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Abstract. A germ of a singular foliation in C2 is built, with its analytical class of separatrix
and holonomy representations prescribed. Thanks to this construction, we study the link
between the moduli space of a foliation and the moduli space of its separatrix.

0. Introduction
Considering the problem of moduli for a germ of singular holomorphic foliation F in C2

highlights many kinds of topological and analytical invariants. Invariants of the first kind
are derived from the reduction of singularities E : (M,D)→ (C2, 0) of:
(1) the topological class of the manifoldM (a combinatorial invariant);
(2) the analytical class of the pointed divisor D; and
(3) the analytical class of the manifoldM.
Invariants of the second kind are more related to the foliation itself: the collection of
projective holonomy representations defined over each component of the divisor D, the
so-called holonomy pseudo-group. A natural problem is to know if coherent data of the
above invariants correspond to a concrete foliation. The first step towards answering this
question is a theorem of Lins Neto [7], which establishes the possibility of constructing a
foliation with invariant (1) and projective holonomy prescribed. In his thesis [12], Seguy
shows that it is possible to fix invariant (2). The aim of this article is to prove that one can
even prescribe invariant (3) and the holonomy invariants in the construction of a foliation.

The first three sections of this paper are devoted to proving the above result. The
main tool of our construction is the equisingular unfolding of foliations. Basically, it is
a deformation of a foliation obtained as the family of planar sections of a codimension one
foliation on a manifold of higher dimension. Such a deformation is topologically trivial
and preserves the holonomy. It was introduced in [8] to study the local moduli space of a
foliation. It is not easy to find in a constructive way a non-analytically trivial deformation
of this type; except in the very special case where the foliation admits a first integral, no
example is known. One is lead to the study of the cohomological interpretation in order to
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build non-trivial equisingular unfoldings. In the first section, we fix a manifoldMwhich is
built over the reduction tree of a foliation and we define a special class of manifold denoted
by Glu0(M, U, Z) related to M. In the second section, M is supposed to be foliated by
F . A property of cobordism type is highlighted and allows us to detect the existence
of a foliation on any element of Glu0(M, U, Z). This foliation will automatically be
linked to F by an equisingular unfolding. Theorem 3.1 states that, under the general
hypothesis of being of second kind (§2.2), the cobordism property holds for any element of
Glu0(M, U, Z). In the third section, we deduce the following result from the cobordism
property.

THEOREM 0.1. Let F be of second kind. If M and M′ are topologically equivalent then
there exists a holomorphic foliation onM′ linked to F by equisingular unfolding.

A trivial but perhaps more explicit corollary of the above theorem is the following.

THEOREM 0.2. Let ω0 be a germ of singular holomorphic 1-form of the second kind at
0 ∈ C2 and E :M→ C2 the reduction of its singularities. For any blowing-up process
E ′ with the same dual tree as E, there exists a 1-form ω′ at 0 ∈ C2 linked to ω by an
equisingular unfolding such that the reduction of the singularities of ω′ is exactly E ′.

The last section is devoted to the study of the relations between the moduli of a foliation
and its invariant analytical curves, the so-called separatrix. After establishing a property of
finite determination, we use the existence theorem to prove the following.

THEOREM 0.3. Let F0 be a non-dicritical generalized curve at 0 ∈ C2. For any curve
S ⊂ C2, 0 topologically equivalent to Sep(F0), there exists a germ of a foliation F at
0 ∈ C2 topologically equivalent to F with Sep(F)= S.

The previous theorem can be expressed in terms of moduli spaces: the natural map
M(F)→ M(Sep(F)) is onto, where M(·) refers to the moduli space.

1. The categories Glun(M, Z , U)
The aim of this section is to describe a family of sub-categories in the marked trees category
(§1.1). These categories are built due to a gluing process (§1.3) over a fixed tree and present
some good computational properties (§1.5).

1.1. The marked trees category. A blowing-up process over C2 is a commutative
diagram

Mh Eh
// · · · // M j E j

// // M j−1 // · · ·
E1

// M0 = C2

∪ ∪ ∪ ∪

6h // · · · // 6 j // 6 j−1 // · · · // 60 = {0}

∪ ∪ ∪ ∪

Sh // · · · // S j // S j−1 // · · · // S0 = {0}

(1)
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where M j is an analytical two-dimensional manifold; 6 j is a finite subset of the
exceptional divisor D j

:= (E1
◦ · · · ◦ E j )−1(S0); E j+1 is the standard blowing-up

process centered at S j . The set 6 j is called the set of singular points. The set of
irreducible components of D j is denoted by Comp(D j ). The integer h is called the height
of the blowing-up process and (Mh,Dh, 6h) the top of the process. The composed map
Eh := E1

◦ · · · ◦ Eh is called the total morphism of the process.
The blowing-up process appears naturally in the desingularization theory. This

article focuses on isolated singularities of holomorphic foliations in C2. In this
context, the Seidenberg’s theorem [10, 13] states that there exists a blowing-up process
(E j ,M j , 6 j , S j ) j=1...h reducing the singularities of F . A singularity of a foliation is
reduced when given by a holomorphic 1-form with linear part

λx dy + βy dx, β 6= 0,
λ

β
6∈ Q<0.

In the commutative diagram (1), 6 j refers to the singularities of E j ∗F and S j to the
non-reduced ones. The foliation Eh∗F is required to have only reduced singularities.

More generally, we refer to a triplet (M,D, 6) as a tree whereM is a two-dimensional
holomorphic manifold germ with a closed normal crossing curve D. Each irreducible
component of D is biholomorphic to P1; 6 is a finite subset of D which contains the
singular locus of D. Let us denote by 〈M,D〉 the matrix

[〈D, D′
〉]D,D′∈Comp(D)

where 〈D, D′
〉 is the intersection number of the components D and D′. It is referred to as

the tree intersection matrix.
The marked tree notion was introduced in [12] in order to compare the foliation semi-

local invariants. Let (Mh
0,D

h
0 , 6

h
0 ) be the top of a blowing-up process. We refer to the

two bijections
σ :6h

0
∼
−→6, κ : Comp(Dh

0 )
∼
−→ Comp(D)

as the indexation of (M,D, 6) related to (Mh
0,D

h
0 , 6

h
0 ) such that for any irreducible

component D ⊂Dh
0 , σ(D ∩6h

0 )= κ(D) ∩6. Moreover, let us denote by 6×̌D the set

{(s, D) | s ∈ D} ⊂6 × Comp(D).
Definition 1.1. A marking of (M,D, 6) related to (Mh

0,D
h
0 , 6

h
0 ) is an indexation (σ, κ)

such that κ conjugates the intersection matrix:

[〈κ(D), κ(D′)〉]D,D′∈Comp(Dh
0 )

= 〈Mh
0,D

h
0 〉.

The marked weighted dual tree, denoted by A∗
[M,D, 6], is the weighted dual graph

whose incidence matrix is the intersection matrix and the tree indexation. Two marked
weighted dual trees are topologically equivalent when there exists a bijection between
the two graphs which respect the intersection matrix and the indexations. Two trees
with topologically equivalent marked weighted dual trees are topologically equivalent as
topological spaces. Two trees (M,D, 6) and (N , E, 1) with markings (σ, κ) and (ρ, θ)
are conjuguated when there is a biholomorphism germ H defined on a neighborhood of D
such that:
(1) H(D)= E , H(6)=1;
(2) H∗σ = ρ, H∗κ = θ .
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The assumption (2) is referred to as marked conjugation compatibility. Let us denote
by A(M,D, 6) the category of marked trees by (M,D, 6) with marked compatible
conjugation as arrows. It is not difficult to prove the following proposition by induction on
the height.

PROPOSITION 1.1. Let (N , E, 1) ∈ A(M,D, 6). Then there exists a blowing-up
process with a marked top conjugated to (N , E, 1).

Proposition 1.1 allows us to extend in an easy way all natural invariants of the blowing-
up process to the category of marked trees. We define the component multiplicity below.

Let us denote byO(Mh
0) the sheaf of germs of the holomorphic function overMh

0 . Let
iDh

0
be the divisor inclusion Dh

0 ⊂Mh
0 . We define

OMh
0
:= i−1

Dh
0
(O(Mh

0)).

The sheaf OMh
0

is the restriction of O over Dh
0 . Let D be an irreducible component of the

divisor. We denote

ID ⊂OMh
0
,

the ideal subsheaf of germs of a function vanishing along D. Let us consider the subsheaf
M ⊂OMh

0
pull-back of the maximal ideal at 0 ∈ C2. The sheaf M is locally free and

generated by two global sections. Furthermore, we have the decomposition

M =O
(

−

∑
D∈Comp(D)

ν(D)D

)∣∣∣∣
D
.

