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Abstract. Let the C3 vector field X + aX on M define a flow ( f t
a ) with an Axiom A

attractor 3a depending continuously on a ∈ (−ε, ε). Let ρa be the SRB measure on 3a

for ( f t
a ). If A ∈ C2(M), then a 7→ ρa(A) is C1 on (−ε, ε) and dρa(A)/da is the limit when

ω→ 0 with Im ω > 0 of∫
∞

0
eiωt dt

∫
ρa(dx) X (x) · ∇x (A ◦ f t

a ).

1. Introduction
Given a time evolution (x, t) 7→ f t x , with x ∈ manifold M , t ∈ R, it is often possible to
find a set S ⊂ M and an invariant probability measure ρ on M such that lebesgue(S) > 0
(i.e. S has positive Lebesgue measure), and

lim
T →∞

1
T

∫ T

0
A( f t x) dt = ρ(A) if x ∈ S (1)

whenever A : M → R is continuous. Such measures ρ are called SRB measures or SRB
states. (In the case of a discrete time dynamical system, the integral in (1) is replaced by a
sum.)

SRB measures were defined and studied by Sinai [31], Ruelle [24] and Bowen [8]
for uniformly hyperbolic† systems. Then the concept was extended to general smooth
dynamical system by Ledrappier, Strelcyn and Young [18, 19]. Later it was found that,
in a number of situations where specific geometric information is available, one can prove
detailed properties of SRB measures (see, in particular, Young [33], and the monograph by
Bonatti et al [3]).

The SRB measures describe the statistical properties of physical systems, in particular
in non-equilibrium statistical mechanics [28]. It is therefore desirable to study how

† We call uniformly hyperbolic the Anosov systems [1] and the more general Axiom A systems introduced by
Smale [32] (see also Bowen [7]).
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614 D. Ruelle

these measures depend on parameters (i.e. on the dynamical system ( f t )). For the large
systems of statistical mechanics, a linear response is often observed experimentally when
parameters are varied. This means that the expectation value ρ(A) of an observable A
should depend differentiably on parameters. It is not clear at present how to reconcile
the concept of linear response with the fact that typical dynamical systems depend very
discontinuously on parameters (and may exhibit a dense set of bifurcations). The uniformly
hyperbolic case is however amenable to discussion (in physical situations, this amounts
to accepting the chaotic hypothesis of Gallavotti and Cohen [16]). A formula for the
derivative of SRB states with respect to parameters has been obtained in the case of Axiom
A diffeomorphisms in [27]. Here we shall study Axiom A flows.

A precise statement of our results is given as Theorem A and Theorem B below. The
general idea of the proofs is to use the symbolic dynamics for hyperbolic flows to study
their SRB states, also applying methods of the thermodynamic formalism†.

It will be convenient to use the following notation for the derivative at x of a function A
on the manifold M in the direction of the vector field X :

X (x) · ∇x A = (Dx A)X (x).

If f is a diffeomorphism of M we have thus

X (x) · ∇x (A ◦ f )= (D f x A)(Tx f )X (x).

Note. Since this paper was written in 2004, the relevant reference [34] has appeared. Also,
the old monograph of Parry and Pollicott [35] still deserves to be mentioned.

2. Differentiability of SRB states for hyperbolic systems
Let r ≥ 3, and let ( f t

a ) be a Cr hyperbolic dynamical system (diffeomorphism or flow)
depending smoothly on a parameter a, with an SRB measure ρa . There are a number of
results on the smoothness of a 7→ ρa as a distribution, i.e. of a 7→ ρa(A)when A is smooth.
See [2, 10, 11, 17, 21].

For applications to statistical physics it is desirable to have an explicit expression for
dρa(A)/da. In the case of an Axiom A diffeomorphism fa , writing Xa = (d fa/da) ◦ f −1

a ,
we obtain by a formal calculation

d

da
ρa(A)=

∞∑
k=0

∫
ρa(dx) Xa(x) · ∇x (A ◦ f k

a ).

If fa is mixing, this result holds with an exponentially convergent sum over k, as shown
in [27]. The proof is more difficult than one might anticipate. (For other differentiability
results see [14].)

† Sinai introduced Markov partitions, symbolic dynamics, and studied the ergodic theory for Anosov
diffeomorphisms [29–31]. A partial generalization to flows was given by Ratner [23]. Then Bowen gave a general
definition of Markov partitions for Axiom A diffeomorphisms [4] and flows [5]. The ergodic theory for Axiom A
flows was studied by Bowen and Ruelle [8], introducing what are here called SRB states on attractors for Axiom
A flows. Some abstract results applicable to SRB states originate from equilibrium statistical mechanics and are
subsumed in the so-called thermodynamic formalism [6, 25].
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In the present paper we tackle the case of an Axiom A flow ( f t
a ) defined by a vector

field X + aX . Here a formal calculation yields

d

da
ρa(A)=

∫
∞

0
dt

∫
ρa(dx) X (x) · ∇x (A ◦ f t

a ).

What we shall show is that the Fourier transform∫
∞

0
eiωt dt

∫
ρa(dx) X (x) · ∇x (A ◦ f t

a )

(defined as a distribution) extends to a holomorphic function of ω near ω = 0 such that its
value at 0 is dρa(A)/da.

While the proofs presented here are relatively straightforward, they make detailed use
of the references [5, 8, 25, 26], and lead to somewhat heavy formulas. (The author has
tried without success to find simpler and more direct arguments.)

THEOREM A. Let X and X be Cr vector fields (r ≥ 3) on the compact manifold M, and
let ( f t

a ) be the flow defined by X + aX. We assume that for small a the flow ( f t
a ) has a

non-trivial† Axiom A attractor 3a (depending continuously on a) with SRB measure ρa .
If A ∈ Cr−1(M), the function a 7→ ρa(A) is Cr−2 and (d/da)ρa(A)|a=0 is the value at

ω = 0 of the function defined for Im ω > 0 by

ω 7→

∫
∞

0
eiωt dt

∫
ρ0(dx) X (x) · ∇x (A ◦ f t

0 )

which extends meromorphically to {ω : Im ω >−δ} for some δ > 0, without a pole at
ω = 0.

