ... y)Yyh
(k,heZ?

where ay ; is analytic in ﬂ’::3{|yr| < §} for any (k, 1) € 7Z*. Since Q e S”(f) then ay
vanishes in an open set of ﬂ;':3{| yr| < &} and then in the whole ﬂ;':3{| yr| < 8} for any
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(k, 1) € (Z~p)>. The function

hi= Y aiOs Ly =+ D aki(s, o Y)Y
keZ,1>0 k>0,1<0
is a special solution of E defined in V; x (Ks\ S(f)) and then in V; x Kj since
cod S(f) > 2. Therefore S”(f) is closed in S'(f) N V;‘.

Every connected component of S'(f) N V}' adheres to 0 and then it intersects S”(f)
since e(Aj)(E) = 0. We obtain §”(f) = S'(f) N V}'. Indeed 89(E) belongs to HI(V;' \
S(H\S'(f)), O) by the previous discussion. The set S(f) \ S'(f) has codimension
greater than 2 and then 8°(E) = 0 by Scheja’s theorem. Thus E belongs to Sp( f, Aj). O

In the low dimensional cases we can be even more explicit.

PROPOSITION 5.7. Let 0# f € C{x, x1, ..., x,}. Suppose n <2. Then there exists a
fundamental system (A;) of open neighborhoods of the origin such that e(A;) is an
isomorphism. Moreover Fr(f)/Sp(f) is a finite dimensional complex vector space.

Proof. For n <1 we have S(f) =¢. Thus H' (A \ S(f), Op(f)) =0 for every domain
A small enough. This implies that Fr(f)/Sp(f) =0.

Let n =2. We can suppose that fr is a unit without lack of generality. Moreover
we can also suppose that S(f) # ¥ since otherwise we proceed as for n < 1. Thus we
have S(f) ={(0, 0)} since cod S(f) > 2. Consider a sequence A; = B(0, 1/)3. We
define K§ = B(0, 1/j)%\ {x; =0} for [ € {1, 2}; the set B(0, 1/j)\ {(0, 0)} admits a
Leray covering K} U sz. for O.

By Proposition 5.3 there exists k € N such that every E € Fr(f, A;) has a solution
ozE,l/xlk where ag ; is special in B(0, l/j)3 forl € {1, 2}. Now 8O(E) (see §5.2.1) is given
by the function ozE,l/xll‘ — ozE,z/xlz‘ IS O(K} N sz). By construction aEJ/xf — OlE‘z/Xg
is of the form h/(x¥x5) where h is holomorphic in B(0, 1/j)%. Since x{x? is 0 in
HY(B(0, 1/j)%\ {0}, O) if (a, b) & (Z_0)? then the dimension of Fr(f, Ap)/Sp(f, Aj)
as a complex vector space is less than or equal to k2.

The canonical mapping

Fr(f, Aj) N Fr(f, Aj+1)

Sp(f, &) Sp(f. Ajy1)
is injective by Proposition 5.6 for j > 0. Thus dim¢c Fr(f, A;)/Sp(f, Aj) is a non-
decreasing sequence from some moment on. Since it is bounded from above then
dim¢ Fr(f, Aj)/Sp(f, Aj) is constant for any j > jo and some jo € N. Hence e(Aj;)
is an isomorphism for any j > jo. Clearly Fr(f)/Sp(f) is finite dimensional. O

5.3.  The residue functions are formal invariants. Given a germ t € Diff,, (C, 0) tangent
to the identity, the couple (v(t), Res(t)) (see §5.1) provides a complete system of formal
invariants. Since the ideal generated by t(x) — x is ()@ then we can replace v(t) with
the ideal (z(x) — x). Given ¢, n € Diff,,,(C"*!, 0) and a formal o € Diff(C"**!, 0) such
that 0 o ¢ = n o 0 we have:

° (x1, ..., xp) 00 € C[[xy, ..., x,]]",i.e. o preserves dx; = - - - =dx,, =0; and

° the equality of ideals (x o —x) oo = (x o ¢ — x) in C[[x, x1, ..., x,]]-
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The first property means that a conjugation preserves the parameter space. The second
property implies that the ideal (x o ¢ — x) associated to the fixed points set of ¢ €
Diff,,p((C”"’l, 0) is a formal invariant. It is the generalization of the order of contact
associated to elements of Diff, (C, 0). It is natural to ask whether the residue functions
defined in §5.1 are also formal invariants, then generalizing the residue invariant in one
variable. The answer is positive and the proof is the object of this subsection.

The proof of the invariance of the residues is based on the study of the dual form. Let
@ =exp(il f 3/3x) € Diff,, (C"*!, 0). We call dual form of log ¢ the dual form dx /(i f)
of log ¢ in the relative cohomology of d/dx. Since # is t.f. along f = 0 then there exists

u € Clx, x1,...,x,}such that z# — u € (f). We define the differential djh = (d0h/dx) dx
relative to d/0x. We have
dx dx+u—121d dx+d1€
= — —ax = — ,
af _uf | f ub uf !
for some K € C[[x, x1, . . ., x,]]. Thus the dual form can be decomposed as the sum of a
meromorphic 1-form and a formal exact 1-form. Let o« = exp(uf d/0x); by the definitions
in §5.1 the diffeomorphisms « and ¢ have the same residue functions. Let fy = 97:1 f]l.j ;
by Lemma 5.1 there exist series P; € C{x, x1, ..., x5} and Q; € C{x, ..., x,,} such that
we have Res r;—0(¢) = (PJ'/Q.I')|f]-:0 forany 1 < j < p. We define
d P; d0f;/ox
w= ax _Jde.

uf 152, Q0 1

The form w has vanishing residues in fy = 0. We obtain w = d1(A/B) for some A, B €
C{x, x1, ..., xp} by Proposition 5.3. This implies the following result.

LEMMA 5.4. Let ¢ = exp(ii f 3/dx) € Diff,,(C"*1, 0). We have

d C P; 0f;/0
A_x=d1<_)+ _1de
uf bJ 52, Q0 i

for some C € C[[x, x1, ..., x,]land D € C{x, x1, ..., x,}.