Here, ν(D) is called the multiplicity of the component D. One can see that it is well
determined by the intersection matrix. When (M,D, 6) is a general tree marked by
(Mh

0,D
h
0 , 6

h
0 ), the multiplicity of D is naturally the multiplicity of the component

associated by the indexation in Dh
0 .

1.2. The sheaves Gn
Z , n ≥ 0. From this point onwards, we fix an element (M,D, 6) in

A(M0,Dh
0 , 6

h
0 ).

In order to define some sub-categories of A(M0,Dh
0 , 6

h
0 ) we are interested in, we

introduce a family of sheaves of groups over D. This construction leads to a key property,
Property 1.1.

In order to overcome a technical difficulty which appears in the final induction (§2.1.3),
the tree is enhanced with a cross. Let Mh be the top of a blowing-up process with

Mh φ
'M given by Proposition 1.1; let Eh be the total morphism of the process and

E := φ ◦ Eh .

Definition 1.2. (Cross) A cross on M is the strict transform Z = E∗Z0 of a single
Z0 = {Z1} or of a couple Z0 = {Z1, Z2} of germs of smooth transversal curves at the origin
of C2.
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Throughout this article, we will often have to describe objects in coordinates. Adapted
coordinates will always refer to (x, y) local coordinates such that:
• in the neighborhood of a regular point of D, {x = 0} is a local equation of D;
• in the neighborhood of a singular point of D, {xy = 0} is a local equation of D; and
• in the neighborhood of the cross, {x = 0} is a local equation of D and {y = 0} an

equation of Z .
We consider Aut(M, Z) to be the group sheaf over D of germs of automorphisms

defined in a neighborhood of points of D such that

8|D = Id, 8|Z = Id.

Let us have a closer look at the form of the Aut(M, Z) sections in an adapted
coordinate system. At a regular point c of D ∪ Z , the stack Aut(M, Z)c is the set
of germs (x, y) 7→ (x(α + A), y + x B) where A and B belong to C{x, y}, A(0, 0)= 0
and α ∈ C∗. At a singular point s of D ∪ Z , the stack Aut(M, Z)s is the set of germs
(x, y) 7→ (x(1 + y A), y(1 + x B)) where A and B belong to C{x, y}.

We will be naturally led to look at the infinitesimal neighborhood of the divisor. To take
care of the cross, we consider a filtration of OM defined by Mn

Z = IZ · Mn, n ≥ 1. In the
same way, we denote by IZ ⊂OM the sheaf

IZ =O
(

−Z −

∑
D∈Comp(D)

D

)∣∣∣∣
D
. (2)

Definition 1.3. (Infinitesimal crossed tree) We refer to the analytical space

M[n],Z
= (D,OM/Mn

Z )

as the nth infinitesimal crossed tree. The neighborhood of order 0 is M[0],Z
=

(D,OM/IZ ). We also consider the ringed spaces

Mn,Z
= (D, IZ/IZMn

Z ), M0,Z
= (D, IZ/I

2
Z ).

The sequence of canonical imbeddings

· · ·M[p],Z ↪→M[p−1],Z ↪→ · · · ↪→M[1],Z ↪→M[0],Z ↪→M

induces a natural filtration of the sheaf Aut(M, Z).

Definition 1.4. We denote by Autn(M, Z) the subsheaf of Aut(M, Z) of germs that
coincide with Id when restricted to the infinitesimal neighborhood of order n.

We now study the form of Autn(M, Z) sections in coordinates in order to construct a
special morphism of sheaves.
At a regular point c of D ∪ Z: let p be the multiplicity of the component containing
c. In an adapted coordinate system, the elements of Autn(M, Z)c can be written as
φ(x, y)= (x + x pn A, y + x pn B), where A, B belong to C{x, y}. Let Jn be the function
defined by

φ(x, y)= (x + x pn A, y + x pn B) ∈ Autn(M, Z)c
Jn

7−→ x pn−1 A ∈ (OM[n],Z )c.
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One can see that Jn is a morphism of groups that does not depend on the adapted
coordinates.
At a singular point s of D: let p and q be the multiplicities of the local components. The
elements of Autn(M, Z)s are those of the form φ(x, y)= (x + x pn yqn A, y + x pn yqn B).
In the same way, we define an intrisic group morphism by

φ = (x + x pn yqn A, y + x pn yqn B) ∈ Autn(M, Z)s
Jn

7−→ x pn−1 yqn−1(y A + x B) ∈ (OM[n],Z )s .

At an attachment point z of Z: the multiplicity of the local component is one since
the components of Z are smooth curves blown down at the origin. The elements of
Autn(M, Z)z are of the form φ(x, y)= (x + xn y A, y + xn y B) and the morphism is
defined by

φ(x, y)= (x + xn y A, y + xn y B) ∈ Autn(M, Z)z
Jn

7−→ xn−1(y A + x B) ∈ (OM[n],Z )z .

Finally, we obtain a morphism of sheaves defined by its previous local description

Autn(M, Z)
Jn

7−→OM[n],Z . Likewise, we have a morphism of sheaves J0 defined, for
example, near a regular point by

φ = (x + x A, y + x B) ∈ Aut0(M, Z)c
J0

7−→ A ∈ (OM[0],Z )c. (3)

Definition 1.5. We denote by Gn
Z the subsheaf of the Autn(M, Z) kernel of the

morphism Jn .

Remark 1.1. At any point c of the divisor, which is not a point of attachment of Z , the
two decreasing filtrations {Gn

Z }n≥0 and {Autn(M, Z)}n≥0 are equivalent in the following
sense. One has the sequence of inclusions

· · · ⊂ (G p
Z )c ⊂ (Autp(M, Z))c ⊂ (G p−1

Z )c ⊂ · · · .

Hence, the main difference between the two sheaves Gn
Z and Autn(M, Z) is located near

the cross. A section of G p−1
Z near the cross is written in adapted coordinates

(x, y) 7→ (x + x p y A, y + x p y2 B)

whereas a section of Autp(M, Z) is given by

(x, y) 7→ (x + x p y A, y + x p y B).

Hence, the order of tangency along the curve {y = 0} of the second factor is bigger for
sections of G p−1

Z than for sections of Autp(M, Z). It will be seen that this difference is
very important.

Lemma 1.1 gives an intrisic criterion for a germ to be a section of Gn
Z .

LEMMA 1.1. Let φ be a germ of a section of Aut(M, Z). The following properties are
equivalent:
(1) φ is a section of Gn

Z ;
(2) φ is the identity restricted toM[n],Z and toMn,Z .
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The following property shows the interest of the introduced sheaves Gn
Z : basically, these

are sheaves of Lie groups associated to some sheaves of Lie algebras which are natural in
our context.

PROPERTY 1.1. (Key property) Let X be a germ of the vector field tangent to D and to Z.
Let f be a germ of the Mn

Z section. Then the flow of f · X is a germ of the Gn
Z section.

Proof. The property can be read in the form of the flow in coordinates. Let (x, y) be the
local adapted coordinates. If Y is a germ of a vector field, we denote by Y (k) the kth power
of Y as a differential operator on O2

0; for any t ∈ [0, 1], the flow of Y at time t can be
expanded in a neighborhood of the origin as

etY
=

∞∑
k=0

tk

k!
Y (k).

In the case of a divisor singular point, putting Y = f · X , an induction on k shows that there
exists Ak, Bk , sections of Mn+k

Z , such that Y (k)(x, y)= (x Ak(x, y), y Bk(x, y)). Hence,
at time one, the flow has the form (x, y) 7−→ (x, y)+ x pn yqn(x A, y B) where p and q
are the multiplicities of the local components of D. The latter automorphism is a Gn

Z
section. 2

1.3. The tree gluing. As a consequence of the sheaf Aut(M, Z), we can introduce a
process called gluing onM. This construction will allow us to define a large class of trees
with the same divisor analytical type. These trees will inherit a canonical marking and a
cross.

1.3.1. Distinguished covering. Let us define a particular type of open covering of the
divisor. Open sets of that covering will play the role of gluing ‘bricks’.

Let U = {Ui }i∈I=I0∪I1 be the covering of D comprising two kinds of open sets:
• if i belongs to I0, Ui is the trace on D of a neighborhood of a unique singular; and
• if i belongs to I1, Ui is an irreducible component ofD deprived of the singular points

of D.