Note that the theorem does not assume the flow ( f t
a ) to be mixing. If

∫
∞

0 dt |ρ0((A ◦

f t
0 ).C)|<∞, where C = divcu

v (X
c
+ Xu) is defined in §5 below, we have

d

da
ρa(A)|a=0 =

∫
∞

0
dt

∫
ρ0(dx) X (x) · ∇x (A ◦ f t

0 ).

(There are a number of results on decay of correlations for hyperbolic flows, see in
particular Chernov [9], Dolgopyat [12, 13], Liverani [20] and Fields et al [15]. Since
C is Hölder but not smooth in general, only [20] applies directly in the present situation.)

A proof of Theorem A will be obtained from Theorem B below.

COROLLARY 1. Suppose that the vector field X t is constant in t and equal to X when
t ≤ t0 for some time t0, but that X t may depend (smoothly) on t for t ≥ t0. Write
f (t,t0)a x0 = x(t) where dx(t)/dx = X (x(t))+ aX t (x(t)) and x(t0)= x0. One can then
define a time-dependent SRB state ρt

a = f (t,t0)a ρa so that it reduces to ρa for t ≤ t0. With
this definition, if

∫
∞

0 dt |ρ0((A ◦ f t
0 ).C)|<∞,

d

da
ρt

a(A)|a=0 =

∫ t

−∞

dτ
∫
ρ0(dx) Xτ (x) · ∇x (A ◦ f t−τ

0 ).

The corollary follows directly from Theorem A when t < t0. To obtain the general case
differentiate both sides with respect to t .

Before we formulate Theorem B, we need some facts and definitions.

† The attractor 3a is non-trivial if it is not a fixed point or a periodic orbit.
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616 D. Ruelle

3. Correlation functions

If B, B ′ are smooth functions on a neighborhood of 30 in M , their correlation function is
t 7→ ρB B′(t)= ρ0((B ◦ f t

0 ).B
′)− ρ0(B)ρ0(B ′). Multiplying by the characteristic function

χ+ of [0,+∞) we obtain ρ+

B B′(t)= ρB B′(t)χ+(t), and taking the Fourier transform

ρ̂+

B B′(ω)=

∫
∞

0
eiωt dt[ρ0((B ◦ f t

0 ).B
′)− ρ0(B)ρ0(B

′)].

This is a distribution, boundary value of a holomorphic function in the upper half complex
plane, which furthermore extends to a meromorphic function in {ω : Im ω >−δ′} for some
δ′ > 0, with no pole at ω = 0, as discussed in [22, 26]. Actually, the discussion in [26] uses
a symbolic representation of3: points have a description (ξ, t)where ξ belongs to a Cantor
set 6, and t to an interval of R. Instead of smooth B, B ′ one takes B, B ′

∈ C], where C]
is a Banach space of functions t 7→ B(·, t), continuous: interval of R → Cα(6). (To make
the connection with the formalism of [26], it is useful to know that if t 7→ B(·, t), ζ(·, t)
are continuous: interval → Cα(6), and t 7→ B(·, t) is C2: interval → bounded functions
on 6, then t 7→ B(·, ζ(·, t)) is continuous: interval → Cα(6).)

For our purposes the function B ′
= C to be introduced below will belong to C] rather

than being smooth.

4. The volume elements ṽ and v

Let Vu denote a strong unstable manifold for the flow ( f t
0 ). We thus have Vu

⊂30, and Vu

is u-dimensional. There is a natural volume element ṽ on each such Vu so that, for all t , the
natural volume element on f t

0V
u is the image by f t

0 of the measure ṽ, up to a multiplicative
constant. This is seen in the same way as for the existence of a natural volume element on
unstable manifolds contained in an attractor for an Axiom A diffeomorphism (see [27]).
Here again ṽ has Cr−1 density, and is uniquely defined up to a multiplicative constant.

If Ṽu is a u-dimensional manifold contained in a center-unstable manifold, and is
transversal to the flow ( f t

0 ), we can define a volume element ṽ on Ṽu as the image of
ṽ on a strong unstable manifold Vu by a Poincaré map. In this manner we obtain a natural
volume element ṽ, defined up to a multiplicative constant and corresponding to Poincaré
maps acting on manifolds Ṽu transversal to ( f t

0 ).

Now let Wcu denote a center-unstable manifold for the flow ( f t
0 ). We thus have

Wcu
⊂30, and Wcu is (u + 1)-dimensional. Take a chart S × I of M such that X is

the unit vector in the last coordinate direction, and I is an interval of R. Assuming also
that Ṽu

⊂ S we may write locally Wcu
= Ṽu

× I and define

v = ṽ × Lebesgue.

A volume element v is thus given on the center-unstable manifolds Wcu , and is unique
up to a multiplicative constant. Note that v has Cr−1 density and that f t

0 sends v to v up
to a multiplicative constant. (We shall see in §7 that v is, up to a multiplicative constant,
the conditional probability of the SRB measure ρ0 on the (local) center-unstable manifold
Wcu .)
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5. The function C = divcu
v (X

c
+ Xu)

For x ∈30, let Tx M = Ec
x + E s

x + Eu
x , where Ec

x is one-dimensional containing X (x),
and E s

x , Eu
x are the strong stable and unstable subspaces at x for ( f t

0 ). We write

X (x)= X c(x)+ X s(x)+ Xu(x)

with X c(x) ∈ Ec
x , X s(x) ∈ E s

x and Xu(x) ∈ Eu
x . If we take again a chart S × I of M such

thatX is that unit vector in the last coordinate direction, we see that Ec
x is independent of x ,

while E s
x , Eu

x depend Hölder continuously on x , and are independent of the last coordinate
of x . In particular, X c(x), X s(x) and Xu(x) have Cr dependence on the last coordinate of
x (while depending Hölder continuously on x).

