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Abstract. First notions of relative complexity function and relative sensitivity are
introduced. It turns out that for any open factor map π : (X, T ) → (Y, S) between
topological dynamical systems with minimal (Y, S), π is positively equicontinuous if
and only if the relative complexity function is bounded for each open cover of X; and
that any non-trivial weakly mixing extension is relatively sensitive. Moreover, a relative
version of the notable result that any M-system is sensitive if it is not minimal is obtained.
Then notions of relative scattering and relative Mycielski’s chaos are introduced. A relative
disjointness theorem involving relative scattering is given. A relative version of the well-
known result that any non-trivial scattering topological dynamical system is Li–Yorke
chaotic is proved.

1. Introduction
By a topological dynamical system (TDS) we mean a pair (X, T ), where X is a compact
metric space and T : X → X is a continuous map from X onto X.

Recall that a TDS (X, T ) is positively equicontinuous if the transformation acts
positively equicontinuously on X, that is, for each ε > 0 there exists δ > 0 such that
d(T nx1, T

nx2) < ε if n ∈ Z+ and d(x1, x2) < δ. Positively equicontinuous TDSs can be
characterized using a concept called a complexity function. The complexity function of a
TDS has been studied by many researchers in the past few years: a survey for symbolic
systems was given in [Fe] and it was considered in [BHM] for a general TDS. Let (S, σ )

be a symbolic system and pS(n) its complexity function. Then it is either eventually
constant, or greater than n for all n; the symbolic systems having a bounded complexity
function are exactly the equicontinuous ones. For a general TDS (X, T ), the complexity
function of a cover C (admitting a finite sub-cover) was introduced in [BHM] as the
minimal cardinality of all sub-covers of

∨n−1
i=0 T −iC. They proved that equicontinuous

transformations are exactly those such that any open cover has a bounded complexity
function. In the same paper, the notions of scattering and 2-scattering were introduced.
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It was proved that in the minimal case, the weakly mixing, scattering and 2-scattering
properties are equivalent. In general, scattering evidently implies 2-scattering and whether
the converse holds appeared as an open problem in [BHM]. This question was answered
affirmatively in [HY2] by showing that 2-scattering is equivalent to scattering. Moreover,
the authors of [HY2] generalized the notion of the complexity function along a sub-
sequence of natural numbers, and so using it they could characterize some topological
properties of TDSs, such as mild mixing, strong scattering, scattering and so on.

Even though abundant results have been obtained, the question remains open as to what
extent the result in [BHM] is valid in a more general setting. We investigate this question
and discuss some related topics in the first part of our paper.

Let (X, T ) and (Y, S) be two TDSs. A factor map π : (X, T ) → (Y, S) means a
continuous surjective map satisfying Sπ = πT . In this case, we say that (X, T ) is an
extension of (Y, S), (Y, S) is a factor of (X, T ). If, in addition, it is not one-to-one, then
we say that π is non-trivial. We say that the factor map π is positively equicontinuous or
π is a positively equicontinuous extension if for each ε > 0 there exists δ > 0 such that
d(T nx1, T

nx2) < ε if n ∈ Z+, d(x1, x2) < δ and π(x1) = π(x2).
First we introduce the notion of a relative complexity function for any given factor

map π . We prove that if π is an open factor map between minimal TDSs, then it is
positively equicontinuous if and only if each open cover has a bounded relative complexity
function (Theorem 2.7), and that in the general case the former implies the latter, which
generalizes the result in [BHM]. Moreover, we show that the assumptions of openness and
minimality are necessary. Then, based on the idea of a relative complexity function we
introduce the notions of relative complexity tuples, relative n-scattering (n ∈ N : n ≥ 2)
and relative scattering. We show that if π is an open factor map between minimal invertible
TDSs, then:
(1) the maximal positively equicontinuous factor of π is induced by the set of relative

complexity pairs;
(2) any pair not on the diagonal is a relative complexity pair if and only if it is contained

in the relative regionally proximal relation;
(3) relative scattering implies weak mixing.
We also present a relative disjointness theorem involving relative scattering.

Another area of progress in TDS made in the past few decades is the study of
the chaotic behaviour of a TDS. Since the introduction of the so-called Li–Yorke’s
chaos in 1975 by Li and Yorke [LY], people have paid much attention to it (see, for
example, [AAB, BBCDS, BGKM, GW, HY1, LY]). In [HY1], a long open problem
was solved of whether Devaney’s chaos implies Li–Yorke’s chaos. Another long open
problem was solved in [BGKM] by proving that positive entropy implies Li–Yorke’s
chaos. Just recently, this result was generalized to a more general setting in [Z]; namely,
the author proved that positive conditional topological entropy implies Li–Yorke’s chaos on
fibres. With the help of the well-known Mycielski’s theorem (see [M]) it is not hard to show
that any non-trivial scattering TDS is Li–Yorke chaotic. A very nice explanation of the role
of Cantor and Mycielski sets in topological dynamics is contained in [A]. Moreover, any
minimal TDS is either equicontinuous or sensitive, and any M-system must be sensitive if
it is not minimal (see [GW]).
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Then the other part of our paper focuses on the chaotic behaviour on fibres for a given
factor map between TDSs. Precisely, opposite to positive equicontinuity, we introduce
the concepts of relative sensitivity and relative Mycielski’s chaos (which is a stronger
version of Li–Yorke’s chaos on fibres), and prove that for a factor map between minimal
TDSs it is either relatively sensitive or positively equicontinuous, and that any non-
trivial weakly mixing factor map is relatively sensitive. Related to this, we present a
relative version of Glasner–Weiss’s result (Theorem 5.10). Moreover, we show that with
necessary assumptions, relative 2-scattering implies relative Mycielski’s chaos in many
cases, including any open relatively sensitive factor map between invertible TDSs, any
open non-trivial factor map between minimal invertible TDSs and so on.

The paper is organized as follows. In §2, we first introduce the notion of a relative
complexity function, then, by localizing the concepts of a relative complexity function
and positively equicontinuous extension, we prove that, for an open factor map between
minimal TDSs, it is positively equicontinuous if and only if each open cover has a bounded
relative complexity function. In §3, based on the idea of a relative complexity function, the
notion of relative complexity tuples is given and basic properties are discussed. For an open
factor map between minimal invertible TDSs, the relationship between relative complexity
pairs and the relative regionally proximal relation is interpreted. In §4, we introduce
the notions of relative scattering and relative Mycielski’s chaos, and prove that relative
scattering implies weak mixing if we consider an open factor map between minimal
invertible TDSs. A relative disjointness theorem involving relative scattering is given.
Then, with necessary assumptions, some cases are studied when relative 2-scattering
implies relative Mycielski’s chaos. In §5, we introduce the concept of relative sensitivity
and prove that if π is a factor map between minimal TDSs, then it is either relatively
sensitive or positively equicontinuous. Moreover, we obtain a relative version of the known
Glasner–Weiss’s result.

2. Relative complexity functions and their application to positively equicontinuous
extension

In this section, we first introduce the notion of a relative complexity function. For any
factor map between TDSs we prove that positive equicontinuity implies that each open
cover has a bounded relative complexity function. Then we localize the concepts of a
relative complexity function and positively equicontinuous extension, and prove that, for
an open factor map between minimal TDSs, the factor map is positively equicontinuous if
and only if each open cover has a bounded relative complexity function (Theorem 2.7).

Let π : (X, T ) → (Y, S) be a factor map between TDSs and U a cover of X which
admits a finite sub-cover. For E ⊆ X, set N(U, E) to be the minimum among the
cardinalities of subsets of U which cover E, and let N(U |π) = supy∈Y N(U, π−1(y)).
Put

C(n,U |π) = N

(n−1∨
i=0

T −iU |π
)

(n ∈ N) and C(U |π) = lim
n→∞ C(n,U |π).

We say that C(•,U |π) is the relative complexity function of U with respect to π . We also
regard C(U |π) (it may be infinity) as the relative complexity function. Let U1 and U2 be
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two covers of X admitting finite sub-covers. We say that U1 is finer than U2 (denoted by
U1 � U2 or U2 � U1) if each element of U1 is contained in some element of U2. We have:
(1) C(U2|π) ≤ C(U1|π) if U2 � U1; (2) C(U1 ∨ U2|π) ≤ C(U1|π) + C(U2|π).

It is not hard to obtain the following.

LEMMA 2.1. Let π : (X, T ) → (Y, S) be a factor map between TDSs. If π is positively
equicontinuous, then for any open cover U of X, C(U |π) < ∞.

Proof. Let U be any open cover of X with ε > 0 a Lebesgue number. Then there exists
δ > 0 such that d(T nx1, T

nx2) < ε if n ∈ Z+, d(x1, x2) < δ and π(x1) = π(x2).
Let V = {V1, . . . , Vk} be an open cover of X with diam(Vi) < δ, i = 1, . . . , k. Then for
each y ∈ Y , m ∈ Z+ and i, Vi ∩ π−1(y) ⊆ T −mUi,m,y for some Ui,m,y ∈ U . So

N

(n−1∨
i=0

T −iU, π−1(y)

)
≤ k

for each n ∈ N. That is, C(U |π) ≤ k. This completes the proof. �

In order to study positively equicontinuous extension using a relative complexity
function and obtain the converse of Lemma 2.1 with some necessary assumptions,
we localize the concepts of positive equicontinuity and a relative complexity function.

Definition 2.2. Let π : (X, T ) → (Y, S) be a factor map between TDSs. We say that:
(1) the factor map π is locally positively equicontinuous (LPE) if for each y ∈ Y and

ε > 0 there exists δ = δ(ε, y) > 0 such that d(T nx1, T
nx2) < ε if n ∈ Z+,

d(x1, x2) < δ and x1, x2 ∈ π−1(y);
(2) a point x ∈ X is locally relatively positively equicontinuous (LRPE) (denoted by

x ∈ Elre(X, T |π)) if for each ε > 0 there exists δ > 0 such that d(T nx, T nx ′) < ε

if n ∈ Z+, d(x, x ′) < δ and π(x) = π(x ′).