Definition 1.6. Every covering is said to be distinguished when there is no
3-intersection.

Distinguished coverings contain Stein open sets having fundamental systems of Stein
neighborhoods. From here onwards, a covering denoted by U will always be assumed
to be distinguished. The spaces Z0(U, G) and Z1(U, G) are the sets of 0-cocycles and
1-cocycles in the sense of Cech for the sheaf G and the covering U . Let us consider

I0×̌I1 = {(i, j) ∈ I0 × I1 | Ui ∩ U j 6= ∅}.

We define Z̃1
:=

∏
(i, j)∈I0×̌I1 Z

0(Ui ∩ U j , Aut(M, Z)). Since a distinguished covering

does not have any 3-intersection, Z̃1 and Z1(U, Aut(M, Z)) are isomorphic. Hence, if no
confusion is possible, we will denote by Z1 the space Z̃1.
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1.3.2. Gluing. As a result of covering, we are able to glue the open sets of that covering
by identifying points according to a 1-cocycle in Aut(M, Z). Let (φi j ) be a 1-cocycle in
Z1(U, Aut(M, Z)). We define

M[φi j ] =

⋃
i

Ui × {i}/({x}×{i}∼{φi j (x)}×{ j}),

where Ui is a neigborhood of Ui in M such that φi j is represented as an automorphism of
M along Ui ∩ U j . The obtained manifold comes with an embedding

D ↪→M[φi j ] (4)

whose image is denoted byD[φi j ] andM[φi j ] is considered as a germ of the neighborhood
of D[φi j ].

Definition 1.7. The germ of the manifoldM[φi j ] is called the gluing ofM along U by the
cocycle (φi j ).

The gluing of a marked crossed tree comes naturally with a marking and a cross: the
marking is the direct image by the embedding (4) of the marking σ ; the cross is the direct
image of Z by the quotient map for the gluing relation. Such a tree, marking and cross are
respectively denoted by

(M[φi j ],D[φi j ], 6[φi j ]), σ [φi j ] and Z [φi j ].

In the same way, the direct image of the covering U by the quotient map is a distinguished
covering of the new tree and is denoted by U[φi j ].

We associate the data of morphisms on an infinitesimal neigborhood with any gluing
generalizing the embedding (4). The intrisic description of the Autn(M, Z) sections
(Lemma 1.1) reveals the following property.

PROPERTY 1.2. Let n be an integer and N =M[φi j ] be a gluing of M by a cocycle in
Z1(U, Autn(M, Z)). Then there are canonical isomorphisms of analytical and ringed
spaces

ρ
[n]

N :M[n],Z ∼
−→N [n],Z [φi j ],

ρ
n
N :Mn,Z ∼

−→N n,Z [φi j ].

1.4. The Glun(M, Z , U) categories. Let p be an integer. Let us consider the marked
crossed tree built by a succession of gluings

M[φ1
i j ][φ

2
i j ][· · · ][φ

p
i j ] (5)

where
• (φ1

i j ) is a 1-cocyle of Gn
Z ; and

• for k = 2, . . . , p, (φk
i j ) ∈ Z1(U[φ1

i j ] · · · [φk−1
i j ], Gn

Z [φ1
i j ]...[φ

k−1
i j ]

).

Following Property 1.2, we have canonical isomorphisms

ρ
[n]

M[φ1
i j ][φ

2
i j ][··· ][φ

p
i j ]

:M[n],Z ∼
−→M[φ1

i j ][φ
2
i j ][· · · ][φ

p
i j ]

[n],Z [φ1
i j ][φ

2
i j ][··· ][φ

p
i j ], (6)

ρ
n
M[φ1

i j ][φ
2
i j ][··· ][φ

p
i j ]

:Mn,Z ∼
−→M[φ1

i j ][φ
2
i j ][· · · ][φ

p
i j ]

n,Z [φ1
i j ][φ

2
i j ][··· ][φ

p
i j ]. (7)
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Definition 1.8. The Glun(M, Z , U) category is the category whose objects are marked
crossed trees built as equation (5) with the data of isomorphisms (6) and (7). Arrows are
biholomorphic germs 8 between two trees N and P that respect marking and commute
with these isomorphisms:

8 ◦ ρ
[n]

N = ρ
[n]

P and 8 ◦ ρ
n
N = ρ

n
P .

If N and P are isomorphic in Glun(M, Z , U), we write

N
Gn
' P.

1.5. Computations in Glu0(M, Z , U). To compute in Glu0(M, Z , U), we state three
properties to manipulate gluings towards their defining cocycles. In view of the intrisic
description of GZ

n sections, it is easy to check the following property.

PROPERTY 1.3. Let N and P be in Glun(M, Z , U) defined by the 1-cocyles (ρi j ) and
(γi j ), respectively. The following properties are equivalent:

(1) N
Gn
' P;

(2) there exists a 0-cocyle (φi ) in Gn
Z such that ρi j = φ jγi jφ

−1
i .

Proof. Suppose that N and P are isomorphic in Glun(M, Z , U) and denote the
isomorphism by φ. Taking the restriction of φ on each open set of the distinguished
covering of M, one finds a 0-cocycle (φi ) in Aut(M, Z), which provides the
cohomological relation

ρi j = φ jγi jφ
−1
i . (8)

Since the isomorphism φ commutes with the canonical isomorphisms associated toN and
P , the 0-cocycle (φi ) has its values in Gn

Z . 2

Remark 1.2. Note that if N and P are simply conjugated as trees, there still exists a
0-cocycle (φi ) with values in Aut(M, Z) verifying the cohomological relation (8).
However, to ensure that (φi ) belongs to the Gn

Z class, one needs the assumption of
commutativity with both isomorphisms (6) and (7) in the definition of the Glun(M, Z , U)
categories.

The family of maps Ii : Ui ⊂M→M[φi j ] induces the following canonical
isomorphism:

ζ 0
:

{
Z0(U, Aut(M, Z)) −→ Z0(U[φi j ], Aut(M[φi j ], Z [φi j ]))

(φi ) −→ (Iiφi I −1
i ).

We are able to define such an isomorphism for 1-cocycles as a result of the Z̃1 spaces
(1.3.1). We define ζ 1 as the isomorphism

Z̃1
→ Z̃1

[φi j ] :=

∏
(i, j)∈I0×̌I1

Z0(Ui ∩ U j [φi j ], Aut(M[φi j ], Z [φi j ]))

(φi j ) → (I jφi j I −1
j ).

The following useful property can now be stated.
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PROPERTY 1.4. Let (φi j ) and (ψi j ) be in Z1(U, Gn
Z ). Then

M[φi j ][ζ
1ψi j ]

Gn
'M[φi jψi j ].

1.5.1. Stability property. In this section, we identify a class of isomorphic trees in the
gluing category. Basically, if the gluing cocycle is sufficiently tangent to the identity along
the divisor, then the glued tree is isomorphic to the initial one.

PROPERTY 1.5. (Stability) For n big enough, the image of

Glun(M, Z , U)−→ Glu1(M, Z , U)

is a set of trees conjugated toM in the category Glu1(M, Z , U).

This property can be stated in the following way: the map

H1(D, Gn
Z )−→ H1(D, G1

Z ) (9)

is constant, equal to [Id]G1
Z
. First, let us establish the equivalent statement for the initial

sheaf Autn(D, Z).

LEMMA 1.2. For any integer n, there is an integer δ(n) > n such that the image of the
map

H1(D, Autδ(n)(M, Z))→ H1(D, Autn(M, Z))

is trivial.

Proof. The proof of a similar result can be found in [11]. Here, we reproduce the main
arguments. One can suppose M to be the top of a blowing-up process. Let p ≥ n and
(φi j ) be an element of Z1(D, Autp(M, Z)). There exists a germ of a biholomorphism
θ between M[φi j ] and the top of a blowing-up process M′. Let us denote by Z ′ the
induced cross on M′. The map θ induces an isomorphism θ [p] between the infinitesimal
crossed neighborhoods M[φi j ]

[p],Z [φi j ] and M′[p],Z ′

. Hence, θ [p]
◦ ρ

[p]

M[φi j ]
identifies

infinitesimal neighborhoods of both top blowing-up processes. One can show that for
p = δ(n) big enough, θ [p]

◦ ρ
[p]

M[φi j ]
can be extended as a biholomorphism T of trees such

that
T [n]

= θ [n]
◦ ρ

[n]

M[φi j ]
.