The divergence of X c
+ Xu with respect to the volume element v on the manifold Wcu

is denoted by divcu
v (X

c
+ Xu). It is, a priori, a distribution, but we shall show that it is

actually a Hölder continuous function on 30 (note that this is a local question).
Let f t

0 x ∈Wcu , with x ∈ S ∩Wcu
= Ṽu . We may write X c

+ Xu
= X ′c

+ X ′u where
X ′c( f t

0 x) ∈ Ec
x and X ′u( f t

0 x) ∈ Tx S ∩ (Ec
x + Eu

x ). We then have divcu
v (X

c
+ Xu)=

∂X ′c
+ divṽ X ′u where ∂X ′c denotes the derivative of X ′c with respect to the last

coordinate (i.e. (∂X)( f t
0 x)= ∂t X ( f t

0 x)). Since ∂X is Cr−1, ∂X ′c is Hölder continuous.
Note that we may also write X = X ′′c

+ X ′′s
+ X ′u where X ′′c( f t

0 x) ∈ Ec
x and X ′′s( f t

0 x) ∈

Tx S ∩ (Ec
x + E s

x ). The definition of divṽ inWcu
∩ S is now very similar to that of divu for

the case of hyperbolic diffeomorphisms in [27], provided we replace the diffeomorphism
f by Poincaré maps of ( f t

0 ). In fact, using a Markov partition for ( f t
0 ) we see that

we need only a finite number of Poincaré maps f Tk`
0 between sections Sk , S`. The

stable and unstable directions for the system of Poincaré maps are Tx S ∩ (Ec
x + E s

x )

and Tx S ∩ (Ec
x + Eu

x ), respectively. One uses in [27] the absolute continuity result that
the projection along stable manifolds from one transverse section to another has Hölder
continuous Jacobian, and one obtains that divṽ X ′u is Hölder. Therefore, divcu

v (X
c
+ Xu)

is a Hölder C function on 30. (Integration by parts will show, in §7, that ρ0(C)= 0
because boundary terms cancel out.) Instead of X we may use ∂X in the above argument,
and find that

f t
0 x 7→ ∂t C( f t

0 x)= divcu
v (∂X c

+ ∂Xu)( f t
0 x)

is Hölder continuous on 30. From this it results that t 7→ (x 7→ C( f t
0 x)) defines a

C1 function to Cα(S).

THEOREM B. Under the conditions of Theorem A we have

d

da
ρa(A)|a=0 =

∫
ρ0(dx) (Dx A)

∫
∞

0
dt (T f −t

0 x f t
0 )X

s( f −t
0 x)− ρ̂+

AC (0).

(If
∫

∞

0 dt |ρ0((A ◦ f t
0 ).C)|<∞, we have ρ̂+

AC (0)=
∫

∞

0 ρ0((A ◦ f t
0 ).C).)

The proof of Theorem B will occupy most of the rest of this paper. It is based on the
study of SRB states with the help of a Markov partition. We start with the unperturbed
dynamics (i.e. a = 0, the index a will be omitted until §8).

Thus, let, for r ≥ 3,3 be an Axiom A attractor for the flow ( f t ) defined on the manifold
M by the Cr vector field X :

d f t x

dt
= X ( f t x) (2)
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618 D. Ruelle

with f 0x = x . There is a unique SRB measure ρ with support 3 for the flow ( f t ). A
perturbation δX of the vector field X causes a change δρ of the SRB state ρ and we have
formally

δρ(A)=

∫
∞

0
ds

∫
ρ(dx)δX (x) · ∇x (A ◦ f s) (3)

for smooth A : M → R. The main purpose of the present paper is to provide a proof of a
modified version of (3), as described in Theorem A and Theorem B above.

6. Markov partition for the flow ( f t )

We introduce a Markov partition with data as follows (see [5]). A finite index set J is
given, and an J × J matrix τ with entries 0 or 1 such that all entries of some power of τ
are greater than 0. We denote by (6, σ ) the mixing subshift of finite type defined by J, τ ,
and let

6k = {(ξ j ) j∈Z : ξ0 = k}, 6k` = {(ξ j ) j∈Z : ξ0 = k, ξ1 = `}.

The construction of the Markov partition uses small pieces Sk of manifolds transversal to
the flow ( f t ) for k ∈ J (the Sk are open codimension-one smooth submanifolds of M).
When τk` = 1, an open subset Sk` of Sk and a Cr real function Tk` > 0 on Sk` are given
such that f Tk` Sk` ⊂ S`. Finally, for some standard metric on 6, there is an α-Hölder
continuous map π :6 →

⋃
k(Sk ∩3) such that

6k`

π

��

σ // 6`

π

��
Sk`

f Tk`
// S`

is commutative. A positive α-Hölder continuous function ψ :6 → R is defined by

ψ(ξ)= Tk`(πξ) when ξ ∈6k`.

Also, if A is Hölder continuous on 3 we define a γ -Hölder continuous function Ã on 6
by

Ã(ξ)=

∫ ψ(ξ)

0
dt A( f tπξ) (4)

(here γ = α if A ∈ C1(M), otherwise we have to choose some γ ≤ α).

7. Equilibrium states
We use here the formalism of [8], calling equilibrium states the invariant probability
measures described elsewhere as Gibbs states. The pressure of a Hölder continuous
function φ :3→ R with respect to the flow ( f t ) is

c = sup
ν

hσ (ν)+ ν(φ̃)

ν(ψ)

where the sup is over σ -invariant probability measures ν on6, hσ denotes the entropy with
respect to the shift σ , and φ̃ is defined according to (4). Let ν0 be the unique equilibrium
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Differentiation of SRB states for hyperbolic flows 619

state for φ̃ − cψ on 6. Then the unique equilibrium state µφ of φ for the flow ( f t ) on 3
is given by

µφ(A)=
ν0( Ã)

ν0(ψ)
. (5)

We shall be interested in the case when φ = φ(u) is minus the time derivative of the unstable
Jacobian:

φ = φ(u) = −
d

dt
λ+

t |t=0 = −
d

dt
log λ+

t |t=0

with

λ+
t (x)= ‖(Tx f t )∧(u+1)

|volume element of Wcu
‖ = ‖(Tx f t )∧u

|volume element of Vu
‖.

Note that we have

φ(u)( f t x)= −
d

dt
log λ+

t (x).