Let @1, @2 € Diff,,(C"1,0).  Suppose that there exists & € Diff(C"*+!, 0) such
that ¢»p o6 =6 o ¢;. Denote f =x o] —x. Consider the irreducible decomposition
nfr=T115, f;j [15., Fjl.nj (see Definition 5.1) of f. We have that:

° o preserves the fibration dx| = - - - = dx,, = 0;

e  fj 067! =0is anon-fibered subvariety of Fix ¢, for 1 < j < p;and

° Fjo 61 =0is a fibered analytic subset of Fix ¢, for 1 < j < gq.

Let g; =0 be an irreducible analytic equation of f; o 6=1=0for 1 <j< p. The dual
forms of log ¢1 and log ¢ can be expressed as

C Plofi/o c P? 9g./8
d1<—1>+ S IR g d1<—2>+ ) RERLIAEN
D) 52, Q5 i D252, Q5 &

respectively.

PROPOSITION 5.8. The residue functions are formal invariants.
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Proof. We keep the notation preceding the proposition. We define M; = Q} (Q? 0 0) and
N;= le(Q? 00) — Q}.(Pj2 00) for 1 < j<p. Our claim is equivalent to N; € (f})
for any 1 < j < p. We denote by 2; the dual form of log ¢; for j in {1, 2}. We have
6*Q = Q). Note that 6*(h dx) = (h o) (3(x 0 G)/dx) dx; we are always working in
the relative cohomology with respect to 3/dx. We have that 6*Qy — d;((C2/ D7) 0 &) is
equal to

P? 3¢:/8 P )
> (555 ) oo Jawei = 3 Froa D g,
152p Q) 8 1572p 2 gj o6

By construction g; o & is of the form 9 f; for some formal unit 9; and any 1 < j < p. We
obtain

30 /9 P} 9fi/8
o&—vl/ xdx—l— Z —]206 f}/ xdx
J J

J 1<j<p

The form Zlfjfp((sz/Qi) 06) ((80;/9x)/0;) dx does not have non-fibered poles
and then it can be expressed in the form d;(J;/J2) for some J; € C[[x, x1, ..., x,]] and
Jr € C[[x1, ..., xx]l. Since 6*Qy = ©; then there exist C, D € C[[x, x1, ..., x,]] such

that 5
C Bf]/ax< Pj )
di|—= )= E — — —=o0 dx.
1<D) 1<j<p f] Q1 Q? ? *

The previous expression is equivalent to

3220, T T [ T o (30 - 22)
k=

k#j k#Ej

Let wu, be the greatest integer such that f;”" divides D for 1 <r < p. For u, >0
the left-hand side belongs to ( f,zﬂ ") and the right-hand side belongs to (f") \ ( frﬂrﬂ);
this implies that w, =0 for 1 <r < p. The right-hand side belongs to (f;), and as a
consequence

DZZ f’N [[A]IMery = NeU
k#j  k#j

forany 1 <r < p. O

5.4. Homological equation and formal conjugation. In this subsection we relate the
formal conjugacy problem with the solvability of homological equations.

Definition 5.5. Let f € C{x, x1, ..., x,}. We say that 6 € ]5i\ffp((C”+1, 0) is normalized
with respect to f =0if x 0 6 — x € i/(fn) (see Definition 5.1).

Definition 5.6. We say that ¢1, @2 € Diff, (C"*1,0) are formally conjugated by a
normalized transformation if there exists a normalized & € Diff), (C™*1, 0) (with respect
tox o) — x =0) such that 9o 0 6 =G o0 ¢.
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In such a case the ideals of fixed points (x o ¢1 — x) and (x o ¢ — x) coincide. Thus
@1, @2 both belong to Dy (see §2) for some f € C{x, xy, ..., x,} such that f(0) =0
and (0f/0x) (0) = 0. We restrict our study to formal normalized conjugations. Later on
we will see that this point of view is complete since general formal conjugations can be
reduced to the normalized setting.

We associate a homological equation £ = (do/dx = A/f) to any pair of elements
@1, 92 € Dy. In this subsection we prove that ¢; and ¢, are formally conjugated by
a normalized transformation if and only if E is special. This equivalence allows us to
describe a complete system of formal invariants (§5.6) by using the results in §5.2.2.

Let g1, 2 € Dy. Wedefine it j = (log ¢;) (x)/f for j € {1, 2}. Throughout this section

we fix the decomposition ]_[57:1 f jj of fy (see Definition 5.1) into irreducible factors.

The equation

do 1 1

axaf iof
is called the homological equation associated to ¢; and ¢p. We call it special if there
exists a special solution 8/(fr ]_[5;1 fjl.j_l) where 8 in C[[x, x1, ..., x,]]. Note that
if 1/d1 — 1/it; € C{x, x1, ..., x,} then the definition of special of §5.2 implies that the

solution is convergent. The two definitions are the same.

LEMMA 5.5. Consider a homological equation E = (da/dx = A/f) where A, f belong
to C{x, x1, ..., xn}. If there exists a formal special solution then there also exists a
convergent special solution.

Proof. We can suppose that fr is a unit without lack of generality. Consider a formal
special solution ,3/(]_[15]5[, f;j_l) of E. We have

83 14 R 14 afj
-y w-v2 [ fi=a
Jj=1 j=1 kefl,....p\{Jj}

If [; = 1 then f; divides A. By considering da/dx = (A/ Hl,«:l f./')/(l_[lj>1 f]l.'/) we can
suppose that /; > 1 for any 1 < j < p. The function A belongs to the ideal generated
by [17_; fj and 3°0_ (1 = 1) 3 £;/3x) [Tgz; fi in Cllx, x1, ..., xx1l. Thus it also
belongs to the ideal in C{x, xy, ..., x,} sharing the same generators; in particular there
exist C, Dg € C{x, x1, ..., x,} such that

)4 8f
A:Cl_[f] DOZ(I _1) J 1‘[ Jk-
j=l1 kefl,....pR\{j}

A

We define y = B — Dy. We obtain

s P
S T e )
j=i T kel P\

The previous formula implies that y € (]_[?=1 fi). Hence (y/ ]_[3.7:1 fj)/(]_[;’=1 f;jiz) is

a solution of
do  C —0Dp/ox
o T T, -1
0x ;’=1 f’j

https://doi.org/10.1017/50143385707000867 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385707000867

1352 J. Ribon

By induction on maxi<;<,/; we can prove that there exists D € C{x, xi, ..., x,}
A =1, . .

such that (8 — D)/ ]_[f=1 fj" is a solution of the equation da/dx = & for some & €

C{x, x1, ..., x,}. We choose a convergent solution o9 € C{x, x1, ..., x,} of the latter

equation. Then D/ [7_, i

; tao is a special convergent solution of E. a

We introduce the main proposition in this subsection.