Hence, H = T −1
◦ θ is a germ of a biholomorphism between M[φi j ] and M with H [n]

◦

ρ
[n]

M[φi j ]
= Id[n]

= ρ
[n]

M. This is equivalent to the triviality of (φi j ) in H1(D, Autn(M, Z)).
2

Proof of Property 1.5. Let (φi j ) be a 1-cocycle in Gδ(n)Z . Its trivialization in Autn(D, Z)
can be written as

φi j = φi ◦ φ−1
j . (10)

We are going to correct this trivialization in order to obtain one with values in G1
Z . Let

us denote by p1 and p2 the points of attachment of the cross. The cross is the strict
pull-back of a couple of transversal curves at the origin in C2 which define a local
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system of coordinates. Near p1 and p2, there are two local adapted coordinate systems
(x1, y1) and (x2, y2) such that E takes the following forms: E(x1, y1)= (x1, y1x N1

1 ) and

E(x2, y2)= (x2 yN2
2 , y2). The components of the cocycle φ1 and φ2 defined near p1 and

p2 can be expanded as

φ1(x1, y1)= (x1 + xn
1 y1U1(x1, y1), y1 + xn

1 y1V1(x1, y1)),

φ2(x2, y2)= (x2 + yn
2 x2U2(x2, y2), y2 + yn

2 x2V2(x2, y2)).

Let φ0 be the germ of a biholomorphism near 0 in C2 defined by

φ0(x, y)= (x + xynU2(0, y), y + yxn V1(x, 0)).

For n big enough, φ0 can be raised to an automorphism φ that fixes each point of the
divisor and the cross. Moreover, for any point c different from p1 and p2, the evaluation
through J1 provides the equality J1(φ

−1)c ≡ 0. Now, the choice of φ ensures that
J1(φ1)p1 ≡ J1(φ)p1 and that J1(φ2)p2 ≡ J1(φ)p2 . Finally, J1(φi ◦ φ−1)≡ 0. Hence,
the 0-cocycle (φi ◦ φ−1) is a trivialization of (φi j ) in G1

Z .

Remark 1.3. Since the points of attachment of the cross can be chosen outside of any
2-intersection of the distinguished covering, in view of Remark 1.1 there is a canonical
embedding

Z1(U, Autδ(n)+1(M, Z)) ↪→ Z1(U, Gδ(n)Z ). (11)

Hence, the proof of Property 1.5 would work if we began with (φi j ) ∈ Z1(U,
Autδ(n)+1(M, Z)). Nevertheless, the embedding (11) cannot induce a map in cohomology.

2. Cobordism in Glun(M, Z , U)
From here onwards, we assume the marked tree M to be foliated by F . We are going to
define a cobordism notion in order to detect in any element of Glu0(M, Z , U) the existence
of a foliation linked to F in the sense of equisingular unfolding. For a precise definition of
equisingular unfolding, we refer to [8]. We assume the singularities of F to be reduced.

Definition 2.1. (Cross adapted to F) Let Z be a cross on M. Z is said to be adapted to F
when each Zi verifies at least one of the following properties:
(1) Zi is a separatrix of F ; and
(2) Zi is attached at a regular point of F .
In the latter case, Zi will be transversal to the foliation.

From now on, the crosses will always be adapted. Let us denote by S the union of
analytical invariant curves of F , which are transversal to the divisor. By extension, the
curve S is called the separatrix of F . Now, we consider two natural sheaves.
• The sheaf XS,Z is a sheaf over D. At each point of D, its fiber is the space of germs

of holomorphic vector fields of M that are tangent to D, to the separatrix and to the
cross.

• The sheaf XF ,Z ⊂ XS,Z is the subsheaf of germs of vector fields tangent to the
foliation.
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From this point onwards, et X refers to the flow of the vector field X at time t . One notices
that if X is a section of IZXS,Z then, for all t ∈ C, et X exists as a germ and defines a
section of Aut(M, Z).

Definition 2.2. (Elementary cobordism) Let N ∈ Glu0(M, Z , U).
N is elementary F-cobordant to M when there exists a 1-cocycle (Ti j ) of

Z1(U, IZXF ,Z ) such that N andM[eTi j ] are isomorphic in Glu0(M, Z , U).

Here, N inherits a canonical foliation defined by

F[eTi j ] :=

∐
i

F |Ui

/
x∼eTi j x

.

Moreover, a rigidity result of Grauert [8] implies that the deformation t →Mt =

M[e(t)Ti j ], t ∈ D carries an equisingular unfolding between F and F[eTi j ] in the sense
of [8]. To be more specific, the foliation of codimension one in a manifold of dimension
three defined by

FD =

∐
i

F |Ui × D
/
(x,t)∼(e(t)Ti j x,t)

on
∐

i

Ui × D
/
(x,t)∼(e(t)Ti j x,t)

comes with a transversal fibration π , which is the projection on the second factor. The
family of foliated fibers of π is an equisingular unfolding. The fiber at 0 is the tree M
foliated by F and the fiber at 1 is the treeM[eTi j ] foliated by F[eTi j ].

Definition 2.3. (General cobordism) Let N be in Glu0(M, Z , U). N is said to be
F-cobordant to M if there exists a finite sequence of 1-cocyles (T k

i j )k=1,...,N such that
the following two conditions are verified.

(1) For any p = 0, . . . , N − 1, let XFp,Z p be the sheaf overD[eT 1
i j ][· · · ][eT p

i j ] of germs
of the vector field tangent to the foliation and cross

Fp = F[eT 1
i j ][· · · ][eT p

i j ], Z p = Z [eT 1
i j ][· · · ][eT p

i j ].

We assume (T p+1
i j ) is a 1-cocycle with values in XFp,Z p .

(2) N
G0
'M[eT 1

i j ][· · · ][eT N
i j ].

We summarize this definition with the following notation:

M
F1,Z1 //___ M2

F2,Z2 //___ · · ·
FN−1,Z N−1//___ MN

G0
'N .

2.1. Construction of cobordism. A foliation F is a non-dicritical generalized curve
when all its singularities are reduced with two non-vanishing eigenvalues and when the
divisor is invariant.

PROPOSITION 2.1. Let F be a non-dicritical generalized curve on a marked tree M
crossed by Z. Any element in Glu0(M, Z , U) is F-cobordant toM.

The proof highlights three different steps: first, we establish the result at an infinitesimal
level, then for the sub-category Glu1(M, Z , U) and finally, due to an induction on the
height of the tree, for the Glu0(M, Z, U) category.
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2.1.1. Step 1: the infinitesimal level. Let H be a biholomorphism between M and the
top of a blowing-up process Mh . The induced foliation Fh on Mh is defined by a germ
of the holomorphic 1-form ω at the origin of C2. We define E := Eh ◦ H where Eh is
the total morphism of the process (§1.1). The global 1-form E∗ω defines a morphism of
sheaves

X ∈ XS,Z → E∗(ω)(X) ∈OM.

Let a reduced equation of the separatrix of ω be denoted by f . For any component D of
D, we denote by νD( f ) and νD(ω) the respective vanishing orders of E∗( f ) and E∗(ω)

along the component D.

LEMMA 2.1. There exists an exact sequence of sheaves

0 −→ Mn
ZXF ,Z −→ Mn

ZXS,Z
E∗ω(·)
−−−−→ Mn

Z ( f ◦ E)−→ 0.

Here, ( f ◦ E) is the sheaf of ideals generated by f ◦ E in OM.

Proof. Let us show that there exists an exact sequence of sheaves

0 −→ XF ,Z −→ XS,Z
E∗ω(·)
−−−−→ ( f ◦ E)−→ 0. (12)

The exactness of the first part in equation (12) is obvious since XF ,Z = ker(E∗ω). Let
us compute the image of E∗ω(·). In view of [4] and as F is a non-dicritical generalized
curve, for any component D of D one has the relation

νD( f )= νD(ω)+ 1.

Hence, near a divisor singular point s there exist local coordinates such that f ◦ E =

U x p+1 yq+1 and E∗ω = V x p yq(λx(1 + A) dy + y(1 + B) dx), where U and V are
unities. Let g be any element of (OM)s . The vector field X = yg(U/V )∂y belongs
to (XS,Z )s and E∗ω(X)= g f ◦ E . At a regular point c of the foliation, there exists
coordinates such that f ◦ E = U x p+1 and E∗ω = V x p dx , where U and V are unities.
The vector field X = xg(U/V )∂x belongs to (XS,Z )c and verifies E∗ω(X)= g f ◦ E for
any germ of a function g. The other cases can be studied in the same way. Now, the sheaf
Mn

Z is locally principal. Hence, the sequence (12) multiplied by Mn
Z remains exact. 2

LEMMA 2.2. For any n ≥ 1, H1(D,Mn
Z )= 0.