It is clear that if π is positively equicontinuous then it is LPE, whereas the latter implies
Elre(X, T |π) = X. In fact, we have the following.

PROPOSITION 2.3. Let π : (X, T ) → (Y, S) be a factor map between TDSs. Then π

is LPE if and only if Elre(X, T |π) = X.

Proof. Assume Elre(X, T |π) = X. Let y ∈ Y and ε > 0. For each x ∈ π−1(y) select
δx > 0 such that d(T nx, T nx ′) < ε/2 if n ∈ Z+, d(x, x ′) < δx and x ′ ∈ π−1(y).
Let x1, x2, . . . , xm ∈ π−1(y) (m ∈ N) with

m⋃
i=1

B

(
xi,

δxi

2

)
⊇ π−1(y), where B

(
xi,

δxi

2

)
=

{
x ∈ X : d(xi, x) <

δxi

2

}
.

Put 2δ = min1≤i≤m δxi > 0. If x ′, x ′′ ∈ π−1(y) satisfy d(x ′, x ′′) < δ, then for some i0

we have x ′, x ′′ ∈ B(xi0 , δxi0
), so d(T nx ′, T nx ′′) < ε for all n ∈ Z+. That is, π is LPE. �

The concept of a relative complexity function can be localized as follows.
Let π : (X, T ) → (Y, S) be a factor map between TDSs and U a cover of X which

admits a finite sub-cover. For each point y ∈ Y , the relative complexity function of U with
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respect to π at point y is defined by

C(n,U, y|π) = N

(n−1∨
i=0

T −iU, π−1(y)

)
(n ∈ N)

and C(U, y|π) = lim
n→∞ C(n,U, y|π).

Then, LPE can be characterized as follows.

PROPOSITION 2.4. Let π : (X, T ) → (Y, S) be a factor map between TDSs. Then:
(1) if x /∈ Elre(X, T |π), then there exists an open cover U of X with C(U, π(x)|π) = ∞,

where U consists of the closure of elements of U;
(2) π−1(y) ⊆ Elre(X, T |π) if and only if C(U, y|π) < ∞ for each open cover U of X;
(3) π is LPE if and only if C(U, y|π) < ∞ for each open cover U of X and y ∈ Y .

Proof. (1) Since x /∈ Elre(X, T |π), there exist ε > 0, a sub-sequence {tn}n∈N ⊆ Z+ and
{xn}n∈N ⊆ π−1(πx) such that d(T tnxn, T

tnx) ≥ ε and d(xn, x) < 1/n. Let U be any
open cover of X with diameter at most ε/2. We claim that C(U, π(x)|π) = ∞. Otherwise,
π−1(πx) admits a closed cover α = {X1, . . . , Xm}, where m = C(U, π(x)|π), such that
for each i ∈ {1, . . . ,m},

Xi ⊆
⋂
n≥0

T −nUi,n for some Ui,n ∈ U (n ∈ Z+).

This implies that d(T nx ′, T nx ′′) ≤ ε/2 if n ∈ Z+ and x ′, x ′′ are both in the same Xi .
By choosing a sub-sequence, we may assume that {xn}n∈N ⊆ Xi0 for some i0 ∈
{1, . . . ,m}, then we have x ∈ Xi0 , which contradicts the selection of x and ε.

(2) By part (1), ‘⇐’ is obvious. Now let us turn to the proof of ‘⇒’.
Let ε > 0 be a Lebesgue number of the cover U . Since π−1(y) ⊆ Elre(X, T |π),

proceeding in the same way as in the proof of Proposition 2.3 there exists δ > 0
such that d(T nx1, T

nx2) < ε if n ∈ Z+, d(x1, x2) < δ and π(x1) = π(x2) = y.
Let V = {V1, . . . , Vk} be any open cover of X with diam(Vi) < δ, i = 1, . . . , k. Then for
each i,

Vi ∩ π−1(y) ⊆
⋂
n≥0

T −nUi,n for some Ui,n ∈ U (n ∈ Z+),

which implies C(U, y|π) ≤ k. This finishes the proof of part (2).
(3) This follows directly from Proposition 2.3 and part (2). �

The variational relation between a relative complexity function and its localization is
interpreted in Lemma 2.6. The easy part is

sup
y∈Y

C(n,U, y|π) = C(n,U |π) and sup
y∈Y

C(U, y|π) = C(U |π).

Before giving the more difficult part, we need to recall some definitions.
Let f : Y → R be a mapping (function) from the topological space Y to the space R of

a real line. We say that the function f is:
(1) upper-semicontinuous if f −1((−∞, t)) is open in Y for all t ∈ R;
(2) lower-semicontinuous if f −1((t,∞)) is open in Y for all t ∈ R.
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Then f is continuous if and only if f is not only upper-semicontinuous but also
lower-semicontinuous. The following lemma was given long ago; see, for example,
[Fu, Lemma 1.28].

LEMMA 2.5. Let f :Y → R be an upper-semicontinuous (respectively, lower-semi-
continuous) function, where Y is a compact metric space. Then the points of discontinuity
lie in the union of countably many closed nowhere dense subsets. In particular, the set of
continuous points forms a dense Gδ subset of Y , and so it is not empty.

Recall that TDS (X, T ) is transitive if for each pair of non-empty open subsets U and V ,
the set of return times N(U,V ) = {n ∈ Z+ : U ∩ T −nV �= ∅} is non-empty; it is
weakly mixing if (X × X,T × T ) is transitive. x ∈ X is a transitive point (denoted by
x ∈ Tran(X, T )) if the orbit orb(x, T ) = {x, T x, T 2x, . . . } is dense in the space X. It is
well known that (X, T ) is transitive if and only if Tran(X, T ) forms a dense Gδ subset of X.
If Tran(X, T ) = X we say that (X, T ) is minimal. Then (X, T ) is minimal if and only if
for each non-empty open subset U of X there exists N ∈ N such that

⋃N
n=0 T −nU = X.

For any minimal sub-system (X0, T ) each point of X0 is called a minimal point or almost
periodic point, denote by AP(X, T ) the set of minimal points.

Let π : (X, T ) → (Y, S) be a factor map between TDSs. We say that π is open
(respectively semi-open) if π(U) is open (respectively π(U) has a non-empty interior in Y )
for each non-empty open subset U of X. Then we have the following.

LEMMA 2.6. Let π : (X, T ) → (Y, S) be an open factor map between TDSs with (Y, S)

minimal. Then π is positively equicontinuous if and only if π is LPE.

Proof. It is sufficient to prove that π is positively equicontinuous if π is LPE. Let dX and
dY be the metrics on X and Y , respectively.

Let ε > 0 be fixed. Define a function f : Y → R
+, R

+ = [0,∞), as follows:

f (y) = sup

{
δ > 0 : sup

n∈Z+
dX(T nx1, T

nx2) ≤ ε

2
if dX(x1, x2) < δ and x1, x2 ∈ π−1(y)

}
.

Since π is LPE, such an f is well defined and f (y) > 0 for each y ∈ Y . Moreover,
supn∈Z+ dX(T nx1, T nx2) ≤ ε/2 if dX(x1, x2) ≤ f (y) and x1, x2 ∈ π−1(y). Let δ0 > 0
and y0 ∈ Y with f (y0) < δ0. Then there exist x1,0, x2,0 ∈ π−1(y0) such that
dX(x1,0, x2,0) < δ0, whereas dX(T n′

x1,0, T
n′

x2,0) > ε/2 for some n′ ∈ Z+. Let U1

(respectively U2) be an open neighbourhood of x1,0 (respectively x2,0) with

U1∩U2 = ∅, dX(x∗
1 , x∗

2 ) < δ0 and dX(T n′
x∗

1 , T n′
x∗

2 ) >
ε

2
if x∗

1 ∈ U1, x∗
2 ∈ U2.

As π is open, V
.= π(U1) ∩ π(U2) � y0 is an open subset of Y . It is not hard to conclude

that f −1((0, δ0)) ⊃ V , and so the function f : Y → R
+ is upper-semicontinuous.

By Lemma 2.5, choose y0 ∈ Y a continuous point of the function f and let 0 < 2γ0 ≤
min{ε, f (y0)} such that f −1((f (y0)/2,∞)) ⊇ BY (y0, γ0) = {y ∈ Y : dY (y, y0) < γ0}.
As (Y, S) is minimal, there exists N ∈ N such that

⋃N
i=0 S−iBY (y0, γ0) = Y . For such N

select l0 > 0 with dX(T ix1, T
ix2) ≤ γ0 if i = 0, 1, . . . , N and dX(x1, x2) < l0. Now if

x1, x2 ∈ X satisfy π(x1) = π(x2) and dX(x1, x2) < l0, then:
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(1) dX(T ix1, T
ix2) ≤ γ0 ≤ min{ε, f (y0)}/2 if i = 0, 1, . . . , N ;

(2) y∗ = Si0π(x1) ∈BY (y0, γ0) (and so f (y∗) >f (y0)/2) for some i0 ∈ {0, 1, . . . , N}.
Note that T i0x1, T

i0x2 ∈ π−1(y∗), by (1), dX(T i0x1, T
i0x2) ≤ f (y0)/2 < f (y∗) and so

sup
n∈Z+

dX(T nT i0x1, T
nT i0x2) ≤ ε

2
, i.e. sup

n≥i0

dX(T nx1, T
nx2) ≤ ε

2
.