PROPOSITION 5.9. Let ¢y, ¢ € Diff,, (C"+1,0). Then they are formally conjugated by a
normalized transformation if and only if the associated homological equation is special.

The proposition implies that the existence of formal normalized conjugation is
equivalent to the solvability of a linear differential equation. The proof of Proposition 5.9
is obtained by reducing the setting to the case where log ¢; is convergent for j € {1, 2}.

Definition 5.7. Denote by ~ the equivalence relation given by ¢ ~ ¢ if ¢; is conjugated
to ¢ by a normalized o € Diff,(C"*!, 0).

PROPOSITION 5.10. Let ¢; =exp(u;f 9/9x) € Diffu,,((C”H, 0) with convergent in-
finitesimal generator for j € {1, 2}. Assume that the homological equation associated to
@1 and @7 is special. Then we obtain @1 ~ ¢.

Proof. Let us use the path method (see [16] and [12]). We define
0 uuy f 0

Xy, = . e D
14z M1+zfax o+ (0 — 2 o

Denote ¢ =u2(0)/(u2(0) — u1(0)). We have X, € X(C™1,0) for any z9 € C\ {c}.
The choice of X, assures that the homological equation

o _ 1 1
ox  \urf  uaf
associated to exp(X) and exp(Xi4;) is special. It suffices to prove that X; ~ X, for

c &[0, 1]. If ¢ € [0, 1] we define

uygiuz f Kl
zur4i + (1 —2us ax’

uju4i f 2
vyl = — and Y2 _=
27 2wy + (1= 2)uy 4 0x o It
Since 114 (0)/(u14i(0) — u1(0)) and u>(0)/(u2(0) — u14;(0)) do not belong to [0, 1] then
X1~ Xi4i ~ Xo.
Suppose that ¢ & [0, 1]. We look for W € X(C"*2, 0) of the form
d

0
W=h(x,x1,...,%,2)f—+—
0x 0z

such that [W, X14,] =0. We ask for hfr ]_[‘;.7:1 f]l.j ! to be holomorphic in a connected
domain V x V' C C"*! x C containing {0} x [0, 1]. We also require 4f to vanish at
{0} x V’. Suppose that such a W exists, then exp(W) ;o is a normalized mapping
conjugating X and X».

The equation [W, X14+,] = 0 is equivalent to

IChf) hfa(ul—s—zf) 04 f)
ox ox - az

Uitz f
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By simplifying we obtain
O S IE e e 1P DU S
ax ax 0z ox u f urf
Let o be a special solution of the homological equation associated to ¢; and ¢;. For
p =0 we can suppose that (af) (0) =0 by choosing a of the form «’/fr where o’ €
C{x, x1, ..., x,} satisfies &’(0) =0 and da’/dx = 1/u| — 1/u;. We are done by defining
h=uj4a. O

The reciprocal is also true.

PROPOSITION 5.11. Let ¢; =exp(u; f d/dx) € Diff,, (C™1,0) with convergent in-
finitesimal generator for j € {1, 2}. Suppose @1~ ¢y (see Definition 5.7). Then the
associated homological equation is special.

Proof. Consider P ¢ {fy =0}. By Lemma 5.2 there exists a special solution ¥; p
of 0 p/0x =1/(u;f) defined in a neighborhood of P for j €{l,2}. Denote ¢ =
(0(x 00)/9x) (0). Consider a normalized diffeomorphism o conjugating ¢; and ¢;. We
define the diffeomorphism o, = (1 — z) Id 4 zo forany z € C \ {(1 — ¢)~1}; we have that
o, is normalized for any z € C\ {(1 —¢)~'}. We can suppose that (1 —c)~! £[0, 1];
otherwise we proceed in an analogous way as in Proposition 5.10 by considering the pairs
(o1, al._l o @y 00;)and (ol._1 o@yoaj, ¢2). For P ¢ {fy =0} and z € [0, 1] we define

Yz(P) =V,p 0 0:(P) — Y2,p(P).

In the previous expression 2 p o o;(P) is the value at o, (P) of the analytical continuation
of Yr» p along the path [0, z] : s — o, (P). Then y, is by construction a special solution of
the homological equation associated to az_l o ¢y o 0, and ¢; defined in the complement of
fn =0 for any z € [0, 1]. There exists a special solution « p of the homological equation
associated to ¢ and ¢; and defined in the neighborhood of P for P & S(f) by Lemma 5.2.
Since d(y; — ap)/dx = 0 then y| can be extended to the complement of S(f). Moreover
cod S(f) > 2 implies that y; is special in a neighborhood of the origin. O

The next proposition claims that every formal class of conjugation contains at least
one convergent normal form. That will allow us to prove Proposition 5.9 by reducing the
problem to the settings considered in Propositions 5.10 and 5.11.

PROPOSITION 5.12. Let ¢ =exp(af 9/0x) € Diff”p((C"H, 0). There exists a germ of
Sunction u € C{x, x1, . .., xn} such that ¢ and exp(uf 9/9x) are formally conjugated by
a normalized transformation.

Proof. Since it is t.f. along f = 0 (Proposition 4.6) then there exists u; € C{x, x1, ..., x,}
such that u — u; € (fk) for any k € N. We denote ¢ =exp(ur f d/0x). Let yx be a
solution of the homological equation associated to ¢ and ¢;. Since 1/u; — 1/u; belongs
to the ideal (f) we can choose yi in (x) N C{x, x1, ..., x,}. We have y4+1 — v € mk
where m is the maximal ideal since d(y41 — yx)/0x € (f*~1). The diffeomorphisms ¢y
and ¢ are conjugated by

ok d;cfeXp(Vk—ukul fi + i)
zup + (I —2ur” dx 9z )|,y
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Moreover oy converges in the Krull topology to some normalized ¢ € ]Si?fp (€1, 0
conjugating ¢ and ¢j. O

Proof of the implication = of Proposition 5.9. Define f = x o ¢; — x. We have log ¢; =
ujf d/dx for j e {1, 2}. Consider a unit u; in C{x, x1, ..., x,} such thatit; —u; € (f).
Then o; =exp(u; f 9/0x) is formally conjugated to ¢; by a normalized transformation
for j € {1, 2} by the proof of Proposition 5.12. Thus «; and o are formally conjugated by
a normalized transformation ¢ € ﬁi\ff,, (C™*1,0). Since

<L_L>_<L_L>GC[[)C)C Xn]]
Y urf usf e

it suffices to prove that the homological equation associated to o and «» is special.