For φ(u) one can show that the pressure vanishes (c = 0) and µφ(u) is the SRB measure
ρ on 3 for ( f t ). Details and proofs of the above construction of the SRB measure
ρ are given in [8]. Note that the function φ̃ corresponding to φ = φ(u) is—up to a
minus sign and composition with π—the unstable Jacobian (λ+

Tk`
) of ( f Tk`) acting on

(S`). This reduces the study of ν0 to the situation discussed in [27] for an Axiom A
diffeomorphism f , with the replacement of f by ( f Tk`). In particular, (5) shows that
the conditional measures of ρ on Wcu are of the form v = ṽ × Lebesgue. We thus obtain
ρ(C)= ρ(divcu

v (X
c
+ Xu))= 0 because the integral with respect to v of the divergence

divcu
v yields a sum of boundary terms (for each element of the Markov partition); those

terms cancel in the flow direction and then also in the unstable directions.
Let us summarize the situation. The ‘central’ flow direction plays a trivial role, and

we face here basically the same problems as for diffeomorphisms. The SRB measure ρ is
smooth along unstable directions, i.e. ρ has smooth conditional measures v (defined up to
a multiplicative constant) on center-unstable manifolds, and the corresponding divergence
divcu

v therefore makes sense. The fact that divcu
v (X

c
+ Xu), obtained by differentiating

the Hölder continuous vector field X c
+ Xu , is actually a Hölder function C results from

absolute continuity of the map along stable manifolds from one transverse section to
another. Finally, ρ(C)= 0 follows by integration by parts and cancellation of boundary
terms.

8. Flows depending on a parameter a
If we replace X in (2) by X + aX for a ∈ (−ε, ε) we may leave 6, σ , Sk , Sk` unchanged
but replace ( f t ), 3, Tk`, π , ψ , φ, Ã by ( f t

a ), 3a , Tak`, πa , ψa , φa , Ãa . Call π∗ the map π
introduced in §6. A hyperbolic fixed point argument shows that for suitable α > 0 there is
an α-Hölder πa :6 →

⋃
S` such that

f Tak`
a ◦ πa ◦ σ−1

= πa on σ6k`

and a 7→ πa is Cr−1
: (−ε, ε)→ Cα(6 →

⋃
S`), reducing to π∗ for a = 0.

Here are the details. Define 9a = (9ak`) where

9aklπ = f Tak`
a ◦ π ◦ σ−1 on σ6k`
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620 D. Ruelle

for (a, π) close to (0, π∗). Then 9a maps a neighborhood of π∗ in the Hölder space
Cα(6 →

⋃
k` Sk`) to Cα(6 →

⋃
k` Sk`). We assume that we have charts identifying the

Sk` with open subsets of Rdim M−1, so that Cα(6 →
⋃

k` Sk`)⊂ Cα(6 → Rdim M−1).
Note that (a, π) 7→9aπ is Cr−1 and hence C1 from a neighborhood of (0, π∗) in
R × Cα(6 → Rdim M−1) to Cα(6 → Rdim M−1). Taking a = 0 we see that π∗ is a fixed
point of 90 (see the commutative diagram in §6 above). The derivative Dπ∗

90 is a
bounded linear operator on Cα(6 → Rdim M−1). Let V s

π∗ξ
, V u

π∗ξ
⊂ Rdim M−1 denote the

stable and unstable subspaces at π∗ξ . (When ξ ∈6` these are the intersections with Tπ∗ξ S`
of the center-stable and center-unstable spaces at π∗ξ for ( f t

0 ), or the stable and unstable

spaces for the f T0k`
0 acting on

⋃
` S`.) We have chosen α > 0 such that π∗ is α-Hölder,

and we may also assume that ξ 7→ V s,u
π∗ξ

is α-Hölder. The spaces V s,u
∗ , defined to consist

of the α-Hölder maps ξ → V s,u
π∗ξ

, are closed linear subspaces of Cα(6 → Rdim M−1), and

Cα(6 → Rdim M−1)= V s
∗ ⊕ V u

∗ .
We now show that Dπ∗

90 is a hyperbolic operator with respect to the direct sum
decomposition V s

∗ ⊕ V u
∗ , provided α has been chosen small enough, i.e. if α is replaced

by a suitable β (with 0< β < α) which we shall now determine. It suffices to prove that
Dπ∗

90 induces a contraction on V s
∗ , where Dπ∗

90 is the map

u 7→ (T f T0k`
0 )(u ◦ σ−1).

Using an ‘adapted metric’ on M we may assume for the uniform norm

‖T f T0k`
0 |stable direction‖0 ≤ λ < 1.

In the definition of the Cβ norm

‖8‖ = max
(

sup
ξ

|8(ξ)|, sup
ξ 6=η

|8(ξ)−8(η)|

d(ξ, η)β

)
we take the second sup only over pairs (ξ, η) such that d(ξ, η)β < ε, where the constant
ε will be fixed later (small but greater than 0).

Write Tξ = Tπ∗ξ f T0k`
0 , δ = d(ξ, η). Given u ∈ V s

∗ (with Cβ norm ‖u‖) we may for each
pair (ξ, η) with small δ choose v ∈ V s

π∗ξ
with |v − u(η)| ≤ ‖u‖O(δα). We have

Tξu(ξ)− Tηu(η)= Tξ (u(ξ)− v)+ Tξv − Tηv + Tη(v − u(η)),

|Tξ (u(ξ)− v)| ≤ λ|u(ξ)− v| ≤ λ|u(ξ)− u(η)| + ‖u‖O(δα),

|Tξv − Tηv| ≤ ‖u‖O(δα),

|Tη(v − u(η))| ≤ ‖u‖O(δα),

and hence
|Tξu(ξ)− Tηu(η)| ≤ ‖u‖(λδβ + O(δα)).

Since d(σξ, ση)≥ Cδ we have

|Tξu(ξ)− Tηu(η)|

d(σξ, ση)β
≤ ‖u‖

λδβ + O(δα)

Cβδβ
= ‖u‖

(
λ

Cβ
+ O(δα−β)

)
.