Combining with (1) again, we have

sup
n≥0

dX(T nx1, T
nx2) ≤ ε

2
< ε.

i.e. π is positively equicontinuous. This completes the proof. �

The main result of this section is stated as follows, which appears as a direct corollary
of Lemma 2.1, Proposition 2.4 and Lemma 2.6 (see [BHM] for the absolute case).

THEOREM 2.7. Let π : (X, T ) → (Y, S) be an open factor map between TDSs with (Y, S)

minimal. Then the following statements are equivalent:
(1) π is positively equicontinuous;
(2) C(U |π) < ∞ for each open cover U of X;
(3) C(U, y|π) < ∞ for each open cover U of X and y ∈ Y ;
(4) π is LPE;
(5) Elre(X, T |π) = X.

It is not hard to show that the assumption of ‘(Y, S) is minimal’ is necessary in the
above theorem, even if the systems considered are both invertible. For example, put
X = {(x, 0) : 0 ≤ x ≤ 1} ∪ {(x, x) : 0 ≤ x ≤ 1} and Y = {(x, 0) : 0 ≤ x ≤ 1}, inheriting
the metrics from the real plane R

2. The transformations T : X → X and S : Y → Y are
given by T (x, 0) = (x1/2, 0), T (x, x) = (x1/2, x1/2) and S(x, 0) = (x1/2, 0). The factor
map π : (X, T ) → (Y, S) is defined as π(x, 0) = (x, 0) and π(x, x) = (x, 0). Clearly
π is open. Meanwhile, π−1(y) contains at most two points of X for any y ∈ Y , which
implies that for each given open cover of X the relative complexity function is at most 2, so
all items of the theorem hold for π except item (1). However, obviously, the extension π is
not positively equicontinuous. Note that the system (Y, S) in the example is not transitive,
so we have the following.

Question 2.8. Is there an open factor map π : (X, T ) → (Y, S) between TDSs with
(Y, S) transitive such that Theorem 2.7(2)–(5) hold for π , whereas, π is not positively
equicontinuous?

In fact, the assumption of ‘π is open’ is also essential, and we can find a factor map
between minimal invertible TDSs (hence, it is semi-open, see [Au]) which is not positively
equicontinuous. Let us recall the simple example that appeared as Example 6.5 in [Go].
Let α ∈ [0, 1] be irrational. Set A0 = {e2πiθ : 0 ≤ θ ≤ 1

2 } and A1 = {e2πiθ : 1
2 ≤ θ ≤ 1}.

Define X = {
x = (xr)r∈Z ∈ {0, 1}Z : ⋂

r∈Z e2πirαAxr �= ∅}
. Then ∅ �= X ⊆ {0, 1}Z is

closed and (X, T ) forms a minimal invertible TDS where T is given by (T x)n = xn+1 for
each n ∈ Z. Now let the minimal invertible TDS (Y, S) be the irrational rotation on the
unit circle in the complex plan with Sy = e2πiαy. The factor map π : (X, T ) → (Y, S)
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is defined as π(x) = ⋂
r∈Z e2πirαAxr (it is well defined). It is not hard to check that there

exists a countable subset Y0 ⊆ Y such that π−1(y) is a singleton if y ∈ Y \ Y0 and π−1(y)

contains exactly two points if y ∈ Y0, whereas π is not positively equicontinuous.

3. Relative complexity tuples
In this section, based on the idea of a relative complexity function we introduce the
notion of relative complexity tuples and prove that for an open factor map π between
minimal TDSs, the maximal relative positively equicontinuous factor of π is induced by
the set of relative complexity pairs. Moreover, after recalling the nth relative regionally
proximal relation (n ∈ N : n ≥ 2) we show that, for any open factor map between minimal
invertible TDSs, the nth relative regionally proximal relation is identical with the union of
the nth diagonal and the set of relative complexity n-tuples.

Let us first start with the definition of relative complexity tuples. Let π : (X, T ) →
(Y, S) be a factor map between TDSs and n ∈ N : n ≥ 2. Set R

(n)
π = {(xi)

n
1 ∈ X(n) :

π(x1) = · · · = π(xn)} and �n(X) = {(xi)
n
1 ∈ X(n) : x1 = · · · = xn}, the nth diagonal.

Definition 3.1. Let π : (X, T ) → (Y, S) be a factor map between TDSs. We say
that (xi)

n
1 /∈ �n(X) is a complexity n-tuple with respect to π (denoted by (xi)

n
1 ∈

Comn(X, T |π)) if C({Uc
1 , . . . , Uc

n}|π) = ∞ when Ui is a closed neighbourhood of xi

with Ui ∩ Uj = ∅ if xi �= xj and Ui = Uj if xi = xj , 1 ≤ i, j ≤ n.

It is not hard to obtain Comn(X, T |π) ⊆ R
(n)
π \�n(X). Thus, we have (following [B2])

the following proposition.

PROPOSITION 3.2. Let π : (X, T ) → (Y, S) be a factor map between TDSs.
(1) If V is an open cover of X with C(V|π) = ∞, then there exists an open cover

U = {U1, U2} of X such that C(U |π) = ∞.
(2) If there is an open cover U = {U1, . . . , Un} of X with C(U |π) = ∞, then there exists

xi ∈ Uc
i (i = 1, . . . , n) such that (xi)

n
1 ∈ Comn(X, T |π).

(3) Comn(X, T |π) ∪ �n(X) is a closed, positively T (n)-invariant subset of X(n),
i.e. T (n)(Comn(X, T |π)) ⊆ Comn(X, T |π) ∪ �n(X).

(4) Let π ′ : (Y, S) → (Z,R) be a factor map between TDSs. Then:
(i) Comn(Y, S|π ′) ⊆ π ×· · ·×π(Comn(X, T |π ′π)) ⊆ Comn(Y, S|π ′)∪�n(Y );
(ii) Comn(X, T |π) ⊆ Comn(X, T |π ′π).

Let π : (X, T ) → (Y, S), π1 : (X, T ) → (Z,R) and π2 : (Z,R) → (Y, S) be
factor maps between TDSs with π = π2π1. In this case, we say that (Z,R) is a factor
of π . If π2 is non-trivial, then we say that the factor (Z,R) is non-trivial. If π2 is
positively equicontinuous, then we say that (Z,R) is a positively equicontinuous factor
of π . Note that if π is open then π2 is also open, as π2(W) = π(π−1

1 W) is an open subset
of Y for each open subset W of Z. Then by Lemma 2.1, Theorem 2.7 and Proposition 3.2
we have the following.

COROLLARY 3.3. Let π : (X, T ) → (Y, S) be a factor map between TDSs.
(1) If π is positively equicontinuous, then Com2(X, T |π) = ∅.
(2) Suppose that π is open and (Y, S) is minimal. Then:
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(i) π is positively equicontinuous if and only if Com2(X, T |π) = ∅;
(ii) the maximal positively equicontinuous factor of π is induced by the closed

positively invariant equivalence relation generated by Com2(X, T |π).

Let π : (X, T ) → (Y, S) be a factor map between invertible TDSs. Recall that π is
equicontinuous if for each ε > 0 there exists δ > 0 such that d(T nx1, T

nx2) < ε if n ∈ Z,
d(x1, x2) < δ and π(x1) = π(x2). Let π−1 : (X, T −1) → (Y, S−1) be the factor map
induced by π . One has Comn(X, T |π) = Comn(X, T −1|π−1), as

N

(m−1∨
i=0

T −iU |π
)

= sup
y∈Y

N

(m−1∨
i=0

T −iU, π−1(S1−my)

)
= N

(m−1∨
i=0

T iU |π−1

)

for each m ∈ N and any cover U of X admitting a finite sub-cover. So by Proposition 3.2
the subset Comn(X, T |π) is T (n)-invariant, i.e. T (n)(Comn(X, T |π)) = Comn(X, T |π).
Letting n = 2 we have the following easy fact.

COROLLARY 3.4. Let π : (X, T ) → (Y, S) be an open factor map between
invertible TDSs with (Y, S) minimal. Then π is equicontinuous if and only if π is positively
equicontinuous.

Let π : (X, T ) → (Y, S) be a factor map between TDSs. Recall that π is weakly mixing
of order n (n ∈ N : n ≥ 2) if the TDS (R

(n)
π , T (n)) is transitive; when n = 2 we say that π

is weakly mixing; and that π is weakly mixing of all orders if (R
(n)
π , T (n)) is transitive for

each n ≥ 2. Then we have (see [BHM] for the absolute case) the following.

PROPOSITION 3.5. Let π : (X, T ) → (Y, S) be a factor map between TDSs. If π is
weakly mixing of all orders, then Comn(X, T |π) = R

(n)
π \ �n(X) for each n ∈ N : n ≥ 2.

Proof. For the proof it remains to show that (xi)
n
1 ∈ Comn(X, T |π) for each (xi)

n
1 ∈ R

(n)
π

(n ∈ N : n ≥ 2) with xi �= xj if i �= j . Fix such a tuple (xi)
n
1. To complete the proof, we

show that if U1, . . . , Un are n pairwise disjoint open neighbourhoods of x1, . . . , xn then
C(U |π) = ∞ by constructing inductively {t1 < t2 < · · · } ⊆ Z+ and {ym : m ∈ N} ⊆ Y

with C(tm + 1,U, ym|π) ≥ (n/(n − 1))m, where U = {Uc
1 , . . . , Uc

n}. In fact, we claim the
following.

CLAIM. There exist {t1 < t2 < · · · } ⊆ Z+ and {ym : m ∈ N} ⊆ Y such that if m ∈ N and
s

.= (s(i))m1 ∈ {1, . . . , n}m, then π−1(ym) ∩ ⋂m
i=1 T −tiUs(i) �= ∅.