Consider the decomposition le f;j into irreducible factors of fy (see
Definition 5.1). We denote by m the maximal ideal of C[[x, xi,...,x,]]. For
k > 2 there exists hy in C{x, x1, ..., x,} such that iy —x € (]_[f:1 fj) and (x 00 —
hi)/ H;’zl fj € ™k since 6 is normalized. We define the normalized diffeomorphism
or = (hg, X1, ..., Xp).

Suppose that fy(P)#0. There exists a special solution Yo p of da/dx = 1/us f
defined in the neighborhood of P. We define yx(P) =2 p o 0x(P) — Y2,p(P) as in
Proposition 5.11. Then y, extends to a special solution defined in a neighborhood of
the origin of the homological equation associated to o Yo 00y and as (see proof of

Proposition 5.11). We define By = yi fF ]_[fz1 f;j 71; we claim that the sequence Sy

converges to some B € C[[x, x1, ..., x,]] in the Krull topology. That is a consequence
of Taylor’s formula since

— 1 (9"
Vk—V/=Z;( 001>(x00k—x001)r

-
r=1 dx

implies that By — B € M™&D - Since (log(ak_l o ap o0y)) (x) converges to (log ap) (x)
in the Krull topology then ,é /(fF le f]l-j _1) is a special solution of the homological
equation associated to o and o5. O

Proof of the implication <= of Proposition 5.9. We have that log ¢ is of the form i f 9/0x
for j €{1,2}. Let u; € C{x, x1, ..., x,} such that ﬁj —uje(f) for je{l,2}. We
define oj = exp(u; f 9/0x). The homological equation

(YL (L
ax  \uif aif urf  urf iarf  usf)’

associated to o and a» is the result of adding three special equations; thus it is special.
The diffeomorphisms «; and «» are conjugated by a germ of normalized diffeomorphism o
(Proposition 5.10). By the proof of Proposition 5.12 we know that ¢; and «; are conjugated
by a formal normalized diffeomorphism 6; for j € {1, 2}. Then 6, Y56 06 is a formal
normalized diffeomorphism conjugating ¢; and ¢,. O
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5.5. Normal forms. Every up-diffeomorphism is formally conjugated to the exponential
of a holomorphic vector field (Proposition 5.12). Thus obtaining normal forms
for up-diffeomorphisms and unfoldings of elements of Xy (C, O):xZC{x} d/dx are
equivalent tasks. We generalize the classical normal forms for unfoldings of finite
codimension elements of Xy(C, 0) (see [7]) to unfoldings of finite codimension
elements of Diff, (C, 0). The normal forms are considered up to normalized conjugation
(Proposition 5.13), parameterized conjugation (Proposition 5.14) and general formal
conjugation (Corollary 5.2).

PROPOSITION 5.13. Let ¢ € Diff,,(C"*!, 0) such that ¢|y,—..—x,—0 #1d. There exist

functions ag, ..., ay, by, ..., b, €Clx1,..., x4} such that aj(0)=0 for any je
{0, ..., v}, bo(0) # 0 and ¢ is conjugated to
(x”“ +ay(xt, ..., x)x" +---+aoglxy, ..., x,) 0 )
ex; — ),
P bo(x1, ..., x)+---+by(x1,...,x,)xV 0x

by a formal normalized transformation.

The number v is the codimension of the element ¢y, —..—x,—o of Diff,(C, 0). It
satisfies v = v(@|y,=...=x,=0) — 1 (see §5.1). The previous proposition provides a normal
form (up to normalized conjugation) for unfoldings of finite codimension one-dimensional
diffeomorphisms that are tangent to the identity.

Proof. By Proposition 5.12 we can suppose that log ¢ is a holomorphic vector field.
Denote f = (log ¢) (x); then we have f € C{x, x{, ..., x,}. The finite codimension
hypothesis implies that f(x, O, ..., 0) 5% 0. We obtain that f is of the form

T ayGery oo X)X 4 ao(xn, - X)) T/0(R, X X,
for some unit v € C{x, x1, ..., x,} by the Weierstrass division theorem. Consider the
remainder Y _%_o b;(x1, ..., X,)x/ of the Weierstrass division v/(x"+' 4+ 3"_ a;x/).

Denote g = (x"+! + 3%_ga;jx/)/(X}_g bjx/). Since g — f belongs to the ideal (f2)
then the homological equation associated to exp(f 9/9x) and exp(g d/9x) is of the form
da/dx = A for some A € C{x, xy, ..., x,}. Such an equation is special, and thus ¢ and
exp(g d/dx) are conjugated by a normalized diffeomorphism (Proposition 5.10). O

By relaxing the conditions on the conjugating mappings we obtain simpler normal
forms. The next proposition provides a normal form which can be interpreted as a
generalization of the one provided by Proposition 5.13 in which we remove half of the
coefficients. The second normal form is interesting since it is polynomial in x.

PROPOSITION 5.14. Let ¢ € Diffy, ((C"“, 0) with @y =..—x,=0 # Id. There exist
functions ag, ao, ..., ay_1, dy—1, b, b€ C{xy, ..., x5} such that a;(0) =a;(0) =0 for
any j €{0, ..., v — 1} and ¢ is conjugated to

xv+1+z‘{—la.xj 5 v—1 T

Jj=0"J 7 2v41 v+1 ~

ex — nd ex b +x + ixd )| —
p( b ax) ‘ p<<x 2 )ax>

by elements ofﬁi?fp (€1 0).
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Proof. By Proposition 5.12 we can suppose that log ¢ is a holomorphic vector field.
Denote f = (log ¢) (x). The finite codimension hypothesis implies that there exists &
Diff(C, 0) conjugating f(x, 0, ..., 0)d/dx and (cx®*! 4+ xV+1) 5/0x for some v € N
and ¢ = —Res(¢g). Up to replacing f d/dx with (h(x), x1, ..., x,)«(f 9/9x) we can
suppose that f(x, 0, ..., 0) = cx?"*t! 4+ x¥*+! The family

v—1
(ﬂx2“+1 +x 4y ajxf)a/ax with ag, a1, ..., ay_1, B€C
j=0

is the versal deformation of (cx2't! 4+ xVt1)39/9x (see [7]). Therefore f 9/dx
is conjugated by an element of Diff,(C"*!, 0) to a vector field (hx?"+! 4 xV*+! +
Z;;(l) a;x7) d/dx for some dy, . . ., @y—1, b € Clxy, ..., x}.