For small β we have λ/Cβ < 1, and we may take ε such that

λ/Cβ
+ O(δα−β) < 1 if 0< δ < ε.
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Differentiation of SRB states for hyperbolic flows 621

This concludes the proof that Dπ∗
90 is hyperbolic for suitable β, i.e. when α is chosen

small enough. We may thus apply the implicit function theorem to obtain the existence of
πa with the properties indicated above.

9. Smooth dependence of SRB state with respect to a
Let φa = φ

(u)
a be minus the time derivative of the unstable Jacobian for ( f t

a ) and νa the
unique equilibrium state for φ̃a on 6, where

φ̃a(ξ)=

∫ ψa(ξ)

0
dt φa( f t

aπaξ).

Then, according to §7, the SRB measure ρa for ( f t
a ) on 3a is given by

ρa(A)=
νa( Ãa)

νa(ψa)
.

Assuming A ∈ Cr (M) we find that a 7→ ψa, Ãa are Cr−1
: (−ε, ε)→ Cα(6) because we

know that a 7→ πa is Cr−1, and

ψa(ξ)= Tak`(πaξ) for ξ ∈6k`,

Ãa(ξ)=

∫ ψa(ξ)

0
dt A( f t

aπaξ).

The set 3̂a = Eu
3a

of unstable subspaces is an Axiom A attractor for the Cr−1 action of

(T f t
a ) on the Grassmannian M̂ → M . Therefore, if π̂a :6 → 3̂a makes the diagram

3̂a

��
6

π̂a
??~~~~~~~~ πa // 3a

commutative, we see that a 7→ π̂a is Cr−2
: (−ε, ε)→ Cα (where we may again have to

replace the current value of α by a lower one). Note that

φ̃a(ξ)= −log λ+

ψa(ξ)
(πaξ)

where λ+
t (πaξ) is the unstable Jacobian ‖(Tπaξ f t

a )
∧u

|volume element of π̂aξ‖. Note that
λ+

ψa(ξ)
(πaξ) is a Cr−1 function of a, ψa(ξ), π̂aξ , and hence a 7→ φ̃a(·) is Cr−2

: (−ε, ε)→

Cα(6 → R). Therefore, a 7→ νa is Cr−2
: (−ε, ε)→ (Cα(6 → R))∗. (We use here the

thermodynamic formalism to obtain the Cω dependence of νa (considered as an element of
the Banach space dual of Cα) on φ̃a (considered as an element of Cα), see [25, Theorem
5.26].) Thus, if A ∈ Cr−1(M), the function a 7→ ρa(A)= νa( Ãa)/νa(ψa) is Cr−2.

10. Differentiating a 7→ ρa(A) at a = 0
Writing B = A − ρ0(A) we have

ρa(A)= ρ0(A)+ ρa(B)= ρ0(A)+
νa(B̃a)

νa(ψa)

where B̃a = Ãa − ρ0(A)ψa . Therefore,
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d

da
ρa(A)|a=0 =

1
ν0(ψ0)

d

da
(νa(B̃a))|a=0

because ν0(B̃0)= 0 (use the formula ρ0(A)= ν0( Ã0)/ν0(ψ0) from §9). In view of the
above formula we shall now study νa(B̃a) to first order in a.

11. Reparametrization: modifying the map πa to first order in a
A Markov partition parametrizes points of 3 in the form f tπξ where ξ ∈6 and 0 ≤

t <ψ(ξ). We have taken πξ in a piece of smooth manifold Sk transversal to the flow.
However, we may just as well use a parametrization f tπ]ξ of 3, where π]ξ = f τ(ξ)πξ
with continuous τ :6 → R.

We consider a first such reparametrization which consists in replacing Sk by a union
of strong unstable manifolds (as is needed for the application of [26] in §14). This
reparametrization corresponds to a Hölder continuous choice of ξ 7→ τ(ξ), and replaces
the Sk by non-smooth ‘manifolds’ in general.

We return now to smooth Sk and write

πaξ = π0ξ + a(U c(ξ)+ U s(ξ)+ U u(ξ))

to first order in a, with U c(ξ) ∈ Ec
π0ξ

, U s(ξ) ∈ E s
π0ξ

, U u(ξ) ∈ Eu
π0ξ

. We may thus consider
a second reparametrization

π]aξ = π0ξ + a(U s(ξ)+ U u(ξ))

= πaξ − aU c(ξ)= f −aθ(ξ)
a πaξ

where θ is defined by U c(ξ)= θ(ξ)X (π0ξ). Note that the replacement of πa by π]a
also replaces ψa(ξ) by ψa(ξ)+ aθ(ξ)− aθ(σξ), Ãa(ξ) by Ãa(ξ)+ aθ(ξ)A(πaξ)−

aθ(σξ)A(πaσξ), and φ̃a(ξ) by φ̃a(ξ)+ aθ(ξ)φa(πaξ)− aθ(σξ)φa(πaσξ). Thus, the
replacement of πa by π]a changes ψa , Ãa , φ̃a by a coboundary. In particular, νa and
νa(B̃a) are unchanged.

Let us now perform the first and then the second reparametrization, i.e. first replacing
Sk by a union of strong stable manifolds, and second taking

π]aξ = π0ξ + a(U s(ξ)+ U u(ξ)).

Here we have
π]aξ = πaξ − U c(a, ξ)= f −θ(a,ξ)

a πaξ

but, because of the lack of smoothness of Sk , we cannot write U c(a, ξ)= aU c(ξ),
θ(a, ξ)= aθ(ξ) in general. Nevertheless, the replacement of πa by π]a changesψa, Ãa, φa

by a coboundary, so that νa and νa(B̃a) are unchanged. In view of this we shall from now
on replace πa by π]a and change ψa , Ãa , φ̃a accordingly, but without altering the notation.

12. Calculation of B̃a − B̃0

We have

B̃a(ξ)− B̃0(ξ)=

∫ ψa(ξ)

0
dτ B( f τa (π0ξ + aU s(ξ)+ aU u(ξ)))−

∫ ψ0(ξ)

0
dt B( f t

0π0ξ).
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Write X c(x)= η(x)X (x), where η is Hölder continuous on30 (and η( f t
0π0ξ) is a smooth

function of t). We can then define a map [0, ψa(ξ)] → [0, ψ0(ξ)] by τ → t such that
dt

dτ
= 1 + aη( f τ0 π0ξ).