Proof. Set t1 = 0 and y1 = π(x1). Clearly xi ∈ π−1(y1) ∩ Ui �= ∅, 1 ≤ i ≤ n.
Now assume that t1 < · · · < tk and yk satisfying the claim are constructed. Then

W1
.=

∏
s∈{1,...,n}k

( n∏
j=1

k⋂
i=1

T −tiUs(i)

)
∩ R(nnk

)
π and W2

.=
∏

s∈{1,...,n}k

( n∏
j=1

Uj

)
∩ R(nnk

)
π

are both non-empty open subsets of R
(nnk

)
π . Since π is weakly mixing of all orders, the TDS

(R
(nnk

)
π , T (nnk

)) is transitive. Say (zp)n
nk

1 ∈ W1 ∩ Tran(R
(nnk

)
π , T (nnk

)), then there exists
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tk+1 > tk such that (T tk+1zp)n
nk

1 ∈ W2. Let yk+1 = π(z1). It is easy to check that

π−1(yk+1) ∩
k⋂

i=1

T −tiUs(i) ∩ T −tk+1Uj �= ∅

for each s ∈ {1, . . . , n}k and j ∈ {1, . . . , n}. �

Let {t1 < t2 < · · · } ⊆ Z+ and {ym : m ∈ N} ⊆ Y be constructed as in the
claim. Fix m ∈ N. For each s ∈ {1, . . . , n}m, say xs ∈ π−1(ym) ∩ ⋂m

i=1 T −tiUs(i).
Let Xm = {xs : s ∈ {1, . . . , n}m} ⊆ π−1(ym). Obviously, #(Xm) = nm, where
#(Xm) is the cardinality of the set Xm. Note that, each element of

∨m
i=1 T −tiU , say⋂m

i=1 T −ti Uc
r(i), contains just (n − 1)m points in Xm, {xs : s ∈ {1, . . . , n}m satisfies

s(1) �= r(1), . . . , s(m) �= r(m)}. This implies N
( ∨m

i=1 T −tiU, π−1(ym)
) ≥ (n/(n−1))m.

Then

C(tm + 1,U, ym|π) = N

( tm∨
i=0

T −iU, π−1(ym)

)
≥ N

( m∨
i=1

T −tiU, π−1(ym)

)

≥
(

n

n − 1

)m

. �

Let π : (X, T ) → (Y, S) be an open factor map between TDSs with π weakly
mixing. We do not know whether Com2(X, T |π) = R

(2)
π \ �2(X); at least the proof

of Proposition 3.5 does not work. However, if (X, T ) and (Y, S) are both minimal
invertible TDSs, we can answer it positively. Before proceeding, we need a general version
of the well-known Kuratowski–Ulam theorem (an example of the usual version is given
in [O, Theorem 15.1, p. 56]).

LEMMA 3.6. Let π : X → Y be an open continuous map between topological spaces,
where X has a countable basis.
(1) Suppose that E ⊆ X is closed with E◦ = ∅, where E◦ denotes the interior of E

in X. Then there exists V ⊆ Y such that:
(i) V contains the intersection of a countable dense open subsets of Y;
(ii) E ∩ π−1(y) has an empty interior in π−1(y) for each y ∈ V .

(2) Suppose that E ⊆ X is a set of first category and Y is a complete metric space.
Then there exists a dense Gδ subset V of Y such that E ∩ π−1(y) is a subset of first
category in π−1(y) for each y ∈ V .

Proof. For the proof it is sufficient to prove part (1).
Let {Vn}n∈N be a countable basis of X. Let y ∈ Y . Obviously, E ∩ π−1(y) has a non-

empty interior in π−1(y) if and only if there exists n ∈ N such that E ⊇ Vn ∩π−1(y) �= ∅.
Set

Wn = (π(Vn))
c ∪ {y ∈ Y : Vn ∩ π−1(y) \ E �= ∅} = (π(Vn))

c ∪ π(Vn \ E).

Denote by V the set of points y ∈ Y such that E∩π−1(y) has an empty interior in π−1(y).
Then we have V = ⋂

n∈NWn. To finish the proof, it suffices to show that Wn contains a
dense open subset of Y for any fixed n ∈ N.
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Clearly, Wn is dense in Y . Otherwise, there exists a non-empty open subset U ⊆ π(Vn)

such that Vn ∩ π−1(y) \ E = ∅ for each y ∈ U , which implies E ⊇ Vn ∩ π−1(U) �= ∅,
a contradiction to the assumption of ‘E◦ = ∅’. Since π is open, (π(Vn))

c ⊆ Y is
closed, π(Vn \ E) and π(Vn) are both open. Then it is not hard to check that Wn

contains a dense open subset of Y . In fact, as Wn is dense in Y , π(Vn \ E) ⊇ π(Vn),
so π(Vn \ E) = π(Vn) = X \ [(π(Vn))

c]◦, i.e. [(π(Vn))
c]◦ ∪ π(Vn \ E) ⊆ Wn is a dense

open subset. This completes the proof. �

Let π : (X, T ) → (Y, S) be a factor map between TDSs and n ∈ N : n ≥ 2.
Recall that the nth relative regionally proximal relation RPn(X, T |π) ⊆ R

(n)
π is introduced

as: (xi)
n
1 ∈ RPn(X, T |π) if and only if, for all ε > 0 and all Uxi ∈ Vxi , i = 1, . . . , n,

∃(x ′
i )

n
1 ∈ R(n)

π ∩
n∏

i=1

Uxi and m ∈ Z+ with max
1≤i<j≤n

d(T mx ′
i , T

mx ′
j ) ≤ ε,

where Vxi denotes the set of neighbourhoods of xi (i = 1, . . . , n).

PROPOSITION 3.7. Let π : (X, T ) → (Y, S) be an open factor map between minimal
invertible TDSs and n ∈ N : n ≥ 2. Then:
(1) RPn(X, T |π) ⊆ Comn(X, T |π) ∪ �n(X);
(2) if π is weakly mixing of order n, then Comn(X, T |π) = R

(n)
π \ �n(X).

Proof. It is not hard to obtain that RPn(X, T |π) = R
(n)
π if π is weakly mixing of order n

by selecting a transitive point of (R
(n)
π , T (n)) in each

∏n
i=1 Uxi . Then part (2) follows from

part (1). Now we aim to prove part (1).
Assume the contrary. Let (xi)

n
1 ∈ RPn(X, T |π) \ (Comn(X, T |π) ∪ �n(X)).

As (xi)
n
1 /∈ Comn(X, T |π) = Comn(X, T −1|π−1), we can select open subsets Ui � xi

(i = 1, . . . , n) such that Ui ∩ Uj = ∅ if xi �= xj , Ui = Uj if xi = xj and C(U |π−1)

is finite, where U = {Uc
1 , . . . , Uc

n}. Then it is not hard to see that for each y ∈ Y ,
π−1(y) admits a closed cover W(y) ⊆ ∨

m≥0 T mU with cardinality at most C(U |π−1).
Say W(y) ∈ W(y) ∩ π−1(y) has a non-empty interior in π−1(y).

Denote by Sn the collection of all permutations for {1, . . . , n}. Set

Cπ =
⋂
m≥0

(T (n))m
( n⋃

i=1

n∏
j=1

Uc
i

)
∩ R(n)

π , and

Pπ =
⋃
m≥0

(T (n))m
( ⋃

(s(1),...,s(n))∈Sn

n∏
i=1

Us(i)

)
∩ R(n)

π .

Then we have:
(1) Cπ ∩ Pπ = ∅, by the definitions of Cπ and Pπ ;
(2) Cπ ⊆ R

(n)
π is closed and

⋃
y∈Y

∏n
j=1 W(y) ⊆ Cπ ;

(3) �n(X) is contained in the closure of Pπ in R
(n)
π , as (xi)

n
1 ∈ RPn(X, T |π) and (X, T )

is minimal.
Let πn : (R

(n)
π , T (n)) → (Y, S) be the factor map determined by π . Then πn

is open, as π is open. Let int(Cπ ) be the interior of Cπ in R
(n)
π . Now applying

Lemma 3.6 to Cπ \ int(Cπ) one has that there exists a dense Gδ subset Y0 of Y such
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that Cπ \ int(Cπ ) ∩ ∏n
j=1 π−1(y) has an empty interior in

∏n
j=1 π−1(y) for each y ∈ Y0,

as π−1
n (y) = ∏n

j=1 π−1(y).

Let y ∈ Y0. Since
∏n

j=1 W(y) has a non-empty interior in
∏n

j=1 π−1(y), write it as
int

( ∏n
j=1 W(y)

)
( �= ∅). By the above discussion we have

⋃
y∈Y0

int

( n∏
j=1

W(y)

)
⊆ int(Cπ ). (3.1)

Obviously int
(∏n

j=1 W(y)
) ∩ �n(X) �= ∅, this implies int(Cπ ) ∩ �n(X) �= ∅. Thus,

Cπ ∩ Pπ ⊇ int(Cπ) ∩ Pπ �= ∅ (by (3)),

a contradiction to (1). This means RPn(X, T |π) ⊆ Comn(X, T |π) ∪ �n(X). �

LEMMA 3.8. Let π : (X, T ) → (Y, S) be a factor map between invertible TDSs and
n ∈ N : n ≥ 2. Then Comn(X, T |π) ⊆ RPn(X, T −1|π−1).

Proof. The proof follows the idea of [BHM, Proposition 5.8].