The normal form exp[(l + bx")~'(x'+! + Zj;(l) ajx’/)3/dx] is obtained in an
analogous way since f(x,0,...,0)d/dx is analytically conjugated to x'*!/(1 —
cx¥) d/0x and (1+ Bx") 1 ("1 + Y2 ajx/) 8/0x with oo, ..., a1, f € Cis the
versal deformation of x"*!/(1 — cx") 8/0x. m|

Given a codimension v element ¢ of Diff,(C, 0) we consider a general position
unfolding ¢ of ¢. In fact ¢ is a v-parameter unfolding; it belongs to Diff,, (€cv*1,0).
This case admits a specially simple normal form in which the low degree terms of the
normal form can be replaced by coordinate functions. The proof is a consequence of
Proposition 5.14 (see [7]).

COROLLARY 5.2. Let ¢ € Diff,(C, 0) of codimension v. Consider a general position
unfolding ¢ € Diff,, (C"*1,0) of . There exist functions b, b € C{xy, . .., x,} such that
@ is formally conjugated to

A xxd " = A
exp( 2 j=0 %t —> and exp((bxz”+1 + x4 ij+1xf>a—)
x

1+ bxV 0x =

by elements of Diff (CV*!, 0).

5.6. Theorem of formal normalized conjugation. Next we describe the nature of the
invariants for the formal normalized conjugation. Given ¢1, ¢2 € Dy we associate to them
a homological equation E. Then E belongs to Sp(f) (see Definition 5.4) if and only if ¢
and ¢, are conjugated by a formal normalized transformation (Proposition 5.9). Indeed the
residue functions of ¢ and ¢, coincide if and only if E € Fr(f) (see Definition 5.4). It is
natural to think that a complete system of invariants is composed of the residue functions
and the space Fr(f)/Sp(f).

THEOREM 5.1. The residue functions associated to the non-fibered irreducible
components of f = 0 and the complex vector space Fr(f)/Sp(f) are a complete system
of formal invariants for the normalized conjugation in Dy.

Let us make explicit how Fr(f)/Sp(f) can be interpreted as a space of formal
normalized invariants. Let ¢ € D . We define the subset D (¢) of D whose elements t
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satisfy the property that Res,, (¢) = Res,, (7) for any irreducible component y of fy =0
(see Definition 5.1). The theorem claims the existence of Invy : D¢ (@) — Fr(f)/Sp(f)
such that Inv ¢(¢1) =Invs(¢2) if and only if ¢; and ¢, are formally conjugated by a
normalized transformation.

Consider t =exp(ii; f 3/0x) € Dy. Since ii, is t.f. along f =0 there exists a unit
u; € C{x, x1, ..., x,} such that ii; — u,; € (f). We define a mapping Inv(]’i :Dy(p) —
Fr(f)/Sp(f) given by

d 1/1 1
w21t - 4]

The value Inv?i (7) is independent of the choices of u, and u;. The mapping Invtj’i is not the
only choice for Inv  since InV(]’i # Inv} if Inv;’i () #0. Thus Fr(f)/Sp(f) is aclassifying
space for the formal normalized conjugation but the mapping Inv ¢ is not canonical.

We say that Fr(f) contains units if there exists [da/0x = A/f] in Fr(f) for some
unit A € C{x, x1, ..., x,}. Next we prove that there are no redundant invariants in

Er(f)/Sp(f).

LEMMA 5.6. The mapping Inv(; is surjective except if Fr(f) contains units but Sp(f)
does not. In such a case [da/dx = A/f]1+ Sp(f) belongs to Inv(jpc(Df((p)) if and only
if A(0) # —1/uy(0). Anyway Fr(f)/Sp(f) is the complex vector space generated by
Inv?(Df (©)).

Proof. Fix a homological equation E = [da/dx = A/f] € Fr(f).

Suppose that 1/u,(0) # —A(0). The formula 1/u =1/u, + A defines a unit u €
C{x, x1, ..., x,} such that Inv‘fp(exp(uf dx)) = E 4+ Sp(f). Then we suppose from now
on that 1/u,(0) = —A(0). We have that AE + Sp(f) € Invf’;-(Df(cp)) forany A € C\ {1}.
Note that \E = [0at/dx =LA/ f] for A € C.

Suppose that both Fr(f) and Sp(f) contain units. Since there exists an equation
[0a/0x = B/f] € Sp(f) such that B(0) # 0 then

E + Sp(f) =1[9a/dx = (A+ B)/f1+ Sp(f) € v¥.(Dy(¢)).

If Fr(f) contains units but Sp( f) does not then there does not exist a special [do/0x =
B/f] such that 1/u,(0) + A(0) + B(0) #0. As a consequence E + Sp(f) does not

belong to Invfp (Dy(9)). O
The next results are a direct consequence of the analogous ones on the homological

equation.

COROLLARY 5.3. Let f € C{x, x1, ..., xp}. Suppose that either cod S(f) >3 orn < 1.

Then the residue functions are a complete system of formal invariants for the normalized
conjugation in Dy C Diff,,(C"*1, 0).

COROLLARY 5.4. Let f € C{x, x1, x2}. Then the residue functions plus a finite number of

linear invariants are a complete system of formal invariants for the normalized conjugation
in Dy C Diff,, (C3, 0).
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5.6.1. The example f = (x3— xx1)2 € C{x, x1, ..., x,}. We describe the space
Fr(f)/Sp(f). Moreover in the case n =2 where dimc Fr(f)/Sp(f) =1 we express
the invariant in Fr(f)/Sp(f) associated to ¢ € Dy in terms of the coefficients of ¢.

LEMMA 5.7. Let f = (x3 —xx1)%. Consider E = [0a/dx =A/f] in Fr(f). Then
E € Sp(f) ifand only if A € (x1, x2).

Proof. 1If there exists a special solution ¢ = 8/(x2 — xx1) of E then
A= (0B/3x)(x2 — xx1) + Bx1 € (x1, x2).