Writing also f τa = f t
a∗ we obtain (to first order in a)

B̃a(ξ)− B̃0(ξ)

=

∫ ψ0(ξ)

0
dt[(1 − aη( f t

0π0ξ))B( f t
a∗(π0ξ + aU s(ξ)+ aU u(ξ)))− B( f t

0π0ξ)]

= a(Z ′
− Z ′′)

with

aZ ′
=

∫ ψ0(ξ)

0
dt[B( f t

a∗(π0ξ + aU s(ξ)+ aU u(ξ)))− B( f t
0π0ξ)],

Z ′′
=

∫ ψ0(ξ)

0
dt η( f t

0π0ξ)B( f t
0π0ξ).

The contributions of Z ′ and Z ′′ are evaluated in Appendix A.
From now on we shall write π , f , ψ , ν instead of π0, f0, ψ0, ν0. For n ≥ 0, ξ ∈6, we

define

9(−n, ξ)= −ψ(σ−nξ)− · · · − ψ(σ−1ξ),

9(n, ξ)= ψ(ξ)+ · · · + ψ(σ n−1ξ)

so that 9(−n, σ nξ)= −9(n, ξ), 9(0, ξ)= 0, 9(1, ξ)= ψ(ξ), and f 9(k,ξ)πξ = πσ kξ .
With this notation, the evaluation of Z ′, Z ′′ in Appendix A yields the following result.

LEMMA 1. We have

ν

(
d

da
B̃a

)
|a=0 = ν(Z ′

− Z ′′)

=

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (T f θπξ f t−θ )X s( f θπξ)

+

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ t

0
dθ (T f θπξ f t−θ )X s( f θπξ)

−

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (divcu

v X c)( f θπξ)

−

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ t

0
dθ (divcu

v X c)( f θπξ)

−

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ ψ(ξ)

t
dθ (T f θπξ f t−θ )Xu( f θπξ)

−

∞∑
k=1

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (T f θπξ f t−θ )Xu( f θπξ).

(The meaning of divcu
v has been discussed in §5. The sums over k converge exponentially,

by hyperbolicity (directly) for the X s and Xu parts, and by exponential decay of
correlations for the X c part: see Appendix A for details.)
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13. Evaluation of φ̃a − φ̃0

We have seen in §7 that the function φ̃ corresponding to φ = φ(u) is—up to a minus sign
and composition with π—the unstable Jacobian (λ+

Tk`
) of ( f Tk`) acting on (S`). This

reduces the study of ν to the situation discussed in [27] for an Axiom A diffeomorphism f ,
with the replacement of f by ( f Tk`). This remark remains true in the a-dependent situation,
and reduces the evaluation of φ̃a − φ̃0 to the situation discussed in [27] for Axiom A diffeo-
morphisms. We shall thus simply quote Proposition 1 of [27, II], which takes here the form

−
φ̃a − φ̃0

φ̃0
∼ a(divu

ṽ X̃u) ◦ π.

In this formula the left-hand side is evaluated to first order in a, and we have used the
following notation. The equivalence ∼ means that the integrals of both sides with respect
to every σ -invariant measure on 6 coincide. We have written∫ Tk`(x)

0
dt (T f t x f Tk`(x)−t )Xu( f t x)= X̃u( f Tk`(x)x).

Finally, the divergence divu
ṽ

is computed, on the intersection Vu with Sk of a center unstable
manifold Wcu , with respect to a natural volume element ṽ defined earlier. (Note that, by
our choice of Sk , Vu is a strong unstable manifold.) As in [27], and as in §5, divu

ṽ
X̃u is a

Hölder continuous function on Sk ∩3.
The relation between X̃u, Xu and ṽ, v also gives (see §5)

(divu
ṽ X̃u)( f Tk`(x)(x))=

∫ Tk`(x)

0
dt (divcu

v Xu)( f t x).

Therefore, we may write

d

da
log φ̃a(ξ)|a=0 ∼ −

∫ ψ(ξ)

0
dt (divcu

v Xu)( f tπξ)= γ (ξ).

The right-hand side is a Hölder continuous function of ξ and, since νa is the equilibrium
state for φ̃a , the thermodynamic formalism (see [25, Ch. 5, Exercise 5(b)]) yields

d

da
νa(B̃)|a=0 =

∞∑
k=−∞

[ν(B̃.(γ ◦ σ k))− ν(B̃)ν(γ )]

where the sum converges exponentially and, since ν(B̃)= 0, we find

d

da
νa(B̃)|a=0 = −

∞∑
k=−∞

∫
ν(dξ)B̃(ξ)

∫ ψ(σ kξ)

0
dt (divcu

v Xu)( f tπσ kξ).

This yields the following result.

LEMMA 2. We have

d

da
νa(B̃)|a=0 = −

∞∑
k=−∞

∫
ν(dξ)B̃(ξ)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (divcu

v Xu)( f θπξ)

= −

∞∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (divcu

v Xu)( f θπξ)

where the sum over k converges exponentially.
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The right-hand side above may be written as the sum of a part Z− where θ ≤ t and a
part Z+ where θ > t . In fact, we claim that

d

da
νa(B̃)|a=0 = Z− + Z+,

Z− = −

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (divcu

v Xu)( f θπξ)

−

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ t

0
dθ (divcu

v Xu)( f θπξ),

Z+ =

∞∑
k=1

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (T f θπξ f t−θ )Xu( f θπξ)

+

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ ψ(ξ)

t
dθ (T f θπξ f t−θ )Xu( f θπξ).

For the calculation of the term Z+, note that if we write πξ = x , the integral
over ν(dξ) dt reduces on the manifolds Wcu to integration over ṽ(dx) dt = v(dx dt)=

dx1 . . . dxu dt for a suitable choice of coordinates. Then, writing Xu
= Y ,

B( f t x)(divcu
v Xu)( f θ x)= B(x, t)

u∑
k=1

∂kY k(x, θ).

