Hostname: page-component-6bf8c574d5-b4m5d Total loading time: 0 Render date: 2025-02-21T03:20:48.915Z Has data issue: false hasContentIssue false

Relativization of complexity and sensitivity

Published online by Cambridge University Press:  11 June 2007

GUOHUA ZHANG
Affiliation:
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China (e-mail: ghzhang@mail.ustc.edu.cn)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

First notions of relative complexity function and relative sensitivity are introduced. It turns out that for any open factor map $\pi: (X, T)\rightarrow (Y, S)$ between topological dynamical systems with minimal $(Y, S),\ \pi$ is positively equicontinuous if and only if the relative complexity function is bounded for each open cover of $X$; and that any non-trivial weakly mixing extension is relatively sensitive. Moreover, a relative version of the notable result that any $M$-system is sensitive if it is not minimal is obtained. Then notions of relative scattering and relative Mycielski's chaos are introduced. A relative disjointness theorem involving relative scattering is given. A relative version of the well-known result that any non-trivial scattering topological dynamical system is Li–Yorke chaotic is proved.

Type
Research Article
Copyright
2007 Cambridge University Press