If A e (x1,x2) we obtain A = (xp — xx1)C + x1 D for some C, D in C{x, xq, ..., x,}.
Denote E' = [da/dx = (C — dD/3x)/(xp — xx1)]. Since we have
C—-0D/ox A B ( D )

X2 — XX [ ox\x2—xx;

then E' € Fr(f). We deduce that C — dD/3x € (xp — xx1); thus E has a special solution
of the form D/(x — xx1) + y where y is a holomorphic solution of E’. O

Consider E =[da/dx = A/f] € Fr(f). There exists a solution of E of the form

Bj/((x2 —xx1)xj) for some B; € C{x, x1, ..., x,} and any j € {1, 2} by Lemma 5.7.
Then 8%(E) (see §5.2.1) is given by B1/((x2 — xx1)x1) — B2/((x2 — xx1)x2). This
function is of the form B(xy, ..., x,)/(x1x2) for some g € C{xy, ..., x,}.

Consider Eg = [do/0x = 1/f]. We have

o) = ) =
dx \x1(x2 —xx1) ) dx\xa(x2 —xx1) ) (v —xx)?

Then 8°(Ey) is given by the function 1/(x;x7). This implies the following result.

LEMMA 5.8. Let f = (x5 — xx1)2 € C{x, x1, ..., x,}. Then the space Fr(f)/Sp(f) is
equal to C{xs, ..., x,} Ep.

Suppose from now on that n = 2; this implies that Fr(f)/Sp(f) ~ C. Therefore for
o1 =exp(ii; f 9/9x) and @ = exp(it2 f 9/dx) such that ¢ € Dy(p;) there is a unique
A € C such that 1/i; — 1/iig — A € (x1, x2). Then ¢; and ¢, are conjugated by a formal
normalized transformation if and only if A = 0; this is equivalent to i1 (0) = 1,(0). Note
that 241 (0) = 3%(x 0 ¢;)/3x2%(0). We deduce that

3% (x 0 p)
(Resxz—xm:O(‘P)a TQZ(O’ 0, 0))

is a complete system of formal normalized invariants in Dy C Diff,, (C3,0).

We can provide a geometrical interpretation for the non-residual invariant. Consider
@1 =exp(iiy f 9/dx), g2 =exp(ita f 3/9x) € Dy such that their associated homological
equation da/dx = A/f is free of residues. Let P = (x°, x?, xg) an element of {f =

0} \ {x; = x2 = 0}. Denote w = x) — x)x; then ¢; = exp(ii; f 9/dx) implies that

9
@jp= eXp<(—x?ﬁj(P)w2 + 0(w3))%>
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in the neighborhood of w = 0 for any j € {1, 2}. Let us point out that i ; (P) is well defined
since i is t.f. along f = 0 (Proposition 4.6). The one-dimensional germs ¢ p and @2 p
are formally conjugated by a transformation whose linear part is (i1, (P)/iia(P))w, no
other linear part is possible. Since a normalized conjugation restricted to x; = x; =0 is
the identity, then the existence of a formal normalized conjugation at the 1-jet along f =0
level implies Ay =1 — a1 /up € (x1, x2) and then A € (x1, x2). By Lemma 5.7 we have
that vanishing of residues plus 1-jet compatibility is equivalent to the existence of a formal
normalized conjugation.

6. Convergent actions

We have restricted our study to formal normalized conjugations. The goal of this section
is linking the equivalence relations ‘being formally conjugated’ and ‘being formally
conjugated by a normalized transformation’. The main result is the following.

THEOREM 6.1. Let ¢y, ¢, € Diff,, (C™+1,0) be formally conjugated. Then ¢ and ¢>
are formally conjugated by a transformation of the form & oo where o belongs to
Diff(C"*1, 0) and 6 € Diff,(C"*!, 0) is normalized.

Let us remark that in the theorem & is normalized with respect to x o o —x = 0.

In general a formal conjugation is not of the form 6 oo. The action induced by
6 oo in the non-fibered components of x o ¢; —x =0 is the one induced by o since &
is normalized. Thus it is convergent. Now consider ¢; = ¢» = (x/(1 — x), y). We have
that ¢; and ¢, are conjugated by 7 = (x, Z;’il j!'y/). The action of T on x =0 is not
convergent, and therefore ¥ cannot be expressed in the form & o o where o € Diff(C?, 0)
and ¢ € ﬁi\ffp (C2, 0) is normalized.

In order to prove Theorem 6.1 it suffices to show the following.

PROPOSITION 6.1. Let ¢ be an element of Diff,, (C™L, 0) with convergent infinitesimal
generator for j € {1, 2}. Suppose that ¢ and ¢, are formally conjugated. Then they are
analytically conjugated.

Let us explain why Proposition 6.1 implies Theorem 6.1. Let ¢, ¢» be elements of
Diffup((C”“, 0) which are formally conjugated by 7. By Proposition 5.12 there exists
aj € Diffup((C"+1, 0) such that log o; is convergent and «; is conjugated to ¢; by a
normalized ﬁj € ISi\ffp (C™+1,0) for j € {1,2}. We obtain that o; and a» are formally
conjugated and then conjugated by some t € Diff(C"**!, 0). We define

5=I:120(‘ro[:[flot_l) and o =r.

Clearly 6 o o conjugates ¢ and ¢o. Moreover & is normalized and o is convergent.
The next proposition is a sort of preparation theorem.

PROPOSITION 6.2. Let @1, ¢ € Diffup(C"+1, 0). Suppose that @1 and @y are formally
conjugated. ~ Then for any v €N there exists p, in Diff(C"T!, 0) such that the
diffeomorphism @3, = ,OU_1 o @3 o py satisfies:

i P20 € DXOWI—X C Diffup (Cn_H, 0);

. Resy, (¢1) = Res,, (¢2,,) for any non-fibered component y of Fix ¢1; and

e xogi—xogueU(Sxog —x)+ ()
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Proof. Denote f =xo¢; —x. Let fnfr= f:l f;j ]_[3:1 F;nj be the decomposition
of f into irreducible factors. Let p € ﬁf(@"“, 0) be the transformation conjugating ¢
and ¢;. Since p(Fix ¢1) = Fix ¢, there exist functions gi€C{x,x1,...,x,} and Gy €
Cf{x1, ..., x,} such that (g; o p)/f; and (G o p)/Fy are formal units for all 1 < j < p
and 1 < k < ¢g. Consider a function le / Q}. such that its restriction to f; = 0 is the function
Res_fj:()((pl) for any 1 < j < p (see Lemma 5.1). In an analogous way we consider a
function sz / Q? such that its restriction to g; =0 is the function Resg,—o(¢2) for any
1 < j < p. We obtain the system

gjop="0;f; forany 1 < j < p,

Gjop=u;F; forany 1 <j<gq, (X)

P/(Q50p) = Qj(P}op)=Fjf; foranyl<j<p.
The third set of equations is a consequence of the invariance of the residues. We have that
v; and Wy are formal units whereas 7; is just a power series.