Let (xi)
n
1 ∈ R

(n)
π \ RPn(X, T −1|π−1). Then there exist a closed neighbourhood Uxi of

xi (i = 1, . . . , n) with Uxi ∩ Uxj = ∅ if xi �= xj , Uxi = Uxj if xi = xj , and ε > 0 such

that if (x ′
i)

n
1 ∈ ∏n

i=1 Uxi ∩ R
(n)
π and m ∈ Z+, then max1≤i<j≤n d(T −mx ′

i , T
−mx ′

j ) > ε.
Let {B1, . . . , Bk} be a closed cover of X with: (1) diam(Bi) ≤ ε/2 and B◦

i �= ∅
(i = 1, . . . , k); (2) xi ∈ B◦

i ⊆ Bi ⊆ Uxi , i = 1, . . . , n. Let y ∈ Y and m ∈ Z+.
We claim that

∀j ∈ {1, . . . , k}, ∃ij ∈ {1, . . . , n} such that Bj ∩ π−1(y) ⊆ T −m(Bc
ij
). (3.2)

Otherwise, we can select (x ′′
i )n1 ∈ ∏n

i=1(T
m(Bj ) ∩ Bi ∩ π−1(T my)) ⊆ ∏n

i=1 Uxi ∩ R
(n)
π .

So max1≤i<l≤n d(T −mx ′′
i , T −mx ′′

l ) > ε, a contradiction to diam(Bj ) ≤ ε/2.

Now set V = {Bc
1 , . . . , Bc

n} to be an open cover of X. By (3.2), C(m,V, y|π) ≤ k for
each y ∈ Y and m ∈ Z+, so C(V|π) ≤ k, which implies (xi)

n
1 /∈ Comn(X, T |π). �

As a corollary of Proposition 3.7 and Lemma 3.8 we have (see [BHM] for the absolute
case) the following.

THEOREM 3.9. Let π : (X, T ) → (Y, S) be an open factor map between minimal
invertible TDSs. Then RPn(X, T |π) = RPn(X, T −1|π−1) = Comn(X, T |π) ∪ �n(X).

Proof. As Comn(X, T |π) = Comn(X, T −1|π−1), then we have

RPn(X, T |π) ⊆ Comn(X, T |π) ∪ �n(X) (by Proposition 3.7)

= Comn(X, T −1|π−1) ∪ �n(X)

⊆ RPn(X, T |π) (by Lemma 3.8).

Note that if (X, T ) is minimal, then so is (X, T −1). So a similar discussion works for
RPn(X, T −1|π−1). This finishes the proof. �
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4. Relative scattering
In this section, first we introduce the notions of relative n-scattering (n ∈ N : n ≥ 2) and
relative scattering. We show that any relative scattering open factor map is weakly mixing
if we consider minimal invertible TDSs. A relative disjointness theorem involving relative
scattering is given. Then after introducing relative Mycielski’s chaos (a stronger version of
Li–Yorke’s chaos on fibres) we generalize the result that any non-trivial scattering TDS is
Li–Yorke chaotic.

First, let us define relative n-scattering and relative scattering.

Definition 4.1. Let π : (X, T ) → (Y, S) be a non-trivial factor map between TDSs.
(1) Let n ∈ N : n ≥ 2. We say that π has relative n-scattering or (X, T ) has relative

n-scattering with respect to (Y, S) if Comn(X, T |π) = R
(n)
π \ �n(X).

(2) We say that π has relative scattering or (X, T ) has relative scattering with respect
to (Y, S) if for each n ∈ N : n ≥ 2, Comn(X, T |π) = R

(n)
π \ �n(X).

As a direct corollary of Proposition 3.2, by definition we have the following.

PROPOSITION 4.2. Let π : (X, T ) → (Y, S) be a non-trivial factor map between TDSs
and n ∈ N : n ≥ 2. Suppose that π has relative n-scattering. Then we have the following.
(1) If k ∈ N with n ≥ k ≥ 2 then π has relative k-scattering.
(2) Let (Z,R) be a non-trivial factor of π . Then:

(i) (Z,R) has relative n-scattering with respect to (Y, S);
(ii) if π has relative scattering, then (Z,R) has relative scattering with respect

to (Y, S).

Let π : (X, T ) → (Y, S) be a factor map between invertible TDSs. Recall that we say
that (x1, x2) ∈ X(2) is a:
(1) proximal pair (denoted by (x1, x2) ∈ P(X, T )) if there exists {ni}∞1 ⊆ Z such that

|ni | → ∞ and d(T ni x1, T ni x2) → 0 as i → ∞;
(2) proximal pair for T (denoted by (x1, x2) ∈ PT (X, T )) if there exists {ni}∞1 ⊆ Z+

such that ni → ∞ and d(T ni x1, T ni x2) → 0 as i → ∞;
(3) proximal pair for T −1 (denoted by (x1, x2) ∈ PT −1(X, T )) if there exists {ni}∞1 ⊆

Z+ such that ni → ∞ and d(T −ni x1, T −ni x2) → 0 as i → ∞.
It is clear that P(X, T ) = PT (X, T ) ∪ PT −1(X, T ). Then by Lemma 3.8 we have the
following.

PROPOSITION 4.3. Let π : (X, T ) → (Y, S) be a non-trivial factor map between
invertible TDSs. Suppose that π has relative 2-scattering. Then all of P(X, T ) ∩ R

(2)
π ,

PT (X, T ) ∩ R
(2)
π and PT −1(X, T ) ∩ R

(2)
π are dense Gδ subsets of R

(2)
π .

Proof. As Com2(X, T −1|π−1) = Com2(X, T |π) = R
(2)
π \ �2(X), using Lemma 3.8

we have RP2(X, T |π) = RP2(X, T −1|π−1) = R
(2)
π . Note that PT (X, T ) ∩ R

(2)
π =⋂

m∈N R
(2)
π (m) and RP2(X, T |π) = ⋂

m∈N R
(2)
π (m), where

R(2)
π (m) =

⋃
n∈Z+

T −n × T −n

{
(x1, x2) ∈ R(2)

π : d(x1, x2) <
1

m

}
.
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Then R
(2)
π (m) ⊆ R

(2)
π forms a dense open subset (for all m ∈ N), so PT (X, T ) ∩ R

(2)
π

is a dense Gδ subset of R
(2)
π . The same reasoning works for P(X, T ) ∩ R

(2)
π and

PT −1(X, T ) ∩ R
(2)
π . �

Using Theorem 3.9 we obtain (see [BHM] for the absolute case) the following.

THEOREM 4.4. Let πX : (X, T ) → (Y, S) and πZ : (Z,R) → (Y, S) be two factor maps
between minimal invertible TDSs with πX open. Suppose that πX has relative scattering.
Then TDS (πX,Z, T × R) is transitive, where πX,Z = {(x, z) ∈ X × Z : πX(x) = πZ(z)}.
In particular, πX is weakly mixing.

Proof. The proof follows the idea of [G2, Theorem 6.3].
For each n ∈ N : n ≥ 2, set

P (n)
πX

=
⋂{⋃

m≥0

(T (n))−mV : V is a neighbourhood of �n(X) in R(n)
πX

}
.

As πX has relative scattering, RPn(X, T |πX) = R
(n)
πX

(by Theorem 3.9), using similar
discussions as in the proof of Proposition 4.3 it is not hard to show that P

(n)
πX

forms a dense
Gδ subset of R

(n)
πX

. Since πX is open, applying Lemma 3.6 to R
(n)
πX

\ P
(n)
πX

, there exists a
dense Gδ subset Yn of Y such that for each y ∈ Yn, P

(n)
πX

∩ ∏n
j=1 π−1(y) is a dense Gδ

subset of
∏n

j=1 π−1(y). Now put Y ∗ = ⋂
n≥2 Yn. Then Y ∗ is a dense Gδ subset of Y .

Now let W ⊆ πX,Z be a positively T × R-invariant subset with a non-empty interior in
πX,Z. To complete the proof it suffices to show that W = πX,Z. Let UX (respectively UZ)
be an open subset of X (respectively Y ) such that ∅ �= (UX × UZ) ∩ πX,Z ⊆ W . As πX

is open and (Z,R) is minimal (so πZ is semi-open), without loss of generality we assume
that πX(UX) = πZ(UZ). Otherwise, replace UX (respectively UZ) by UX ∩ π−1

X (UY )

(respectively UZ ∩π−1
Z (UY )), where UY is the interior of πZ(UZ ∩π−1

Z (πXUX)) in Y (it is
not hard to check that πX(UX ∩ π−1

X (UY )) = πZ(UZ ∩ π−1
Z (UY )) �= ∅).

As πX is open and Y ∗ ⊆ Y is dense, there exists y ∈ Y ∗ such that y ∈ πX(UX).
Since (Z,R) is minimal, there exist 1 ≤ i1 < · · · < im such that

m⋃
j=1

R−ij UZ ⊇ π−1
Z (y) and π−1

Z (y) ∩ R−ij UZ �= ∅, j = 1, . . . ,m.

Moreover, Wm = ∏m
j=1 T −ij UX ∩ ∏m

j=1 π−1
X (y) �= ∅, as πX(UX) = πZ(UZ). Then by

the construction of Y ∗, there exists (x1, . . . , xm) ∈ Wm ∩ P
(m)
πX

, and so for some sequence
1 ≤ p1 < p2 < · · · and some point x ∈ X we have T pkxj → x as k → ∞, j = 1, . . . ,m.

