Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-11T21:24:58.500Z Has data issue: false hasContentIssue false

Construction of foliations with prescribed separatrix

Published online by Cambridge University Press:  01 June 2008

YOHANN GENZMER*
Affiliation:
I.M.T., Université Paul Sabatier 118 Route de Narbonne 31062, Toulouse Cedex, France (email: genzmer@math.ups-tlse.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A germ of a singular foliation in is built, with its analytical class of separatrix and holonomy representations prescribed. Thanks to this construction, we study the link between the moduli space of a foliation and the moduli space of its separatrix.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

References

[1]Berthier, M., Cerveau, D. and Meziani, R.. Transformations isotropes des germes de feuilletages holomorphes. J. Math. Pures Appl. (9) 78(7) (1999), 701722.CrossRefGoogle Scholar
[2]Camacho, C.. Singularities of holomorphic differential equations. Singularities and Dynamical Systems (Iráklion, 1983) (North-Holland Mathematical Studies, 103). North-Holland, Amsterdam, 1985, pp. 137159.Google Scholar
[3]Camacho, C. and Movasati, H.. Neighborhoods of Analytic Varieties (Monografías del Instituto de Matemática y Ciencias Afines [Monographs of the Institute of Mathematics and Related Sciences], 35). Instituto de Matemática y Ciencias Afines, IMCA, Lima, 2003.Google Scholar
[4]Camacho, C. and Sad, P.. Invariant varieties through singularities of holomorphic vector fields. Ann. of Math. (2) 115(3) (1982), 579595.CrossRefGoogle Scholar
[5]Dulac, H.. Recherches sur les point singuliers des équations différentielles. J. Ecole Polytechnique 2 (1904), 1125.Google Scholar
[6]Godement, R.. Théorie des faisçeaux. Hermann, Paris, 1973.Google Scholar
[7]Lins Neto, A.. Construction of singular holomorphic vector fields and foliations in dimension two. J. Differential Geom. 26(1) (1987), 131.Google Scholar
[8]Mattei, J.-F.. Modules de feuilletages holomorphes singuliers. I. Équisingularité. Invent. Math. 103(2) (1991), 297325.CrossRefGoogle Scholar
[9]Mattei, J. F.. Quasi-homogénéité et équiréductibilité de feuilletages holomorphes en dimension deux. Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque 261(xix) (2000), 253276.Google Scholar
[10]Mattei, J.-F. and Moussu, R.. Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. (4) 13(4) (1980), 469523.CrossRefGoogle Scholar
[11]Mattei, J.-F. and Salem, E.. Modules formels locaux de feuilletages holomorphes. Preprint, 2004. arXiv:math/0402256.Google Scholar
[12]Seguy, M.. Cobordismes et reliabilités équisinbulières de singularités marquées de feuilletages holomorphes en dimension deux. PhD Thesis, Toulouse, 2003.Google Scholar
[13]Seidenberg, A.. Reduction of singularities of the differential equation A dy=B dx. Amer. J. Math. 90 (1968), 248269.CrossRefGoogle Scholar
[14]Spivak, M.. A Comprehensive Introduction to Differential Geometry. Publish or Perish Inc., Boston, MA, 1975.Google Scholar
[15]Zariski, O.. Le problème des modules pour les branches planes, 2nd edn. Hermann, Paris, 1986 (Course given at the Centre de Mathématiques de l’École Polytechnique, Paris, October–November 1973).Google Scholar