The ideal 1(S(f)) associated to the evil set has a system Ly, ..., Ly of generators

composed by elements of C{xy, ..., x,}. Let us study the equation p o ¢; = ¢ o p. The
transformation p is of the form

2v
~ A~ 7 2041 2 A ~
p=(§ ajx! +x2* A,pl,...,pn>,
Jj=0

where @, ..., a0, P1s..., o €Clx1, ..., x,]] and A €C[lx, x1,...,x,]]. We
denote by p’ the transformation obtained by replacing A with 0 in the expression of p.
We want to compare the coefficients of x? (b < v) of x 0 p’ 0 @1 and x o @) o p’. We have

3" (x 020 p) 3" (xogrop)
T(O, X1y ovny Xp) = T(O, X1, o vy Xn)
and , ,
3%°(x o p 3°(x o0 p’
opoe) TP oOD) (g 1 x,) e 1S,
axb axb
for any 0 <b <v. The coefficient of xb of xo 0’ o @1 can be expressed in the form
Cp(x1, ..., X, 4o, - . ., Gzy) for some holomorphic C;. Conversely the coefficient of x”
of x o ¢y o o' is of the form Dy (p1, . . ., pu, do, - . . , d2y) for some holomorphic function
Dj,. We have
C,— D= Z Iékl,,,,,de’;l ...LZ” forany0 <b <v, Y)
ki thg=v+1
where Iékl,,,_,kd e C[[x, x1, ..., x,]] for ky + - - -+ kg =v + 1. By Artin’s theorem [1]
we can find a solution (ag, . . ., a2y, A, p1, .. ., py) satisfying both the systems (X) and

(Y) and such that
{a()y "'9a21)7101’ --«,pn}c(c{xl, ""xn}’ Aec{xaxlv "'7xl’l}'

Moreover, we can suppose that jla; = j'a; for any 0 <k <2v and j!p; = j!p; for any
1 <k <n. We define

2v
Py = (Z ajx! +x A pr, pn>.

j=0
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By construction we have that p, € Diff (C™*1,0) and ©2,v € Dyop,—x. The invariance of
the residues by p, implies that ¢, , satisfies the second condition in the statement of the
proposition. Now since (Z?VIO ajxj, P1, - - -, Pp) 1s a solution of system (Y) then

xopyop—xogop, €T+ IS
We deduce that x o 91 —x 0o 2, € ((x) +I(S(f)))"+1. O

We intend to prove that the homological equation associated to ¢ and ¢, is special for
v >> 0. We will construct special solutions in the neighborhood of every point outside of a
set of codimension greater than or equal to 3. The next lemmas are of technical interest.

LEMMA 6.1. Let I, J be ideals of a Noetherian ring R. Then there exists vy € N such that
we have JV N1 C JV™W[ for any v > vy.

Proof. The equation J* NI = J"~Y0(JY N ]) is a consequence of the Artin—Rees lemma
(see [2, Corollary 10.10]); this implies that J* N1 C JV7"[. O

LEMMA 6.2. Let R be a domain of integrity. Consider an element g in R \ {0} and an
ideal J C A. Then there exists vo € N such that (JV : g) C J'™™ for any v > vy.

Proof. We define I = (g). Consider h € (J¥ : g), we have hg € I N J'. By Lemma 6.1
there exists vy € N such that J¥ N1 C JV~[ for v > vg. Therefore /& belongs to JV~"0. O

Let I be an ideal of C{x, x1,...,x,}. Fix aset L={Ly,..., Ly} of generators
of I. There exists a neighborhood Wi of the origin such that L; € O(Wp) for 1 <
j<d. For P=(x", x?, e, x,?) € W we define the ideal I/p contained in the ring
Cl{x — x9, X; — x?, e, Xn —x,?} and generated by L1, ..., Ly. The definition of Ip
does not depend on the system of generators. For a different finite system of generators L’
there exists a neighborhood of the origin Wy ;- C Wy N W, where both definitions of Ip
coincide for any P € Wy .

LEMMA 6.3. Let0# f € C{x, x1, ..., x,}. There exists vo € N such that for any v > vy
we have an open set U, 5 0 satisfying that, for all P € U, and A in ((x) + I(S(f))p
such that da/ox = A/ f is special in a neighborhood of P, there exists a special solution

Be/(fr Uy £ with Bp & () + LS ™

Proof. Let fy = ]_[f:l f]l.j (see Definition 5.1). Denote J = (x) 4+ I (S(f)). The proof is
by induction on / = rnaxfz1 lj. If I = 0 we can choose 8 € JUHL

There exists vi € N such that (JV: f;) CJ'™" for all v>v; and 1 <j <p by
Lemma 6.2. Indeed we obtain (J : f;) C J, "' for any P in some open set U! 3 0 by
Oka’s coherence theorem (see [S, p. 67]).

Denote £ = [da/dx = A/f] and Uf = le U! . We can suppose that /; # 1

v—=(j—Dv
for 1 < j < p since otherwise we replace E with

g A/l=1 Ji

- = 7
8x fF n[j;él fj/
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where A/ ]_[lj:l fi€ J;fpvl for all Pe Uf and v>pv;. A special solution
B'/(fr 15 f]l»j_l) of E is characterized by

a /P 14 8 .
%Hfj—ﬂ/Zdj—l)a—f [] #=4a 3)
j=1 j=1

kefl....p\{Jj}

We define the ideal

1=(ﬁ fi ija-—nﬁ [1 fk)
F 2 —~ / dx 4 '
j= Jj= €{l,...pN)