Assume the contrary that πX,Z \ W �= ∅, then there exist open subsets VX ⊆ X

and VZ ⊆ Z such that ∅ �= (VX × VZ) ∩ πX,Z ⊆ πX,Z\W and πX(VX) = πZ(VZ).
As (X, T ) is minimal, it makes no difference to assume that x ∈ VX and so there
exists t ≥ max{i1, . . . , im} such that T tx1, . . . , T

t xm ∈ VX. As πX(VX) = πZ(VZ),
πZ(z) = πX(T tx1) = Sty for some z ∈ VZ, then R−t z ∈ π−1

Z (y) and so R−t z ∈ R−ij0 UZ

for some j0 ∈ {1, . . . ,m}. One has (T txj0, z) ∈ (VX × VZ) ∩ πX,Z ⊆ πX,Z \ W and

(T txj0, z) = (T t−ij0 (T ij0 xj0), R
t−ij0 (Rij0 −t z))

∈ (T × R)t−ij0 (UX × UZ) ∩ πX,Z ∈ (T × R)t−ij0 (W) ⊆ W,
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as W is positively T × R-invariant and t ≥ max{i1, . . . , im}. A contradiction, which
implies πX,Z = W , that is, (πX,Z, T × R) is a transitive TDS. �

Now we present a result involving relative disjointness.
Let πX : (X, T ) → (Y, S) and πZ : (Z,R) → (Y, S) be two factor maps between

TDSs, and π1 : X × Z → X, π2 : X × Z → Z the projections. J ⊆ X × Z is called
a joining of (X, T ) and (Z,R) over (Y, S) if J is closed, positively T × R-invariant with
π1(J ) = X, π2(J ) = Z and πX × πZ(J ) = �2(Y ). Clearly, X ×Y Z is a joining, where

X ×Y Z =
⋃
y∈Y

π−1
X (y) × π−1

Z (y).

Call (X, T ) and (Z,R) disjoint over (Y, S) if X ×Y Z contains no proper sub-joining of
(X, T ) and (Z,R) over (Y, S).

Let π : (X, T ) → (Y, S) be a factor map between TDSs. Say that π is minimal if X is
the only closed positively T -invariant subset with π-image Y . The proof of the following
theorem is similar to that of [B2, Proposition 6] (see also [HYZ, Theorem 2.5]).

THEOREM 4.5. Let πX : (X, T ) → (Y, S) and πZ : (Z,R) → (Y, S) be two factor
maps between TDSs, where πX is open and πZ is minimal. Suppose that πX has relative
scattering and πZ is positively equicontinuous. If (Y, S) is invertible, then (X, T ) and
(Z,R) are disjoint over (Y, S).

In the remainder of this section, we focus on the relation between relative
2-scattering and Li–Yorke’s chaos on fibres (for the definition of Li–Yorke’s chaos, see,
for example, [LY]). It is known that any non-trivial scattering TDS is Li–Yorke chaotic
(see [HY1]). What happens if we consider a factor map between TDSs? We include here
a relative version of this result (Theorem 4.7).

For the reader’s convenience, before proceeding we make some preparations. Let X be
a complete metric space and K ⊆ X. We say that K is a Mycielski subset if it has the
form K = ⋃

j∈N Cj , where each Cj is a non-empty Cantor subset of X. We restate here a
version of Mycielski’s theorem [M, Theorem 1] which we use.

MYCIELSKI’S THEOREM. Let X be a complete metric space with no isolated points.
Suppose that for each n ∈ N, Rn is a subset of first category in X(rn), and let Gj, j =
1, 2, . . . , be a sequence of non-empty open subsets of X. Then there exist Cantor subsets
Cj ⊆ Gj such that for each n ∈ N the Mycielski set K = ⋃

j∈N Cj has the property that
for every x1, . . . , xrn distinct elements of K , (xi)

rn
1 /∈ Rn.

A direct application of Mycielski’s theorem is the following.

LEMMA 4.6. Let X be a compact metric space with no isolated points. If R ⊆ X(2)

contains a dense Gδ subset of X(2), then there exists a dense Mycielski subset K in X such
that (K × K) \ �2(X) ⊆ R.

Let (X, T ) be a TDS. Recall that we say that the pair (x1, x2) ∈ X(2) is asymptotic
(denoted by (x1, x2) ∈ AR(X, T )) if d(T nx1, T

nx2) → 0 as n → ∞. Let k,m ∈ N. Put

ARk,m(X, T ) =
⋂
j≥k

T −j × T −j

{
(x1, x2) ∈ X(2) : d(x1, x2) ≤ 1

m

}
.

https://doi.org/10.1017/S0143385706000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385706000988


1364 G. Zhang

It is obvious that for each k,m ∈ N, ARk,m(X, T ) is a closed subset of X(2) and
AR(X, T ) = ⋂

m∈N
⋃

k∈N ARk,m(X, T ) is a T (2)-invariant Fσδ subset of X(2).

Let π : (X, T ) → (Y, S) be a factor map between TDSs. We say that π has relative
Mycielski’s chaos if there exist y ∈ Y and a Mycielski subset K ⊆ π−1(y) such that
(K × K) \ �2(X) ⊆ PT (X, T ) \ AP(X, T ).

The main result of [Z] tells us that if the factor map π has positive conditional
topological entropy, then π has relative Mycielski’s chaos (for details, see, for example,
[Z, Theorem 4.2], but instead of relative Mycielski’s chaos there we say Li–Yorke’s chaos
on fibres). Meanwhile, in the following we show that in many cases relative 2-scattering
implies relative Mycielski’s chaos which is stated as Theorem 4.7. We delay the definitions
of sensitivity (for a TDS) and relative sensitivity (for a factor map between TDSs) and the
proof of the second part of Theorem 4.7 until next section.

THEOREM 4.7. Let π : (X, T ) → (Y, S) be an open factor map between invertible TDSs,
where π has relative 2-scattering. Suppose that there exists a subset Y0 ⊆ Y of second
category in Y such that for each y ∈ Y , π−1(y) satisfies property (∗):

There exists a non-empty open subset Ly of the sub-space π−1(y) such that Ky ,
the closure of Ly in π−1(y), is complete with no isolated points. (∗)

Then one has the following.

(1) If (AR(X, T )∩R
(2)
π )\�2(X) is a subset of first category in R

(2)
π , then π has relative

Mycielski’s chaos.
(2) In particular, π has relative Mycielski’s chaos if one of the following holds:

(i) π is relatively sensitive;
(ii) (X, T ) is minimal;
(iii) (X, T ) is a transitive TDS which is not sensitive.

Proof. By assumptions, it is obvious that π is non-trivial; by Proposition 4.3 one has
PT (X, T ) ∩ R

(2)
π is a dense Gδ subset of R

(2)
π , as π has relative 2-scattering.

(1) As (AR(X, T ) ∩ R
(2)
π ) \ �2(X) is a subset of first category in R

(2)
π ,

M
.= �2(X) ∪ ((PT (X, T ) \ AR(X, T )) ∩ R(2)

π )

contains a dense Gδ subset of R
(2)
π . Since π is open, applying Lemma 3.6 to R

(2)
π \ M

there exists a dense Gδ subset Y ′
0 of Y such that for each y ∈ Y ′

0, M ∩ (π−1(y) × π−1(y))

contains a dense Gδ subset of π−1(y) × π−1(y).

Set YM
.= Y0 ∩ Y ′

0 �= ∅. For each y ∈ YM , by assumptions M ∩ (Ky × Ky) contains
a dense Gδ subset of Ky × Ky , then My

.= (PT (X, T ) \ AR(X, T )) ∩ (Ky × Ky)

contains a dense Gδ subset of Ky × Ky , as Ky has no isolated points. Now applying
Lemma 4.6 to Ky and My , we obtain a dense Mycielski subset K ⊆ Ky such that
(K × K) \ �2(X) ⊆ My ⊆ PT (X, T ) \ AR(X, T ). This means that π has relative
Mycielski’s chaos.

(2) The proof of this part will be presented at the end of next section. �
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5. Relative sensitivity
In this section, first we introduce the concept of relative sensitivity, then we prove that
for a factor map between minimal TDSs it is either relatively sensitive or positively
equicontinuous, and that any non-trivial weakly mixing factor map is relatively sensitive.
We also present a relative version of the well-known result in [GW] that if an M-system is
not minimal, then it is sensitive; for details, see Theorem 5.10.

The definition of relative sensitivity is stated as follows.

Definition 5.1. Let π : (X, T ) → (Y, S) be a factor map between TDSs. We say that:
(1) π is relatively sensitive if there exists ε > 0 such that for each δ > 0 and x ∈ X

there exists (x1, x2) ∈ R
(2)
π with d(x, xi) < δ (i = 1, 2) and d(T nx1, T

nx2) > ε for
some n ∈ Z+;

(2) x ∈ X is relative positively equicontinuous (RPE) (denoted by x ∈ Ere(X, T |π))
if for each ε > 0 there exists δ > 0 such that d(T nx1, T

nx2) < ε if n ∈ Z+ and
(x1, x2) ∈ R

(2)
π with d(x, xi) < δ (i = 1, 2).

Remark 5.2. Recall that we say that (X, T ) is sensitive if there exists ε > 0 such that for
each δ > 0 and x ∈ X there exists x ′ ∈ X such that d(x, x ′) < δ and for some n ∈ Z+ with
d(T nx, T nx ′) > ε. It is obvious that if π is relatively sensitive, then (X, T ) is sensitive.

By definition and the results obtained in §2, we have:
(1) Ere(X, T |π) ⊆ Elre(X, T |π);
(2) Ere(X, T |π) = X if and only if π is positively equicontinuous;
(3) Ere(X, T |π) = ∅ if π is relatively sensitive.

PROPOSITION 5.3. Let π : (X, T ) → (Y, S) be a factor map between transitive TDSs.
(1) Then Ere(X, T |π) = ∅ if and only if π is relatively sensitive.
(2) Suppose Ere(X, T |π) �= ∅. Then Tran(X, T ) ⊆ Ere(X, T |π). Moreover, if π is

minimal, then π−1(Tran(Y, S)) ⊆ Ere(X, T |π).

Proof. As Tran(X, T ) = π−1(Tran(Y, S)) if π is minimal, our proof will be finished once
we show that if there exists x0 ∈ Tran(X, T ) \ Ere(X, T |π), then π is relatively sensitive.