Proof. The long exact sequence associated to the short exact sequence 0 → Mn
Z → Mn

→

Mn/Mn
Z → 0 is written as [6]

· · · → H0(D,Mn)
δ

→ H0(D,Mn/Mn
Z )→ H1(D,Mn

Z )→ H1(D,Mn) · · · .

The sheaf Mn is generated by its global sections. Hence H1(D,Mn)= 0 since
H1(D,OM)= 0 [8]. In order to conclude, it remains to prove that δ is onto. Outside the
points p1 and p2 of attachment of Z , the sheaf IZ coincides with OM, therefore the fiber
of Mn/Mn

Z is trivial. Let us consider the local coordinate systems (x1, y1) and (x2, y2)

near p1 and p2 introduced in the proof of Property 1.5. We have

(Mn/Mn
Z )p1 ' xn

1 C{x1, y1}/xn
1 y1C{x1, y1} ' xn

1 C{x1}.
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In the same way, (Mn/Mn
Z )p2 is isomorphic to yn

2 C{y2}. Hence, the space of Mn/Mn
Z

global sections is identified to xn
1 C{x1} ⊕ yn

2 C{y2}. Let S = xn
1 a1(x1)⊕ yn

2 a2(y2) be in
the previous set. The germ of a function defined by s(x, y)= xna1(x)+ yna2(y) induces
a global section s ◦ E of Mn . Now, the map E takes the following form in coordinates:
E(x1, y1)= (x1, y1x N1

1 ) and E(x2, y2)= (x2 yN2
2 , y2). Hence s ◦ E verifies the equalities

(s ◦ E)p1 ≡ xn
1 a1(x1)+ yn

1 xnN1
1 a2(y1xn1

1 )≡ xn
1 a1(x1) ∈ (Mn/Mn

Z )p1 ,

(s ◦ E)p2 ≡ xn
2 ynN2

2 a1(x2 yN2
2 )+ yn

2 a2(y2)≡ yn
2 a2(x2) ∈ (Mn/Mn

Z )p2 ,

which means that δ(s ◦ E)= S and ends the proof. 2

Remark 2.1. In view of the previous proof of Lemma 2.1, the exactness of the sequence
(12) holds when replacing the sheaf Mn

Z by any sub-sheaf of

O
(

−Z −

∑
D∈Comp(D)

D

)∣∣∣∣
D
.

However, very few have vanishing cohomology groups. In particular, the image by E∗ω(·)

of the Lie algebra associated to the sheaf Autn(M, Z) fails to have vanishing cohomology
groups. This justifies the introduction of Gn

Z , which in Lie algebra is precisely Mn
ZXS,Z .

Now, we can state the infinitesimal equivalent of Proposition 2.1.

PROPOSITION 2.2. (Infinitesimal cobordism) The map

H1(D,Mn
ZXF ,Z )−→ H1(D,Mn

ZXS,Z )

is onto.

Proof. The long exact sequence associated with the short one in Lemma 2.1 is

· · · → H1(D,Mn
ZXF ,Z )→ H1(D,Mn

ZXS,Z )→ H1(D,Mn
Z ( f ◦ E))→ · · · . (13)

Now, Lemma 2.2 ensures that H1(Mn
Z ( f ◦ E)) is trivial, hence the last term of sequence

(13) vanishes. 2

2.1.2. Step 2: cobordism in Glu1(M, Z , U). This section is devoted to proving the
following proposition.

PROPOSITION 2.3. Let F be a non-dicritical generalized curve on a marked tree M
crossed by Z. Any element of Glu1(M, Z , U) is elementary F-cobordant toM.

The proof consists of getting the cobordism on an infinitesimal neighborhood of order
big enough to apply the stability property.

LEMMA 2.3. (Infinitesimal cobordism of order n) Let (φi j ) in Z1(U, G1
Z ). For any n ≥ 1,

there exist (Ti j ) in Z1(U,MZXF ,Z ), (φi ) in Z0(U, G1
Z ) and (φ̃i j ) in Z1(U, Gn

Z ) such that

φ−1
j ◦ φi j ◦ φi = eTi j ◦ φ̃i j . (14)
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Proof. It is an induction on the integer n. Let us assume the property to be true at rank n.
Let (φ̃i j ) ∈ Z1(U, Gn

Z ) be given by the induction hypothesis. In local adapted coordinates,
one can write φ̃i j (xi j , yi j )= Id + (Ai j , Bi j ). Let X̃ i j be the germ of a vector field defined
by X̃ i j = Ai j∂xi j + Bi j∂yi j . The family (X̃ i j ) is a 1-cocycle with values in Mn

ZXS,Z .

Proposition 2.2 ensures the existence of a 0-cocycle (X̃ i ) in Z0(U,Mn
ZXS,Z ) and a

1-cocycle (T̃i j ) in Z1(U,Mn
ZXF ,Z ) such that X̃ i j = X̃ j − X̃ i + T̃i j . By expanding the

flow e X̃ i j , one can see that

φ1
i j := e−X̃ i j ◦ φ̃i j = (Id − X̃ i j + · · · ) ◦ (Id + X̃ i j + · · · ) ∈ Gn+1

Z .

In view of the previous relations, we find

e−X̃ j ◦ φ−1
j ◦ φi j ◦ φi ◦ e X̃ i = e−X̃ j ◦ eTi j ◦ φ̃i j ◦ e X̃ i

= e−X̃ j ◦ eTi j ◦ e X̃ i j ◦ e X̃ i ◦ φ1
i j ◦ [φ1

i j , e X̃ i ]

where [a, b] = a−1b−1ab. One can find in [14] the following result.

SUB-LEMMA 2.1. (Campbell–Hausdorff formula) Let X and Y be two germs of a vector
field vanishing along the divisor. Then there exists a formal vector field ρ(X, Y )=∑

∞

k=1 ρk(X, Y ) such that
eρ(X,Y ) = eX

◦ eY .

The sum is convergent for the Krull topology in the space of formal series. Moreover, the
first terms of the series are

ρ(X, Y )= X + Y +
1
2 [X, Y ] + · · · . (15)

As a result of the above lemma, we obtain the following relation:

e−X̃ j ◦ eTi j ◦ e X̃ i j ◦ e X̃ i = eρ(ρ(ρ(−X̃ j ,Ti j ),X̃ i j ),X̃ i ).

Equation (15) provides the expansion

ρ(ρ(ρ(−X̃ j , Ti j ), X̃ i j ), X̃ i )

= Ti j + T̃i j +
1
2 [Ti j , X̃ j ] +

1
2 [Ti j , X̃ i j ] +

1
2 [Ti j , X̃ i ] + · · ·︸ ︷︷ ︸

Yi j

. (16)

Now, for any integers n and m, [Mm
Z XS,Z ,M

n
ZXS,Z ] ⊂ Mm+n

Z XS,Z . Hence, (Yi j ) is a
1-cocycle of Z1(U,Mn+1

Z XS,Z ). We therefore obtain the expression

e−X̃ j ◦ φ−1
j ◦ φi j ◦ φi ◦ e X̃ i = eTi j +T̃i j +Yi j ◦ φ1

i j ◦ [φ1
i j , e−X̃ i ]

= eTi j +T̃i j ◦ φ2
i j ◦ φ1

i j ◦ [φ1
i j , e−X̃ i ], (17)

where φ2
i j is equal to e−Ti j −T̃i j ◦ eTi j +T̃i j +Yi j . Again, the Campbell–Hausdorff formula

shows that φ2
i j is the flow of the vector field admitting the expansion Yi j − (1/2)[Yi j , Ti j +

T̃i j ] + · · · . As a consequence, in view of Property 1.1, φ2
i j takes its values in Gn+1

Z . Finally,

similar arguments ensure that the commutator in equation (17) is in the Gn+1
Z class. Hence,

equation (17) is the induction hypothesis at rank n + 1. 2
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Remark 2.2. The previous lemma would be wrong if one replaces G1
Z by G0

Z , as the
infinitesimal argument does not work with the latter sheaf. In fact, as in Remark 2.1,
the image by E∗ω(·) of the Lie algebra associated with G0

Z is

O
(

−Z −

∑
D∈Comp(D)

D

)∣∣∣∣
D
( f ◦ E),

which does not have vanishing cohomology.