Since E is special in the neighborhood of P then A € Ip. By Lemma 6.1 and Oka’s
theorem there exist v3 € Nsuch that Ip N Jp C Ip J;_V3 for all P in some open set U3 50
and v > v3. As a consequence there exist Bp € J;_[w] " and Cp € J;_pv‘_v3 such that

p p df;
Be[]s-cod -0 ] si=a @
j=1 j=1 kefl,....pA\{j}

forall P € Uf nU;_ pv, and v > pvy + v3. By subtracting equations (3) and (4) we obtain

B —Cpe (]_[5.’:1 fi). Therefore the function

G [ /i
fF Hj';] f/l'j_z

is a special solution of
da _ Bp —dCp/ox

- li—1
p
0x fF =1 fjj

(see proof of Lemma 5.5). We have that Bp —acp/aer;‘P”l‘”3‘1 for any

v > pv; +v3+ 1. By the hypothesis of induction there exists v4 € N and a special
v—pvi—v3—1—v4

solution yp/(fF ]_[5.7:1 f]{jiz) of equation (5) such that yp belongs to J,

®)

for all v> pv; +v3+ 4+ 1 and P € U} for some open set U¥ 5 0. We define vy =
pvi+vi+uvy+1and U, = Uf N Ugfpvl N Uf. The function Bp = Cp + yp Hf:l fi
belongs to Jp °. Moreover Bp/(fr 5:1 f]l.j ) is a special solution of E in the

neighborhood of P if P € U,,. O

Next we prove Proposition 6.1. The proof is based on the fact that in the neighborhood
of the generic points of S(f) the quotient ‘free of residues homological equations/special
equations’ generates a finite dimensional vector space over the meromorphic functions in

SCH-

Proof of Proposition 6.1. Let ¢, be the diffeomorphism and U, be the open set given
by Proposition 6.2 for any v € N. It suffices to prove that there exists vp € N such
that @1 ~ ¢2.,, (see Definition 5.7) for any v > vg. Denote f =xo¢; —x. Let fy=

5.’:1 fjl.j. We have ¢y =exp(u1 f 9/0x) and ¢, =exp(uz,, f 3/3dx). Consider the
homological equation E, = [da/dx = A, /f] associated to ¢ and ¢>,. The equation
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E, is free of residues by Proposition 6.2. Denote J = (x) + I(S(f)); we claim that
ur f —uzy f € J'TL. Otherwise we have uy f —us , f € J*\ J**! for some a < v + 1.
Note that since S(f) C {[;,> f; =0} then f € I(S( £))?; this implies that f € J? and
a > 2. This property can be used to prove that

(1 f 3/8x) (x) — (ua.n f 8/8x) (x) € JT1,

for any j >?2. As a consequence we obtain that x o 9] —x 0@\, & Jet1 and that is
impossible since a + 1 <v + 1. Since A, = (uz,vf —u1f)/(miuz,, f) then A, € J¥™"
for any v > vy and some v; € N. The function A, is defined in some open set U\} 350.

Let T (f) be the set of points of S(f) where S(f) is smooth and of local codimension

2. Consider P = (0, x?, e, x,?) € T(f); there exists k(P) € N such that
da  HKP)A,
ax f
is special in the neighborhood of P for every H € C{x; — x?, cee, Xp — x,?} vanishing in

S(f) and any v € N. Moreover, a review of the proof of Proposition 5.3 implies that we
can choose the same k = k(P) forany P € {x =0} N (T (f) \ F(f)) where F(f) C S(f)
is a fibered analytic variety such that cod (F(f)) > 3.

Fix P = (0, x?, e, x,(l)) eT(f)\ F(f). We can find new coordinates (yi, ..., yu)
centered at (xq, ..., x;) = (x?, e, x,?) such that S(f) = {y; = y» =0}. Suppose that
PeU,nN Uul; by Lemma 6.3 there exists v, € N such that the equation E,, has a solution

Bu.p,j

L—1’
Y§fF Hf:] Sr

where B, p ; € J;_UI_UZ for all v > v; + vy and j € {1, 2}. Consider the set

Qv Pj =

n
Ks={lx| <8} n [ {lyjl <8}
j=1
for some § = §(v, P) > 0 small enough. The element SO(E,, Ks \ S(f)) (see §5.2.1) of
H! (Ks \ S(f), Op(f)) is given by the function ., p,1 — o, p 2. We obtain

YsBu.p1— B P2
k ok TP li=1 "
Y1¥2 1lj=1 fj

(v, p1 — oy, p2) fFr=

. li—1 ...
Since d(aty, p.1 — oy, p,2)/0x =0 then I—[‘;:1 fjf divides y’z‘ﬂv,p,l — y’l‘ﬁv,p,z. Hence
there exists an open set U2 3 0 such that for P € U? the function (ay p.1 — &y p.2) fF

can be expressed in the form A, p(y1, . .., ya)/(y\y5) where h, p € J5 "' 77" for any
v >v; 4+ vy +v3 and some v3 € N. We define vg =v; + vy +v3+ (2k — 1). The set
J}Z NC{y1, ..., yu} is contained in I(S(f))l;) c (1, yz)b for any b € N, and then for

v > vy the function A, p/ (yll‘ ylz‘) is of the form

hy, p Cj(yZ’o“syn) dj(yly Y3, ey Yn)
ey 0 g )

k., k Jj
Y1y 0<j<k i 0<j<k )
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where H, c; and d; are holomorphic in K for any 0 < j < k. The function

def ' /
Olv’péolv,p’l—(H%— Z CjY{)/szav,P,2+< Z djy;)/fF

k<j<0 —k<j<O0
is a special solution of E, in K; for v > vy.
Consider a polydisk 0 € A, in the variables (x, x1, ..., x,) contained in the set
U,nN le N Ug. We denote 7 (x, x1,...,x,) =(x1,...,x,). Forall v>yvyy and P €

{x=0N(T(f)\ F(f)) N A, there exists a polydisk A, p C A, centered at P and a
special solution ¢, p of E, defined in A, p. By using the homological equation we can
extend a, p to A, N7~ (A, p \ S(f)) and thento A, N7~ (A, p) since cod S(f) > 2.
We obtain special solutions of E, (v > vg) in the neighborhood of every point not in
S(H\NT(f)) U F(f). Therefore we have

8°(Ey) € H' (A \ [(S(H\ T () UF()], Op(f).

Since the codimension of (S(f)\ 7T(f)) U F(f) is greater than or equal to 3 then
80(EU) =0 for v>vy. We deduce that E, € Sp(f) and then ¢ ~ ¢2, for v> vy by
Proposition 5.10. O
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