An integration by parts transforms this to

−

u∑
k=1

∂k B(x, t)Y k(x, θ)= −(D f t x B)(T f θ x f t−θ )Xu( f θ x)

plus boundary terms involving B(x, t)(T f θ x f t−θ )Xu( f θ x) with exponentially convergent
integral over θ . The boundaries of pieces of Wcu are compact with zero measure, and it is
readily seen that the boundary terms cancel.

Putting Lemmas 1 and 2 together yields the following.

PROPOSITION 1. We have

d

da
νa(B̃a)|a=0

=

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (T f θπξ f t−θ )X s( f θπξ)

+

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ t

0
dθ (T f θπξ f t−θ )X s( f θπξ)

−

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ 9(k+1,ξ)

9(k,ξ)
dθ C( f θπξ)

−

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ t

0
dθ C( f θπξ)

where we have written C = divcu
v (X

c
+ Xu).
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14. Proof of Theorems A and B
We may write

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (T f θπξ f t−θ )X s( f θπξ)

+

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ t

0
dθ (T f θπξ f t−θ )X s( f θπξ)

=

∫
ν(dξ)

∫ ψ(ξ)

0
dt (D f tπξ B)

∫ t

−∞

dθ (T f θπξ f t−θ )X s( f θπξ)

= ν(ψ)

∫
ρ(dx) (Dx B)

∫
∞

0
dτ(T f −τ x f τ )X s( f −τ x). (6)

This gives the first term occurring in Theorem B. In view of the exponential convergence
of the integral over τ (and using the notation at the end of §1) this term is also the value at
0 of the expression

ω 7→

∫
ρ(dx) (Dx B)

∫
∞

0
eiωτdτ (T f −τ x f τ )X s( f −τ x)

=

∫
∞

0
eiωt dt

∫
ρ(dx) X s(x) · ∇x (B ◦ f t )

which is holomorphic in ω for Im ω >−δ, for some δ > 0, as required for Theorem A.
As to the series

−

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ 9(k+1,ξ)

9(k,ξ)
dθ C( f θπξ)

−

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ t

0
dθ C( f θπξ) (7)

its sum is formally

−ν(ψ)

∫
∞

0
dt

∫
ρ(dx) B(x)C( f −t x).

To obtain a rigorous estimate of (7) we consider the Fourier transform, as temperate
distribution, of ρ+

BC (·)= ρBC (·)χ
+(·) where ρBC is the correlation function and χ+ the

characteristic function of [0,∞). This Fourier transform, i.e.

ρ̂+

BC (ω)=

∫
∞

0
eiωt dt

∫
ρ(dx) B(x)C( f −t x),

is the boundary value on the real axis of a function of ω holomorphic for Im ω > 0. Fur-
thermore, this function continues meromorphically to {ω : Im ω >−δ∗} for some δ∗ > 0,
and is regular at ω = 0 (see [22, 26]). Our ambition is to prove that its value at 0 is, up
to the factor −ν(ψ), equal to (7). To do this we follow the calculation in [26, §4] which
expresses the Fourier transform as a series converging in the sense of distributions. Note
that, in order to use [26], we need the reparametrization of §11 which replaces Sk by a
union of stable manifolds. Up to an additive term holomorphic in ω near ω = 0, one finds
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that ρ̂+

BC (ω) is equal to

1
ν(ψ)

ν̃

[
B̃ω

∞∑
n=0

(S−1L8−iω9 S)nC̃−ω

]
. (8)

In this formula, ν̃ is the image of ν by the projection6 →6− where6− is the semi-infinite
subshift defined by 6− = {(ξ−

j ) j≤0 : τξ−

j−1ξ
−

j
= 1}, and B̃ω, C̃−ω are Hölder continuous

functions on 6− depending holomorphically on ω. The interactions 8 and 9 are related
to φ(u) and ψ , and the transfer operator L8−iω9 acting on Hölder continuous functions
on 6− depends holomorphically on ω. Specifically, one may write

φ̃(ξ)= −80(ξ0)−

∞∑
`=1

82`(ξ−`, . . . , ξ`), ψ(ξ)= −90(ξ0)−

∞∑
`=1

92`(ξ−`, . . . , ξ`)

where |82`|, |92`|< constant × α`. From the interaction 8= (82`)`≥0 one defines an
α1/2-Hölder function A−

8 on 6− by

A−

8(ξ
−)= −

∞∑
`=0

82`(ξ
−

−2`−1, . . . , ξ
−

0 )

and an operator L8 (transfer operator) on Cα1/2
(6−

→ C) by

(L8U )(ξ−)=

∑
η∈J

tξ−

0 η
[exp A−

8(ξ
−

∨ η)]U (ξ−
∨ η)

where we have written ξ−
∨ η = (. . . , ξ−

−1, ξ
−

0 , η) ∈6−. Similarly, one defines L8−ω9 ;
for small |ω| this operator is quasicompact: it has a simple eigenvalue λ(ω) with λ(0)= 1,
λ′(0) 6= 0, and the rest of the spectrum is contained in a disc of radius less than 1. The
eigenfunction S of L8 to the eigenvalue 1 is greater than 0, and we have denoted by
S or S−1 the multiplication or division by that function. The derivation of the above
formula is presented in [26] with slightly different notation, and one can also see that
ν̃(B̃0)= ν̃(C̃0)= 0. We can, in the expression (8), evaluate the part corresponding to the
eigenvalue λ(ω) of L8−iω9 . This part is of the form (1 − λ(ω))−1 times two factors,
one corresponding to B̃ω and the other to C̃−ω. Both of these factors vanish at ω = 0 as
can be seen from [26]. Since (1 − λ(ω))−1 has a simple pole at ω = 0, the above product
vanishes there. The Fourier transform of ρBC (·) is thus a distribution in ω which reduces to
an analytic function of ω for small |ω|, and this analytic function is given by a convergent
series corresponding to the part of the spectrum of L8−iω9 strictly inside the unit circle.
One can thus take ω = 0 and obtain a convergent expression for the Fourier transform of
ρ+

BC (·) at ω = 0. Manipulations as described in [26] then show that the Fourier transform
of ρ+

BC (·) at ω = 0 is, up to a factor −ν(ψ), equal to (7). From Proposition 1, (6) and (7)
we thus obtain Theorem B since Dx B = Dx A, and ρBC = ρAC .