Let us now prove Proposition 2.3. One can writeN 'M[φi j ] with (φi j ) inZ1(U, G1
Z ).

The infinitesimal cobordism lemma gives us three cocycles (Ti j ) inZ1(U,MZXF ,Z ), (φi )

in Z0(U, G1
Z ) and (φ̃i j ) in Z1(U, Gn

Z ) such that φ−1
j φi jφi = eTi j φ̃i j . Now, Properties 1.3

and 1.4 imply that

M[φi j ]
G1
'M[φ−1

j φi jφi ] =M[eTi j φ̃i j ]
G1
'M[eTi j ][ζ 1φ̃i j ].

Moreover, the stability property applied in Glun(M[eTi j ], Z [eTi j ], U[eTi j ]) to the cocycle

(ζ 1φ̃i j ) shows that M[eTi j ][ζ 1φ̃i j ]
G1
'M[eTi j ]. Hence, M[φi j ] is isomorphic to M[eTi j ],

which is the property to be verified.

2.1.3. Step 3: cobordism in Glu0(M, Z , U). The proof of Proposition 2.1 is an
induction on the height of the tree, which allows us to use the previous result established
for the Glu1(M, Z , U) category.

Let (φi j ) be such that N =M[φi j ]. Let us denote by D0 the irreducible component
of D appearing after the first blowing-up process. Let {c1, . . . , cN } be the set of singular
points of D on D0. We denote by Dl the branch of D attached to cl and Ml the
neighborhood of Dl in M. The notation Ul refers to the distinguished covering of Dl

induced by restriction of U . Moreover, we denote by U0 ∈ U the open set D0\{c1, . . . , cN }

and Ul ∈ U the neighborhood of cl . The foliation Fl refers to the restriction of the foliation
F to Ml . We consider a cross Zl defined by the trace in Ml of D0 and of the strict
transform of Z (see Figure 1). One can see that Fl is a non-dicritical generalized curve on
a marked crossed tree and that Zl is adapted to Fl .

Let us consider (φl
i j ) ∈ Z1(Ul , G0

Zl
), the 1-cocycle restriction of (φi j ) ∈ Z1(U, G0

Z )

to Ul ,
φl

i j = φi j , Ui ,U j ∈ Ul .

Since each tree Dl has a height smaller than h − 1, the induction hypothesis ensures that
each treeMl [φ

l
i j ] is Fl -cobordant toMl in the category Glu0(Ml , Zl , Ul).

Let us assume first that the above Fl -cobordisms are elementary. By definition, there
exists a family of 1-cocyles (T l

i j ), l = 1, . . . , N of Z1(Ul , IZl XFl ,Zl ) such that

Ml [φ
l
i j ]

G0
'Ml [e

T l
i j ].

In view of Property 1.3, there exists a family of 0-cocycles in G0
Zl

verifying

φl
i j = ψ l

j e
T l

i jψ l
i
−1
. (18)
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FIGURE 1. Induction construction.

Let us suppose that ψ l
1 refers to the component of the 0-cocycle (ψ l

i ) defined on the open
set Ul containing the singularity cl . Let (eTi j )ext be the 1-cocyle

(eTi j )ext =

{
Id on Ul ∩ U0,

eT l
i j elsewhere.

We denote by φl0 the component of the 1-cocycle (φi j ) defined on Ul ∩ U0. Finally, we
define a 1-cocycle by

κi j =

{
ψ l

1φl0 on Ul ∩ U0,

eT l
i j elsewhere.

Equation (18) induces an isomorphism in Glu0(M, Z , U)

M[κi j ]
G0
'M[φi j ]. (19)

We define the 1-cocycle

κ̃i j =

{
ψ l

1φl0 on Ul ∩ U0,

Id elsewhere.
(20)

Let M̃ ∈ Glu0(M, Z , U) be defined by M̃=M[e
Ti j
ext]. We have

M̃[ζ 1κ̃i j ] = M[e
Ti j
ext][ζ

1κ̃i j ] (21)
G0
' M[e

Ti j
ext κ̃i j ] (22)

= M[κi j ]. (23)
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Outside Ul ∩ U0, the components of the cocycle (ζ 1κ̃i j ) are equal to Id. Since ψl is in the

G0
Zl

class, ζ 1κ̃l0 is a germ of an automorphism in G0
Z̃

where Z̃ = Z [e
Ti j
ext].

Remark 2.3. The latter argument is the key of the induction, which explains why all our
constructions come with the use of a cross: here Zl plays the role of the forgotten part of
the component D0 in the induction step. The cross implies we can control the cocycles
along Zl when the hypothesis of induction is applied. It ensures that, once the cocycles are
put together as in equation (20), we keep cocycles in the G0

Z̃
class.

Now, the sheaves IZ̃ and M1
Z̃

coincide along the regular part of D̃0. Hence, the

sheaves G1
Z̃

and G0
Z̃

are equal. As a consequence, the 1-cocycle (ζ 1κ̃i j ) is in G1
Z̃

and M̃[ζ 1κ̃i j ] belongs to Glu1(M̃, Z̃ , Ũ). Proposition 2.3 ensures that there exists an

elementary F[e
Ti j
ext]-cobordism between M̃ and M̃[ζ 1κ̃i j ] defined by a 1-cocycle (eT̃i j ) ∈

Z1(Ũ, IZ̃XF [e
Ti j
ext ],Z̃

). From equations (19) and (23), we have N
G0
' M̃[ζ 1κ̃i j ]. Hence, we

obtain a final cobordism between N andM:

N
G0
' M̃[eT̃i j ], M̃

G0
'M[e

Ti j
ext].

Now, if the cobordisms are not elementary, one can suppose them to be decomposed in
sequences of elementary cobordisms of the same length. Indeed, we have

M1 = M1
1

F1
1 ,Z

1
1 //___ M2

1 · · ·Mp−1
1

F p−1
1 ,Z

p−1
1 //___ Mp

1

G0
'N1,

M2 = M1
2

F1
2 ,Z

1
2 //___ M2

2 · · ·Mp−1
2

F p−1
2 ,Z

p−1
2 //___ Mp

2

G0
'N2,

...

MN = M1
N

FN 1,Z1
1 //___ M2

N · · ·Mp−1
N

F p−1
N ,Z

p−1
N //___ Mp

N

G0
'NN ,

where Fk
l and Z k

l , l ≥ 1 naturally refer to the foliations and the crosses induced by the

successive cobordisms. Let (eT k,l
i j ) be the cocycle defining the elementary cobordism

Mk
l

Fk
l ,Z

k
l //___ Mk+1

l , where (T k,l
i j ) belongs to Z1(Uk

l , IZk
l
XF k

l ,Z
k
l
). For 1 ≤ k ≤ p − 2, we

consider the trees Ṁk defined by Ṁ1
=M and

Ṁk+1
= Ṁk

[eT k,l
i j ext]

with

(eT k,l
i j )ext =

{
Id on U k,l

l ∩ U k,l
0 ,

eT k,l
i j elsewhere.

Here, Uk,l refers to the distinguished covering induced by the successive gluings,

Uk+1,l
= Uk,l

[e
T k,l

i j
ext ]. In view of the construction, the previous relations give us a general

F-cobordism between M and Ṁp−1. Moreover, for all l the tree Ṁp−1
l (restriction of

the tree Ṁp−1 over the singularity l) is isomorphic to Mp−1
l and the foliation Ḟ p−1

l
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obtained by successive cobordisms is isomorphic toF p−1
l . Hence, to complete the proof of

Proposition 2.1, one must solve the elementary case from Ṁp−1 to N , which has already
been done.

2.2. The second kind case. In this subsection, we want to extend the Proposition 2.1 to
a bigger and more natural class of foliations than the generalized curves.

A reduced singularity of foliation with a linear part of the form x dy admits a formal
normal form of type [5]

x p+1 dy − y(1 + λx p) dx .

The separatrix x = 0 is called the strong invariant curve. If some singularities of such a
kind appear in the reduction process, most of the previous results are false, except when
these kinds of singularities are in a specific position. The notion of foliation of the second
kind was introduced in [11] to cover that possibility. This class of foliations admits the
same properties as generalized curves and provides an efficient description of local formal
moduli spaces.

Definition 2.4. F is of second kind if:
(1) F is non-dicritical;
(2) each singularity of the divisor is a reduced singularity of the foliation with two non-

vanishing eigenvalues; and
(3) each singularity of the foliation on the regular part of the divisor is either of the above

kind or has x dy for the linear part (in the latter case, one asks the strong invariant
curve to be the germ defined by the divisor).

