Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-11T21:19:12.988Z Has data issue: false hasContentIssue false

Differentiation of SRB states for hyperbolic flows

Published online by Cambridge University Press:  01 April 2008

DAVID RUELLE*
Affiliation:
Mathematics Department, Rutgers University, and IHES, 91440 Bures sur Yvette, France (email: ruelle@ihes.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let the vector field on M define a flow (fat) with an Axiom A attractor Λa depending continuously on a∈(−ϵ,ϵ). Let ρa be the SRB measure on Λa for (fat). If , then is on (−ϵ,ϵ) and a(A)/da is the limit when ω→0 with Im ω>0 of

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

References

[1]Anosov, D. V.. Geodesic flows on compact Riemann manifolds of negative curvature. Proc. Steklov Inst. Math. 90 (1967), 1209.Google Scholar
[2]Bakhtin, V. I.. Random processes generated by a hyperbolic sequence of mappings. I. Russian Acad. Sci. Izv. Math. 44 (1995), 247279.Google Scholar
[3]Bonatti, C., Diaz, L. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Approach (Encyclopaedia of Mathematical Sciences, 102). Springer, Berlin, 2005.Google Scholar
[4]Bowen, R.. Markov partitions for Axiom A diffeomorphisms. Amer. J. Math. 92 (1970), 725747.CrossRefGoogle Scholar
[5]Bowen, R.. Periodic orbits for hyperbolic flows. Amer. J. Math. 94 (1972), 130.CrossRefGoogle Scholar
[6]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.CrossRefGoogle Scholar
[7]Bowen, R.. On Axiom A Diffeomorphisms (CBMS Regional Conference, 35). American Mathetical Society, Providence, RI, 1978.Google Scholar
[8]Bowen, R. and Ruelle, D.. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975), 181202.CrossRefGoogle Scholar
[9]Chernov, N.. Markov approximations and decay of correlations for Anosov flows. Ann. of Math. 147 (1998), 269324.CrossRefGoogle Scholar
[10]Contreras, G.. Regularity of topological and metric entropy of hyperbolic flows. Math. Z. 210 (1992), 97111.CrossRefGoogle Scholar
[11]Contreras, G.. The derivatives of equilibrium states. Bol. Soc. Brasil. Mat. (N.S.) 26 (1995), 211228.CrossRefGoogle Scholar
[12]Dolgopyat, D.. Decay of correlations in Anosov flows. Ann. of Math. 147 (1998), 357390.CrossRefGoogle Scholar
[13]Dolgopyat, D.. Prevalence of rapid mixing in hyperbolic flows. Ergod. Th. & Dynam. Sys. 18 (1998), 10971114. Prevalence of rapid mixing-II: topological prevalence. Ergod. Th. & Dynam. Sys. 20 (2000), 1045–1059.CrossRefGoogle Scholar
[14]Dolgopyat, D.. On differentiability of SRB states for partially hyperbolic systems. Invent. Math. 155 (2004), 389449.CrossRefGoogle Scholar
[15]Field, M., Melbourne, I. and Török, A.. Stability of mixing for hyperbolic flows. Ann. of Math. To appear.Google Scholar
[16]Gallavotti, G. and Cohen, E. G. D.. Dynamical ensembles in stationary states. J. Stat. Phys. 80 (1995), 931970.CrossRefGoogle Scholar
[17]Katok, A., Knieper, G., Pollicott, M. and Weiss, H.. Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math. 98 (1989), 581597.CrossRefGoogle Scholar
[18]Ledrappier, F. and Strelcyn, J.-M.. A proof of the estimation from below in Pesin’s entropy formula. Ergod. Th. & Dynam. Sys. 2 (1982), 203219.CrossRefGoogle Scholar
[19]Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms: I. Characterization of measures satisfying Pesin’s formula. II. Relations between entropy, exponents and dimension. Ann. of Math. 122 (1985), 509–539, 540574.Google Scholar
[20]Liverani, C.. On contact Anosov flows. Ann. of Math. 159 (2004), 12751312.CrossRefGoogle Scholar
[21]de la Llave, R., Marco, J. M. and Moriyon, R.. Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation. Ann. of Math. 123 (1986), 537611.CrossRefGoogle Scholar
[22]Pollicott, M.. On the rate of mixing of Axiom A flows. Invent. Math. 81 (1982), 423426.Google Scholar
[23]Ratner, M.. Markov partitions for Anosov flows on 3-dimensional manifolds. Mat. Zametki 6 (1969), 693704.Google Scholar
[24]Ruelle, D.. A measure associated with Axiom A attractors. Amer. J. Math. 98 (1976), 619654.CrossRefGoogle Scholar
[25]Ruelle, D.. Thermodynamic Formalism. Addison-Wesley, Reading, MA, 1978.Google Scholar
[26]Ruelle, D.. Resonances for Axiom A flows. J. Differential Geom. 25 (1987), 99116.CrossRefGoogle Scholar
[27]Ruelle, D.. I. Differentiation of SRB states; II. Correction and complements. Comm. Math. Phys. 187 (1997), 227241; 234 (2003), 185–190.CrossRefGoogle Scholar
[28]Ruelle, D.. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95 (1999), 393468.CrossRefGoogle Scholar
[29]Sinai, Ya. G.. Markov partitions and C-diffeomorphisms. Funktsional. Anal. i Prilozhen 2(1) (1968), 6489. (Engl. Transl. Funct. Anal. Appl. 2 (1968), 61–82).CrossRefGoogle Scholar
[30]Sinai, Ya. G.. Constuction of Markov partitions. Funktsional. Anal. i Prilozhen 2(3) (1968), 7080. (Engl. Transl. Funct. Anal. Appl. 2 (1968), 245–253).CrossRefGoogle Scholar
[31]Sinai, Ya. G.. Gibbsian measures in ergodic theory. Uspekhi Mat. Nauk 27(4) (1972), 2164. English translation, Russian Math. Surveys 27(4) (1972), 21–69.Google Scholar
[32]Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817.CrossRefGoogle Scholar
[33]Young, L.-S.. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147 (1998), 585650.CrossRefGoogle Scholar
[34]Butterley, O. and Liverani, C.. Smooth Anosov flows: correlation spectra and stability. J. Mod. Dynam. 1 (2007), 301322.CrossRefGoogle Scholar
[35]Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990).Google Scholar