Now note that

ρAC (t) = ρ((A ◦ f t ).C)=

∫
ρ(dx) A( f t x)(divcu

v (X
c
+ Xu))(x)

= −

∫
ρ(dx) (X c(x)+ Xu(x)) · ∇x (A ◦ f t )
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where we have used the fact that v is the conditional measure of ρ on center-unstable
manifolds, and performed an integration by parts. Theorem A then follows readily from
Theorem B.
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A. Appendix.
A.1. Calculation of Z ′. We have

f t
a∗x = f t x + aRt

x (X
s
+ Xu)

where we have defined, for a vector field Y ,

Rt
x Y =

∫ t

0
dθ (T f θ x f t−θ )Y ( f θ x).

Therefore,

Z ′
=

∫ ψ(ξ)

0
dt (D f tπξ B)[(Tπξ f t )(U s

+ U u)+Rt
πξ (X

s
+ Xu)].

Note also that

(Tπσ−1ξ f ψ(σ
−1ξ))U s,u(σ−1ξ)+Rψ(σ−1ξ)

πσ−1ξ
X s,u

= U s,u(ξ).

Defining

(RY )(ξ)=Rψ(σ−1ξ)

πσ−1ξ
Y,

(T V )(ξ)= Tπσ−1ξ f ψ(σ
−1ξ)V (σ−1ξ), (T−V )(ξ)= Tπσξ f −ψ(ξ)V (σξ)

we find

U s
= (1 − T )−1RX s

=

∞∑
0

T nRX s,

U u
= −T−(1 − T−)

−1RXu
= −

∞∑
1

T n
−RXu

where the series on the right-hand side converge exponentially, and

(Tπξ f t )T nRX s
= (Tπσ−nξ f ψ(σ

−nξ)+···+ψ(σ−1ξ)+t )Rψ(σ−n−1ξ)

πσ−n−1ξ
X s

=

∫ ψ(σ−n−1ξ)

0
dθ (T f θπσ−n−1ξ f ψ(σ

−n−1ξ)+···+ψ(σ−1ξ)+t−θ )X s( f θπσ−n−1ξ)

=

∫
−ψ(σ−nξ)−···−ψ(σ−1ξ)

−ψ(σ−n−1ξ)−···−ψ(σ−1ξ)

dθ ′(T f θ ′πξ f t−θ ′

)X s( f θ
′

πξ).
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Similarly,

(Tπξ f t )T n
−RXu

= (Tπσ nξ f −ψ(σ n−1ξ)−···−ψ(ξ)+t )Rψ(σ n−1ξ)

πσ n−1ξ
Xu

=

∫ ψ(σ n−1ξ)

0
dθ (T f θπσ n−1ξ f −ψ(σ n−2ξ)−···−ψ(ξ)+t−θ )Xu( f θπσ n−1ξ)

=

∫ ψ(σ n−1ξ)+···+ψ(ξ)

ψ(σ n−2ξ)+···+ψ(ξ)

dθ ′(T f θ ′πξ f t−θ ′

)Xu( f θ
′

πξ).

We thus have

(Tπξ f t )U s
+Rt

πξ X s

=

∞∑
n=0

∫ 9(−n,ξ)

9(−n−1,ξ)
dθ (T f θπξ f t−θ )X s( f θπξ)+

∫ t

0
dθ (T f θπξ f t−θ )X s( f θπξ),

(Tπξ f t )U u
+Rt

πξ Xu

= −

∞∑
n=1

∫ 9(n,ξ)

9(n−1,ξ)
dθ (T f θπξ f t−θ )Xu( f θπξ)+

∫ t

0
dθ (T f θπξ f t−θ )Xu( f θπξ)

= −

∞∑
n=2

∫ 9(n,ξ)

9(n−1,ξ)
dθ (T f θπξ f t−θ )Xu( f θπξ)−

∫ ψ(ξ)

t
dθ (T f θπξ f t−θ )Xu( f θπξ).

We can also write

(Tπξ f t )U s
+Rt

πξ X s

=

−1∑
k=−∞

∫ 9(k+1,ξ)

9(k,ξ)
dθ (T f θπξ f t−θ )X s( f θπξ)+

∫ t

0
dθ (T f θπξ f t−θ )X s( f θπξ),

(Tπξ f t )U u
+Rt

πξ Xu

= −

∞∑
k=1

∫ 9(k+1,ξ)

9(k,ξ)
dθ (T f θπξ f t−θ )Xu( f θπξ)−

∫ ψ(ξ)

t
dθ (T f θπξ f t−θ )Xu( f θπξ).

These two formulas give the desired evaluation of Z ′.

A.2. Calculation of ν(Z ′′). We have∫
ν(dξ)

∫ ψ(ξ)

0
dt [η( f tπξ)− η(πσ−nξ)]B( f tπξ)

=

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ t

9(−n,ξ)
dθ

d

dθ
η( f θπξ).

Using charts where X is the unit vector in the last coordinate direction, we see that

d

dθ
η( f θπξ)= (divcu

v X c)( f θπξ).
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Since
∫
ν(dξ)η(πσ−nξ)

∫ ψ(ξ)
0 dt B( f tπξ) tends to 0 for n → ∞ (by exponential decay

of correlations for (ν, σ )) we have

ν(Z ′′) =

∫
ν(dξ)

∫ ψ(ξ)

0
dt η( f tπξ)B( f tπξ)

= lim
n→∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ t

9(−n,ξ)
dθ (divcu

v X c)( f θπξ)

=

−1∑
k=−∞

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ 9(k+1,ξ)

9(k,ξ)
dθ (divcu

v X c)( f θπξ)

+

∫
ν(dξ)

∫ ψ(ξ)

0
dt B( f tπξ)

∫ t

0
dθ (divcu

v X c)( f θπξ).
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