With obvious notation, we consider the sheaf X̂S,Z over D of germs of formal vector
fields that are tangent to the divisor, the separatrix and the cross. We denote by X̂F ,Z the
subsheaf of vector fields tangent to the foliation and the cross. In [9], one can find the
following criterion for a foliation to be of second kind.

PROPOSITION 2.4. The foliationF is of second kind if and only if the sequence of sheaves

0 −→ X̂F ,Z −→ X̂S,Z
E∗ω(·)
−−−−→ Ô( f ◦ E)−→ 0

is exact.

It is not difficult to see that from the above exact sequence every previous construction
and argument can be repeated in the formal context under the second kind hypothesis.
More precisely, one can obtain the following result.

PROPOSITION 2.5. Let F be a foliation of the second kind on a marked treeM and Z an
adapted cross. Let N be in Glu0(M, Z , U). There exists a finite sequence of 1-cocyles
(T̂ k

i j )k=1...N such that

N
Ĝ0
'M[eT̂ 1

i j ][eT̂ 2
i j ][· · · ][eT̂ N

i j ].†

† Here, the isomorphism is related to the category Ĝlu0(M, Z , U). This notation refers to the same one but in a
convergent context. The transposition to a formal context is easy.
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Here, (T̂ p
i j ) is a 1-cocycle with values in X̂F̂p,Ẑ p

: this is the sheaf over the divisor of the

treeM[eT̂ 1
i j ][eT̂ 2

i j ][· · · ][eT̂ p−1
i j ] whose fiber is the space of the germ of a formal vector field

tangent to the following formal foliation and formal cross:

F̂p = F̂[eT̂ 1
i j ][eT̂ 2

i j ][· · · ][eT̂ p−1
i j ], Ẑ p = Z [eT̂ 1

i j ][eT̂ 2
i j ][· · · ][eT̂ p−1

i j ].

From this formal construction, one can go back to the convergent context using the
following lemma: letM be foliated by a convergent foliation F of the second kind and let
(T̂i j ) be in Z1(U, ÎZ X̂F ,Z ).

LEMMA 2.4. There exists (T c
i j ) ∈ Z1(U, IZXF ,Z ) such thatM[T̂i j ]

Ĝ0
'M[T c

i j ].

Proof. Since F is convergent, there exists a convergent vector field Ti j tangent to the
foliation and a formal series φ̂i j such that T̂i j = φ̂i j Ti j . For any integer n, we consider the
cocyle (T c

i j ) in XF ,Z defined by T c
i j = φn

i j Ti j , where φn
i j refers to a representative function

of the n-jet of φ̂i j . We are going to show that, for n big enough, the gluings associated with
T̂i j and T c

i j are formally equivalent in Ĝlu0(M, Z , U). Let us consider the 1-cocycle

δi j (x, t, s)= (e(t−s)T̂i j ◦ e(s)T
c
i j , t, s).

We construct the equisingular unfolding

MD2 =

⋃
i

Ui × D2/
(x,t,s)∼δi j (x,t,s)

,

which admits a projection MD2
5
−→ D2

. This manifold is the neighborhood of a divisor

DD2 . Thanks to local triviality of the unfolding along Ui × D2
, one can find a family {X i }

of vector fields tangent to the foliation such that in Ui × D2
we have T5(X i )= ∂/∂s. The

1-cocycle (X i − X j ) takes its values in the sheaf overDD of germs of vector fields tangent
to the foliation, vertical—T5(X)= 0—and vanishing at order n along DD. We denote

by X̂D
2

F ,Z ,n the latter sheaf. Since X̂D
2

F ,Z ,1 is coherent, one can find the following property
in [3].

SUB-LEMMA 2.2. For n big enough, the map

H1(X̂D
2

F ,Z ,n)−→ H1(X̂D
2

F ,Z ,1)

is trivial.

Hence, there exists a 0-cocycle (Yi ) in X̂D
2

F ,Z ,1 such that

X i − X j = Yi − Y j .

Therefore, X = X i − Yi is a global formal vector field such that T5(X)= ∂/∂s. The
biholomorphism φ(x, t, s)= (e(s)X (x, t, 0), t, s) formally conjuguates the equisingular
unfoldings MD2 and MD×{0}

× D. By restricting them along the diagonal, one can see

thatM[T̂i j ] andM[T c
i j ] are conjugated. 2

By applying the previous lemma to each elementary cobordism in Proposition 2.5, one
can prove the cobordism result for a foliation of the second kind.
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FIGURE 2. A tree and its dual tree.

PROPOSITION 2.6. Let F be a foliation of the second kind on a marked tree M and Z a
cross adapted to F . Any element in Glu0(M, Z , U) is F-cobordant toM.

3. Existence theorem
In this section, we use Proposition 2.6 to establish the existence theorem. Let F be a
foliation of the second kind on a marked tree (M,D, 6F ) and (M′,D′, 6′) be any
marked tree.

THEOREM 3.1. If the marked weighted dual trees of M and M′ are topologically
equivalent then there exists a foliation F ′ on M′ such that F and F ′ are linked by an
equisingular unfolding, which respects the marking.

We focus on the proof of the above statement.

3.1. First step: cocyle transformation. Since the marked dual trees of M and M′ are
conjugated, one can find in [12] the following result. There exists an equisingular unfolding
ofF , which leads to a foliation defined on a tree with a divisor biholomorphic to the divisor
ofM′. Hence, one can suppose that the divisors D and D′ are isomorphic.

Remark 3.1. One has to notice that the divisor could be isomorphic without the
neighborhoods being the same. For example, consider any treeM topologically equivalent
to the one in Figure 2. If one fixes the position of the four points A, B, C and D on the
projective line of self-intersection −5, there remain eight degrees of freedom to determine
M, which correspond to the four pairs of singular points on the components of self-
intersection −3. Two such trees have isomorphic divisor. Now, let φ be in a germ of
the automorphism of (C2, 0), which leaves invariant the four points A, B, C and D when
lifted up to the first projective line: the first jet of φ is necessarily a homothetie and the
action of the lifting up of φ on any projective line of self-intersection −3 is completely
determined by the second jet of φ. Finally, this provides seven degrees of freedom on φ.
Therefore, there exist trees topologically equivalent toM with isomorphic divisors, which
are not analytically equivalent toM.

Let us denote by h a biholomorphism between the divisors. For each component D of
D, we consider a fibration πD transversal to D

πD : T (D)−→ D
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where T (D) is a fixed tubular neighborhood of D such that the traces of the transversal
components of D are fibers of πD . Such a fibration can be obtained as follows: assume
that the component D appears in the blowing-up process by blowing up a point c. Consider
the radial foliation Rc generated by the vector field x∂x + y∂y where (x, y) are some
adapted coordinates near the point c. The checked fibration is the restriction on T (D)
of the foliation Rc blown up by the remaining blowing-up process. We make the same
construction over the components of D′. An easy computation in coordinates allows us to
show the following lemma.

LEMMA 3.1. There exists a family of maps (HD)D∈Comp(D) such that the following
diagram is commutative

T (D)

πD

��

HD // T (h(D))

πh(D)

��
D

h|D // h(D)

We denote by Comp(D)2̌ the set {(D, D′) ∈ Comp(D)2 | D ∩ D′
6= ∅}. Let us consider

the germ of the manifold defined by

M̃=

∐
D∈Comp(D)

T (D)/(x ∼ HD
−1

◦ HD′ x)
(D,D′)∈Comp(D)2̌ .

One has to notice that the above gluing is different from the gluing introduced in previous
sections. Here, coverings are made of tubular neighborhoods which intersect each other
along polydisks, whereas open sets of distinguished covering are finer and intersect each
other along a torus. Nevertheless, the tree M̃ is a neighborhood of some divisor D̃. The
tree (M̃, D̃, 6̃) is a marked tree conjugated to (M′,D′, 6′); indeed, the family (HD)

induces a biholomorphism adapted to markings.
In order to apply Proposition 2.1, we build a tree Ṁ such that Ṁ verifies the existence

theorem and M̃ belongs to Glu0(Ṁ, Z , U) for a suitable cross and covering.
Let us denote by sDD′ the intersection of D and D′ and let φDD′ := HD

−1
◦ HD′ .