Since x0 /∈ Ere(X, T |π), there exists ε0 > 0 such that for each δ′ > 0 there exist
(x1, x2) ∈ R

(2)
π and n ∈ Z+ such that d(x0, xi) < δ′ (i = 1, 2) and d(T nx1, T

nx2) > ε0.
Now let x ∈ X and δ > 0. Say m ∈ Z+ with d(T mx0, x) < δ, as x0 ∈ Tran(X, T ).
Let δx > 0 such that if d(x0, x

∗) < δx , then d(T mx∗, x) < δ. For this δx , there exist
(x1, x2) ∈ R

(2)
π and n ∈ Z+ such that d(x0, xi) < δx (i = 1, 2) and d(T nx1, T

nx2) > ε0

(it makes no difference to assume n > m by selecting small enough δx > 0). So

(T mx1, T
mx2) ∈ R(2)

π ; d(x, T mxi) < δ (i = 1, 2);
d(T n−m(T mx1), T

n−m(T mx2)) > ε0.

That is, π is relatively sensitive. This completes the proof. �

Then we have (see [AAB] for the absolute case) the following.

COROLLARY 5.4. Let π : (X, T ) → (Y, S) be a factor map between minimal TDSs.
Then π is either relatively sensitive or positively equicontinuous.
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THEOREM 5.5. Let π : (X, T ) → (Y, S) be a non-trivial factor map between TDSs. If π

is weakly mixing, then it is relatively sensitive.

Proof. As (X, T ) is transitive, it suffices to prove that Ere(X, T |π) = ∅ (by
Proposition 5.3). Let x0 ∈ X and ε > 0 be small enough. Since TDS (R

(2)
π , T (2)) is

transitive, for each neighbourhood U of x0, supn∈Z+ d(T nx1, T
nx2) > ε if (x1, x2) ∈

Tran(R
(2)
π , T (2))∩(U ×U) (as ε > 0 is small enough), i.e. x0 /∈ Ere(X, T |π). This finishes

the proof. �

Let (X, T ) be a TDS. Recall that we say that (X, T ) is an M-system if (X, T ) is
transitive and AP(X, T ) is dense in X. It is well known that if an M-system is not minimal,
then it is sensitive (see [GW]). Now we aim to prove a relative version of this result.

Let π : (X, T ) → (Y, S) be a factor map between TDSs. We say that x0 ∈ X is
a relative minimal point of π (denoted by x ∈ AP(X, T |π)) if π(X0) = Y and X0

contains no proper closed positively T -invariant subset which projects onto Y , where
X0 = {T ix0 : i ∈ Z+}. In this case, we say that X0 is a relative minimal sub-system
of π .

Before proceeding, we need some notation. Let (X, T ) be a TDS, x ∈ X and B ⊆ X

a non-empty subset of X. Set N(x,B) = {n ∈ Z+ : T n(x) ∈ B}. Let δ > 0.
Write BX(x, δ) = {x ′ ∈ X : d(x, x ′) < δ}. Let P,Q ⊆ Z+. Put P − Q = {p − q ≥
0 : p ∈ P, q ∈ Q}. Then we can characterize the minimal factor map between transitive
TDSs by the set of return times as follows.

LEMMA 5.6. Let π : (X, T ) → (Y, S) be a factor map between transitive TDSs. Then the
following statements are equivalent.
(1) π is minimal.
(2) For each x0 ∈ Tran(X, T ) and ε > 0, there exists N ∈ N such that

π−1(πx0) ⊆
N⋃

i=0

T −iBX(x0, ε). (5.1)

(3) For each x0 ∈ Tran(X, T ) and ε > 0, there exist N ∈ N and δ > 0 such that

π−1BY (πx0, δ) ∩ {T ix0 : i ∈ Z+} ⊆
N⋃

i=0

T −iBX(x0, ε). (5.2)

(4) For each x0 ∈ Tran(X, T ) and ε > 0, there exist N ∈ N and δ > 0 such that

N(πx0, BY (πx0, δ)) ⊆ N(x0, BX(x0, ε)) − {0, 1, . . . , N}. (5.3)

(5) There exists x0 ∈ Tran(X, T ) such that if ε > 0, then (5.1) holds for some N ∈ N.
(6) There exists x0 ∈ Tran(X, T ) such that if ε > 0, then there exist N ∈ N and δ > 0

such that for which (5.2) holds.
(7) There exists x0 ∈ Tran(X, T ) such that if ε > 0, then there exist N ∈ N and δ > 0

such that for which (5.3) holds.

Proof. The proof is divided into three steps.

https://doi.org/10.1017/S0143385706000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385706000988


Relativization of complexity and sensitivity 1367

Step 1. (1) ⇔ (2) ⇔ (5). (2) ⇒ (5) is obvious.
((1) ⇒ (2)). Let x0 ∈ Tran(X, T ) and ε > 0. Set X0 = ⋃

i∈Z+ T −iBX(x0, ε).
Then X \ X0 ⊆ X is closed positively T -invariant, so π(x0) /∈ π(X \ X0),
i.e. π−1(πx0) ⊆ X0, as π is minimal and π(x0) ∈ Tran(Y, S). Then there exists N ∈ N

such that (5.1) holds.
((5) ⇒ (1)). If π is not minimal, then there exists a closed positively T -invariant

subset X∗ of X such that π(X∗) = Y and x0 /∈ X∗. Let ε > 0 with X∗ ∩ BX(x0, ε) = ∅.
So X∗ ∩ ⋃

i∈Z+ T −iBX(x0, ε) = ∅. By assumption, for such ε > 0 there exists N ∈ N

such that (5.1) holds. This implies X∗ ∩ π−1(πx0) = ∅, a contradiction. Then π is
minimal.

Step 2. (2) ⇔ (3) and (5) ⇔ (6).
((2) ⇒ (3), (5) ⇒ (6)). Fix x0 ∈ Tran(X, T ). Let ε > 0. By assumption (5.1) holds

for some N ∈ N, then π(x0) /∈ π
(
X \ ⋃N

i=0 T −iBX(x0, ε)
)
. Let δ > 0 with

BY (πx0, δ) ∩ π

(
X

∖ N⋃
i=0

T −iBX(x0, ε)

)
= ∅ ⇒ π−1BY (πx0, δ) ⊆

N⋃
i=0

T −iBX(x0, ε).

(5.4)
In particular, π−1BY (πx0, δ) ∩ {T ix0 : i ∈ Z+} ⊆ ⋃N

i=0 T −iBX(x0, ε).
((3) ⇒ (2), (6) ⇒ (5)). Fix x0 ∈ Tran(X, T ). Let ε > 0. By assumption (5.2) holds

for some N ∈ N and δ > 0. Now we claim that (5.1) holds for 2ε and N . In fact, let
x ∈ π−1(πx0). Since x0 ∈ Tran(X, T ), there exists a sequence {nj }j∈N of Z+ such that
π(T nj x0) ∈ BY (πx0, δ) (j ∈ N) and T nj x0 → x. By (5.2) one has

x ∈ π−1BY (πx0, δ) ∩ {T ix0 : i ∈ Z+} ⊆
N⋃

i=0

T −iBX(x0, ε) ⊆
N⋃

i=0

T −iBX(x0, 2ε).

Step 3. (3) ⇔ (4) and (6) ⇔ (7). It follows from the following easy facts: if x0 ∈ X,
N ∈ N, ε, δ > 0 and j ∈ Z+, then:
(1) T jx0 ∈ π−1BY (πx0, δ) ⇔ j ∈ N(πx0, BY (πx0, δ)); and
(2) T jx0 ∈ ⋃N

i=0 T −iBX(x0, ε) ⇔ j ∈ N(x0, BX(x0, ε)) − {0, 1, . . . , N}. �

Then we have the following useful corollary.

COROLLARY 5.7. Let π : (X, T ) → (Y, S) be a factor map between TDSs and x0 ∈ X

with π(x0) ∈ Tran(Y, S). Then x0 ∈ AP(X, T |π) if and only if for each ε > 0 there exist
N ∈ N and δ > 0 such that N(πx0, BY (πx0, δ)) ⊆ N(x0, BX(x0, ε)) − {0, 1, . . . , N}.

Let π : (X, T ) → (Y, S) be a factor map between TDSs and x0 ∈ X. Put

	(T , x0|π) = {x ∈ X : ∃ni → ∞, {xi} ⊆ π−1(πx0) such that xi → x0, T
ni xi → x},

ω(T , x0) = {x ∈ X : ∃ni → ∞ such that T ni x0 → x} ⊆ 	(T , x0|π).

It is clear that x0 ∈ Tran(X, T ) if and only if ω(T , x0) = X.
Let (X, T ) be a TDS and x0 ∈ X. It is notable that x0 ∈ AP(X, T ) if and only if for each

open neighbourhood U0 of x0 the set of return times N(x0, U0) = {0 ≤ a1 < a2 < · · · } is
syndetic, i.e. there exists a constant M < ∞ which bounds all ai+1 − ai (i ∈ N). Then we
have the following.
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LEMMA 5.8. Let π : (X, T ) → (Y, S) be a factor map between TDSs. Suppose x0 ∈
Elre(X, T |π). Then we have the following.
(1) ω(T , x0) = 	(T , x0|π).
(2) Suppose that there exists a sequence {xi}i∈N ⊆ π−1(πx0)∩Tran(X, T ) (respectively

π−1(πx0) ∩ AP(X, T ), π−1(πx0) ∩ AP(X, T |π)) such that xi → x0. Then x0 ∈
Tran(X, T ) (respectively x0 ∈ AP(X, T ), x0 ∈ AP(X, T |π)).

Proof. Let ε > 0 be fixed. Since x0 ∈ Elre(X, T |π), there exists δ > 0 with δ ≤ ε such
that if j ∈ Z+, x ′ ∈ π−1(πx0) and d(x0, x

′) ≤ δ, then d(T jx0, T
jx ′) ≤ ε/2.

