Hostname: page-component-6bf8c574d5-vmclg Total loading time: 0 Render date: 2025-02-21T04:08:02.765Z Has data issue: false hasContentIssue false

A Garden of Eden theorem for linear subshifts

Published online by Cambridge University Press:  13 June 2011

TULLIO CECCHERINI-SILBERSTEIN
Affiliation:
Dipartimento di Ingegneria, Università del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy (email: tceccher@mat.uniroma1.it)
MICHEL COORNAERT
Affiliation:
Institut de Recherche Mathématique Avancée, Université de Strasbourg et CRNS, 7 rue René-Descartes, 67000 Strasbourg, France (email: coornaert@math.unistra.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be an amenable group and let V be a finite-dimensional vector space over an arbitrary field 𝕂. We prove that if XVG is a strongly irreducible linear subshift of finite type and τ:XX is a linear cellular automaton, then τ is surjective if and only if it is pre-injective. We also prove that if G is countable and XVG is a strongly irreducible linear subshift, then every injective linear cellular automaton τ:XX is surjective.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

References

[1]Bourbaki, N.. Éléments de Mathématique: Topologie Générale. Hermann, Paris, 1971, Chapitres 1–4.Google Scholar
[2]Ceccherini-Silberstein, T. and Coornaert, M.. The Garden of Eden theorem for linear cellular automata. Ergod. Th. & Dynam. Sys. 26 (2006), 5368.CrossRefGoogle Scholar
[3]Ceccherini-Silberstein, T. and Coornaert, M.. Injective linear cellular automata and sofic groups. Israel J. Math. 161 (2007), 115.CrossRefGoogle Scholar
[4]Ceccherini-Silberstein, T. and Coornaert, M.. Amenability and linear cellular automata over semisimple modules of finite length. Comm. Algebra 36 (2008), 13201335.CrossRefGoogle Scholar
[5]Ceccherini-Silberstein, T. and Coornaert, M.. Induction and restriction of cellular automata. Ergod. Th. & Dynam. Sys. 29 (2009), 371380.CrossRefGoogle Scholar
[6]Ceccherini-Silberstein, T. and Coornaert, M.. Cellular Automata and Groups (Springer Monographs in Mathematics). Springer, Berlin, 2010.CrossRefGoogle Scholar
[7]Ceccherini-Silberstein, T. and Coornaert, M.. On the reversibility and the closed image property of linear cellular automata. Theoret. Comput. Sci. 412 (2011), 300306.CrossRefGoogle Scholar
[8]Ceccherini-Silberstein, T., Machì, A. and Scarabotti, F.. Amenable groups and cellular automata. Ann. Inst. Fourier (Grenoble) 49 (1999), 673685.CrossRefGoogle Scholar
[9]Elek, G.. The rank of finitely generated modules over group algebras. Proc. Amer. Math. Soc. 131 (2003), 34773485 (electronic).CrossRefGoogle Scholar
[10]Elek, G. and Szabó, E.. Sofic groups and direct finiteness. J. Algebra 280 (2004), 426434.CrossRefGoogle Scholar
[11]Fiorenzi, F.. The Garden of Eden theorem for sofic shifts. Pure Math. Appl. 11 (2000), 471484.Google Scholar
[12]Fiorenzi, F.. Cellular automata and strongly irreducible shifts of finite type. Theoret. Comput. Sci. 299 (2003), 477493.CrossRefGoogle Scholar
[13]Følner, E.. On groups with full Banach mean value. Math. Scand. 3 (1955), 243254.CrossRefGoogle Scholar
[14]Gottschalk, W.. Some general dynamical notions. Recent Advances in Topological Dynamics (Proc. Conf. on Topological Dynamics, Yale University, New Haven, CT, 1972; in honor of Gustav Arnold Hedlund) (Lecture Notes in Mathematics, 318). Springer, Berlin, 1973, pp. 120125.Google Scholar
[15]Greenleaf, F. P.. Invariant Means on Topological Groups and their Applications (Van Nostrand Mathematical Studies, 16). Van Nostrand Reinhold, New York, 1969.Google Scholar
[16]Gromov, M.. Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. 1 (1999), 109197.CrossRefGoogle Scholar
[17]Gromov, M.. Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom. 2 (1999), 323415.CrossRefGoogle Scholar
[18]Grothendieck, A.. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Publ. Math. Inst. Hautes Études Sci. 11 (1961), 167pp.Google Scholar
[19]Hedlund, G. A.. Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3 (1969), 320375.CrossRefGoogle Scholar
[20]Krieger, F.. Le lemme d’Ornstein–Weiss d’après Gromov. Dynamics, Ergodic Theory, and Geometry (Mathematical Sciences Research Institute Publications, 54). Cambridge University Press, Cambridge, 2007, pp. 99111.CrossRefGoogle Scholar
[21]Ornstein, D. S. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48 (1987), 1141.CrossRefGoogle Scholar
[22]Paterson, A. L. T.. Amenability (Mathematical Surveys and Monographs, 29). American Mathematical Society, Providence, RI, 1988.CrossRefGoogle Scholar
[23]Weiss, B.. Sofic groups and dynamical systems. Sankhyā Ser. A 62 (2000), 350359  (Ergodic Theory and Harmonic Analysis, Mumbai, 1999).Google Scholar