LEMMA 3.2. There exist families (1DD′)
(D,D′)∈Comp(D)2̌ and (φD)D∈Comp(D) of

automorphism germs such that:
• 1DD′ is defined near sDD′ , fixes this point and leaves invariant each local leaf;
• φD is defined along D and fixes each point of D; and
• the germ of automorphism φ−1

D′ ◦1DD′ ◦ φDD′ ◦ φD is tangent to the identity at
sDD′ .

Proof. Let us consider the standard metric d on the dual weighted graph ofM and fix one
vertex D0 ∈ Comp(D). We define the subgraph A∗

n, n ≥ 0 whose vertices are at a distance
smaller than n from D0. The graphs A∗

n are connected and cover the wholeM graph. One
can now consider the restricted family (φn

DD′) defined by

φn
DD′ = φDD′ , DD′ is an edge of A∗

n .

By induction, we establish the result on the subfamily (φn
DD′). For n = 0, the result is

obvious and one can choose for φD0 the identity automorphism. Let us suppose the result
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is true for n: more precisely, we have two families1DD′ and φD as in the lemma such that
for any edge DD′ of A∗

n ,
φ−1

D′ ◦1DD′ ◦ φDD′ ◦ φD

is tangent to the indentity at sDD′ . Let Di D j be an edge of A∗

n+1\A∗
n such that Di is a

vertex of A∗
n and D j a vertex of A∗

n+1. One has to define φD j and 1Di D j in an efficient
way in order to conclude the result. Now, one can easily prove the following general
results.

SUB-LEMMA 3.2.
(1) Let s be a singular point of D and α ∈ C∗. There exists a germ of an automorphism

1 defined near s and leaving invariant each local leaf such that, in adapted
coordinates, the tangent map at s is

Ts1=

(
α 0
0 ∗

)
.

(2) For any β in C∗, any component of D and any c ∈ D, there exists a germ of an
automorphism φ defined in the neighborhood of D fixing each point of D such that,
in adapted coordinates (assuming the second coordinates to be transversal to the
divisor), the tangent map at c is

Tcφ =

(
1 0
0 β

)
.

In adapted coordinates, the tangent map of the automorphism φDi D j ◦ φDi is
(
α 0
0 β

)
.

In view of the previous lemma, there exists a germ of an automorphism 1Di D j defined
near sDi D j , leaving invariant each local leaf and a germ of an automorphism φD j defined
in the neighborhood of D j fixing each point of D j such that

TsDi D j
(1−1

Di D j
◦ φD j )=

(
α 0
0 β

)
.

Then, TsDi D j
(φ−1

D j
◦1Di D j ◦ φDi D j ◦ φDi )= Id. Since the dual tree does not have a cycle,

one can repeat the same construction for all edges of A∗

n+1\A∗
n . Hence, the lemma is

proved for A∗

n+1. 2

3.2. Second step: a fine distinguished covering. With the family {1DD′} of the previous
lemma, one can define

Ṁ=

∐
D∈Comp(D)

T (D)

/
(x ∼1−1

DD′ x).

The tree Ṁ is a neighborhood of some divisor Ḋ. One can find in [1] a precise description
of germs leaving invariant each local leaf of a reduced singularity with two non-vanishing
eigenvalues. These can be written as (x, y) 7→ φ

t (x,y)
X where t (x, y) is a function, X a germ

of a vector field tangent to the foliation and φt
X the flow of X at time t . In particular, this

description ensures that Ṁ admits a foliation Ḟ linked to F by an equisingular unfolding.
Basically, the unfolding exists because there is a suitable isotropy from (x, y) 7→ φ

t (x,y)
X to

the identity defined by (s, x, y) 7→ φ
st (x,y)
X .
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FIGURE 3. Finer distinguished covering.

One notices that we have the isomorphism

M̃'

∐
Ḋ∈Comp(Ḋ)

T (Ḋ)

/
(x ∼1DD′ ◦ φDD′ x).

Let us consider θDD′ := φD′
−1

◦1DD′ ◦ φDD′ ◦ φD . One can see that∐
Ḋ∈Comp(Ḋ)

T (Ḋ)

/
(x ∼ θDD′ x)' M̃.

We shall make a last transformation on θDD′ in order to obtain a cocycle with values in
G0

Z ; the proof of the following result is not difficult.

SUB-LEMMA 3.3. Let θ be a germ of an automorphism tangent to the identity at 0 ∈ C2,
letting the axes {x = 0} and {y = 0} be invariant. The germ θ admits a decomposition of
the form

θ = θ0
◦ θ1, θ0

=

(
x + x2(· · · )

y + xy(· · · )

)
, θ1

=

(
x + xy(· · · )

y + y2(· · · )

)
.

For each D, D′
∈ Comp(D)2̌, we decompose θDD′ in θDD′ = θ0

DD′ ◦ θ1
DD′ . Let

us consider a distinguished covering U = (Ui ) of D finer than the tubular covering
(T (Ḋ))D∈Comp(D) defined by{

UD = T (D)\ {Singular points of D} for D ∈ Comp(D),
UDD′ = T (D) ∩ T (D′) for (D, D′) ∈ Comp(D)2̌.

Using the disjoint union U defined by

U =

∐
D∈Comp(D)

UD

∐
(D,D′)∈Comp(D)2̌

UDD′ × {0}

∐
(D,D′)∈Comp(D)2̌

UDD′ × {1},

we consider the commutative diagram of Figure 3. The two horizontal lines of this diagram
describe two different ways to glue together the open sets of U. The glued manifolds are
both trees equal to

M̃ and Ṁ
[
{θ εDD′}ε = 0, 1

(D, D′) ∈ Comp(D)2̌

]
,
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respectively. Since the diagram commutes, the vertical arrows provide an isomorphism
between them. Let Z be any suitable cross on Ṁ adapted to Ḟ . Since the cocyle
{θ εDD′}ε = 0, 1

(D, D′) ∈ Comp(D)2̌
belongs to G0

Z , the tree M̃ belongs to Glu0(Ṁ, Z , U). In view

of the previous results, M̃ is Ḟ-cobordant to Ṁ. Hence, M′
' M̃ admits a foliation F ′

linked to F by an equisingular unfolding. �

4. Cobordism class
Let F be a non-dicritical generalized curve and S = Sep(F) its separatrix. A foliation F ′

is said to be cobordant to F when there is an equisingular unfolding in the sense of [8] that
links F and F ′. We denote by Cob(F) the set of cobordant foliations. The set E(S) refers
to the equisingularity class of S or, in an equivalent way, the set of curves topologically
conjugated to S.

THEOREM 4.1. The map defined by

F ′
∈ Cob(F) 7−→ Sep(F ′) ∈ E(S)

is onto.

In order to prove the above result, one notices that the existence theorem holds for trees
that may not be the minimal reduction tree of a foliation. This remark leads us to define the
following sequence of blowing-up processes: let (E j ) j=1...h be the blowing-up process of
the reduction of the foliation F (§1.1). We define a sequence of blowing-up processes as
follows.
• Eh = (E j ) j=1...h .
• En+1 is the blowing-up process build over En where Sn and 6n are both the set of

singularities of E∗
nF , where En refers to the total morphism of En (§1.1).

Proof of Theorem 4.1. Let S′ be a curve in the equisingularity class of S. Let E and E ′

refer to the reduction processes of S and S′, respectively. In view of a result in [2], since
F is a generalized curve, E is also the reduction of F . Moreover, according to a result of
Zariski [15], the weighted dual graphs of S and S′ are conjugated. In particular, the points
of attachment of the S and S′ strict transforms are on conjugated components.

Let H be the foliation dh = 0 where h is any reduced equation of S′. For any integer n
bigger than the height of E , we consider the sequence En and E ′

n built as above withF and
H as respective initial data. For every n, the weighted dual trees associated with En and
E ′

n are topologically equivalent. Theorem 3.1 ensures the existence of a foliationFn on the
tree of E ′

n linked to E∗
nF by an equisingular unfolding. Let ξn be the germ of the separatrix

of Fn at 0 ∈ C2. One can see that the points of attachment of the strict transforms by E ′
n

of the curves ξn and S′ are on the same components. Since Fn is cobordant to F , Fn is
topologically equivalent to F . In particular, ξn is topologically equivalent to S′. For n
large enough, the study in [15] ensures that ξn and S′ are in fact analytically conjugated.
The image of Fn by this conjugacy is a holomorphic foliation topologically equivalent to
F admitting S′ for a separatrix.
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(1980), 469–523.
[11] J.-F. Mattei and E. Salem. Modules formels locaux de feuilletages holomorphes. Preprint, 2004.

arXiv:math/0402256.
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