(1) It suffices to prove ω(T , x0) ⊇ 	(T , x0|π). Let x ∈ 	(T , x0|π) with ni → ∞,
{xi} ⊆ π−1(πx0) such that xi → x0 and T ni xi → x. Select i ∈ N such that d(x0, xi) ≤ δ

and d(T ni xi, x) ≤ ε/2. Then d(T ni x0, T
ni xi) ≤ ε/2, d(T ni x0, x) ≤ d(T ni x0, T

ni xi) +
d(T ni xi, x) ≤ ε. Letting ε → 0+, one has x ∈ ω(T , x0), i.e. 	(T , x0|π) ⊆ ω(T , x0).

(2) The first part of the proof follows by the assumption 	(T , x0|π) = X. Then by
part (1) one has ω(T , x0) = X, which implies x0 ∈ Tran(X, T ).

Now let us turn to the second part. We aim to prove x0 ∈ AP(X, T ) by showing that
N(x0, BX(x0, 3ε)) is syndetic, as ε > 0 is arbitrary. Let n0 ∈ N with d(x0, xn0) < δ.
Thus, N(x0, BX(x0, 3ε)) ⊇ N(xn0, BX(xn0, ε)) is syndetic, as xn0 ∈ AP(X, T ) and if
m ∈ N(xn0 , BX(xn0, ε)), then

d(x0, T
mx0) ≤ d(x0, xn0) + d(xn0, T

mxn0) + d(T mxn0, T
mx0) < δ + ε + ε ≤ 3ε.

It remains to prove the third part. Set y0 = π(x0). Then y0 ∈ Tran(Y, S), as y0 = π(xi)

and xi ∈ AP(X, T |π). Let i0 ∈ N with d(x0, xi0) < δ. Then d(T jx0, T
j xi0) < ε for each

j ∈ Z+. As xi0 ∈ AP(X, T |π) and y0 = π(xi0), by Corollary 5.7

N(y0, BY (y0, δ1)) ⊆ N(xi0, BX(xi0, ε)) − {0, 1, . . . , N} (5.5)

for some δ1 > 0 and N ∈ N. Note that N(xi0 , BX(xi0, ε)) ⊆ N(x0, BX(x0, 3ε)). By (5.5)

N(y0, BY (y0, δ1)) ⊆ N(x0, BX(x0, 3ε)) − {0, 1, . . . , N}. (5.6)

As π(x0) = y0 ∈ Tran(Y, S), by Corollary 5.7, x0 ∈ AP(X, T |π), as ε > 0 is arbitrary. �

As an application of Lemma 5.8 we have the following.

COROLLARY 5.9. Let π : (X, T ) → (Y, S) be a factor map between transitive TDSs.
Suppose that π is not relatively sensitive.
(1) Assume that y ∈ Tran(Y, S) satisfies that Tran(X, T ) ∩ π−1(y) is dense in π−1(y).

Then Elre(X, T |π) ∩ π−1(y) = Ere(X, T |π) ∩ π−1(y) = Tran(X, T ) ∩ π−1(y).
(2) Assume that π is open. Then there exists a dense Gδ subset Y0 of Y such that for each

y ∈ Y0, Elre(X, T |π) ∩ π−1(y) = Ere(X, T |π) ∩ π−1(y) = Tran(X, T ) ∩ π−1(y).

Proof. (1) By Proposition 5.3, Elre(X, T |π) ∩ π−1(y) ⊇ Ere(X, T |π) ∩ π−1(y) ⊇
Tran(X, T ) ∩π−1(y). Then the conclusion follows from Lemma 5.8 directly.

(2) Note that Tran(X, T ) is a dense Gδ subset of X. As π is open, applying Lemma 3.6
to X \Tran(X, T ) we obtain a dense Gδ subset Y1 of Y such that Tran(X, T )∩π−1(y) is a
dense Gδ subset of π−1(y) for each y ∈ Y1. Set Y0 = Y1 ∩ Tran(Y, S). Then Y0 is a dense
Gδ subset of Y . Now applying part (1) to each y ∈ Y0, we deduce the conclusion. �
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Then we obtain a relative version of the well-known Glasner–Weiss’s result that if an
M-system is not minimal then it is sensitive.

THEOREM 5.10. Let π : (X, T ) → (Y, S) be a factor map between transitive TDSs.
Then we have the following.
(1) AP(X, T |π) is dense in X if and only if the union ∪X0 is dense in X, where X0 ⊆ X

varies over all relative minimal sub-systems of π .
(2) Suppose that AP(X, T |π) is dense in X and π is not relatively sensitive. Then the

following statements are equivalent:
(i) π is minimal;
(ii) if x0 ∈ Tran(X, T ), then there exists a sequence {xi}i∈N ⊆ AP(X, T |π) ∩

π−1(πx0) such that xi → x0;
(iii) there exist x0 ∈ Tran(X, T ) and a sequence {xi}i∈N ⊆ AP(X, T |π) ∩

π−1(πx0) such that xi → x0.

Proof. (1) If follows from some standard arguments.
(2) (i) ⇒ (ii) As (X, T ) and (Y, S) are both transitive and π is minimal, then the

conclusion follows from the fact that AP(X, T |π) = Tran(X, T ) = π−1(Tran(Y, S)).
(ii) ⇒ (iii) This is obvious.
(iii) ⇒ (i) By Proposition 5.3, x0 ∈ Ere(X, T |π) ⊆ Elre(X, T |π), then x0 ∈

AP(X, T |π) follows from Lemma 5.8 and the assumption. That is, π is minimal. �

Remark 5.11. We have some remarks about Theorem 5.10.
(1) Note that letting (Y, S) be trivial, the definition of relative sensitivity recovers

the definition of sensitivity, then a direct corollary of Theorem 5.10 is that if an
M-system is not minimal, then it is sensitive.

(2) Due to discussions with Professor E. Glasner [G3], the first item may be viewed as
a possible definition of an M-extension for a factor map between transitive TDSs.

Before ending the proof of Theorem 4.7, we need (see [HY1] for the absolute case) the
following.

LEMMA 5.12. Let π : (X, T ) → (Y, S) be an open factor map between TDSs. Suppose
that π is relatively sensitive. Then AR(X, T ) ∩ R

(2)
π is a subset of first category in R

(2)
π .

Proof. As π is relatively sensitive, there exists ε > 0 such that for each open ∅ �= U ⊆ X

there exist (x1, x2) ∈ R
(2)
π ∩ (U × U) and n ∈ Z+ with d(T nx1, T

nx2) > ε.
Now we claim that if m > 2/ε, then the closed subset ARk,m(X, T )∩R

(2)
π has an empty

interior in R
(2)
π , which implies that AR(X, T ) ∩ R

(2)
π is a subset of first category in R

(2)
π .

Otherwise, there exist δ′ > 0 and (x∗
1 , x∗

2 ) ∈ R
(2)
π such that if j ≥ k and (x ′

1, x
′
2) ∈ R

(2)
π

with d(x∗
i , x ′

i ) < δ′ (i = 1, 2), then d(T jx ′
1, T

jx ′
2) ≤ 1/m. For i = 1, 2, put Ui =

BX(x∗
i , δ′) and set V1 = U1 ∩ π−1(π(U1) ∩ π(U2)). Then V1 is an open neighbourhood

of x∗
1 , as π is open. If (x1, x2) ∈ R

(2)
π ∩ (V1 × V1), by the definition of V1 there exists

x ′ ∈ U2 such that π(x ′) = π(x1) (= π(x2)), then (x ′, x1), (x
′, x2) ∈ R

(2)
π ∩ (U2 × U1),

which implies

sup
j≥k

d(T jx ′, T jxi) ≤ 1

m
, i = 1, 2 ⇒ sup

j≥k

d(T jx1, T
j x2) ≤ 2

m
< ε.
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It makes no difference to assume supj∈Z+ d(T jx1, T
jx2) < ε by selecting δ′ > 0 and

shrinking V1 appropriately. A contradiction to the selection of ε. This ends the proof. �

Remark 5.13. The assumption of ‘π is open’ is again essential. Let us recall the example
constructed at the end of §2. As a factor map between minimal invertible TDSs, π is
not positively equicontinuous, so π is relatively sensitive (using Theorem 5.5). Whereas,
AR(X, T ) ∩ R

(2)
π = R

(2)
π . In fact, for each (x1, x2) ∈ R

(2)
π , d(T nx1, T

nx2) → 0 as
|n| → ∞.

Now we are ready to finish proving Theorem 4.7.

Remainder of Proof of Theorem 4.7. For the proof of part (2), by the discussions in part (1)
we only need prove that if only one of the assumptions holds, then (AR(X, T ) ∩ R

(2)
π ) \

�2(X) is a subset of first category in R
(2)
π .

(i) This follows from Lemma 5.12, as π is relatively sensitive.
(ii) Assume that (X, T ) is minimal. By Corollary 5.4, π is either relatively sensitive

or positively equicontinuous. Then by (i) we only consider the case that π is positively
equicontinuous. In this case, π is equicontinuous (by Corollary 3.4), which implies
∅ = (AR(X, T ) ∩ R

(2)
π ) \ �2(X).

(iii) Now assume that (X, T ) is a transitive TDS which is not sensitive. It is well
known that in this case AR(X, T ) = �2(X) (for an alternative version see, for example,
[GW, Lemma 1.2]). This finishes our proof. �

Remark 5.14. Let (X, T ) be a non-trivial transitive invertible TDS. If (X, T ) is scattering,
then X is a complete metric space with no isolated points. Then by (i) and (iii) of
Theorem 4.7(2) we obtain again the known fact that any non-trivial scattering TDS is
Li–Yorke chaotic (note that scattering implies transitivity; see [BHM]).
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