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Abstract. Let G be an amenable group and let V be a finite-dimensional vector space over
an arbitrary field K. We prove that if X ⊂ V G is a strongly irreducible linear subshift of
finite type and τ : X→ X is a linear cellular automaton, then τ is surjective if and only if it
is pre-injective. We also prove that if G is countable and X ⊂ V G is a strongly irreducible
linear subshift, then every injective linear cellular automaton τ : X→ X is surjective.

1. Introduction
The goal of this article is to give a version of the Moore–Myhill Garden of Eden theorem
for linear cellular automata defined over certain linear subshifts. Before stating our main
results, let us briefly recall some basic notions from symbolic dynamics.

Consider a group G and a set A. The set AG
= {x : G→ A} is called the set of

configurations over the group G and the alphabet A. We equip AG
=

∏
g∈G A with

its prodiscrete topology, i.e., with the product topology obtained by taking the discrete
topology on each factor A of AG . We also endow AG with the left action of G defined by
gx(h)= x(g−1h) for all g, h ∈ G and x ∈ AG . This action is continuous with respect to
the prodiscrete topology and is called the G-shift action on AG . It is customary to refer to
the G-space AG as the full shift over the group G and the alphabet A.

A closed G-invariant subset of AG is called a subshift.
For x ∈ AG and�⊂ G, let x |� denote the restriction of x to�. One says that a subshift

X ⊂ AG is irreducible if, for every finite subset �⊂ G and any two configurations x1 and
x2 in X , there exist an element g ∈ G and a configuration x ∈ X such that x |� = x1|� and
x |g� = x2|g�.

Given a finite subset1⊂G, one says that a subshift X⊂ AG is1-irreducible if the follo-
wing condition is satisfied: if�1 and�2 are finite subsets of G such that there is no element
g ∈�2 such that the set g1 meets �1 then, given any two configurations x1, x2 ∈ X ,
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there exists a configuration x ∈ X such that x |�1 = x1|�1 and x |�2 = x2|�2 . A subshift
X ⊂ AG is said to be strongly irreducible if there exists a finite subset 1⊂ G such that
X is 1-irreducible (cf. [12, Definition 4.1]). Note that if G is infinite then every strongly
irreducible subshift is irreducible. A trivial example of a strongly irreducible subshift is
provided by the full shift AG , which is 1-irreducible for 1= {1G}.

If D is a finite subset of G and L is a subset of AD , then

XG(D, L)= {x ∈ AG
: (g−1x)|D ∈ L for all g ∈ G} (1.1)

is clearly a subshift of AG . A subshift X ⊂ AG is said to be of finite type if there exist a
finite subset D ⊂ G and a subset L ⊂ AD such that X = XG(D, L). One then says that
the finite subset D ⊂ G is a defining window and that L ⊂ AD is a defining law, relative to
the defining window D, for the subshift X . Note that the full shift AG is a subshift of finite
type of itself admitting D = {1G} as a defining window with defining law L = AD ∼= A.

A map τ : X→ Y between subshifts X, Y ⊂ AG is called a cellular automaton if there
exist a finite subset M ⊂ G and a map µ : AM

→ A such that

τ(x)(g)= µ((g−1x)|M ) for all x ∈ X and g ∈ G. (1.2)

Such a set M is then called a memory set and µ is called a local defining map for τ . It
immediately follows from the above definition that every cellular automaton τ : X→ Y is
continuous and G-equivariant.

If τ : X→ X is a cellular automaton from a subshift X ⊂ AG into itself, a configuration
x0 ∈ X is called a Garden of Eden configuration for τ if x0 is not in the image of τ .
The origin of this biblical terminology comes from the fact that a configuration x0 ∈ X
is a Garden of Eden configuration for τ if and only if, whatever the choice of an initial
configuration x ∈ X , the sequence of its iterates x, τ (x), τ 2(x), . . . , τ n(x), . . . can only
take the value x0 at time n = 0.

Two configurations in AG are said to be almost equal if they coincide outside a finite
subset of G. One says that a cellular automaton τ : X→ Y between subshifts X, Y ⊂ AG

is pre-injective if whenever two configurations x1, x2 ∈ X are almost equal and satisfy
τ(x1)= τ(x2) then one has x1 = x2. Injectivity clearly implies pre-injectivity but there are
pre-injective cellular automata that are not injective.

The classical Garden of Eden theorem [8] states that if τ : AG
→ AG is a cellular

automaton defined on the full shift over an amenable group G and a finite alphabet A, then
the surjectivity of τ (i.e., the absence of Garden of Eden configurations for τ ) is equivalent
to its pre-injectivity (see §2.2 for the definition of amenability).

The Garden of Eden theorem was extended by Fiorenzi to cellular automata τ : X→ X
for subshifts X ⊂ AG with A finite in the following two cases: (1) G = Z and X ⊂ AZ

is an irreducible subshift of finite type [11, Corollary 2.19]; and (2) G is a finitely
generated amenable group and X ⊂ AG is a strongly irreducible subshift of finite type
[12, Corollary 4.8].

Now let G be a group, K a field, and V a vector space over K. Then there is a natural
product vector space structure on V G and the shift action of G on V G is clearly K-linear
with respect to this vector space structure. One says that a subshift X ⊂ V G is a linear
subshift if X is a vector subspace of V G . Given linear subshifts X, Y ⊂ V G , a cellular
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automaton τ : X→ Y is called a linear cellular automaton if the map τ is K-linear. Note
that if X, Y ⊂ V G are linear subshifts and τ : X→ Y is a linear cellular automaton, then
the pre-injectivity of τ is equivalent to the fact that the zero configuration is the unique
configuration with finite support lying in the kernel of τ .

In [2, Theorem 1.2] and [5, Corollary 1.4], we proved the following linear version of
the Garden of Eden theorem.

THEOREM 1.1. Let G be an amenable group, K a field, and V a finite-dimensional vector
space over K. Let τ : V G

→ V G be a linear cellular automaton. Then τ is surjective if
and only if it is pre-injective.

The main result of the present paper is the following theorem.

THEOREM 1.2. Let G be an amenable group, K a field, and V a finite-dimensional vector
space over K. Let X ⊂ V G be a strongly irreducible linear subshift of finite type and let τ :
X→ X be a linear cellular automaton. Then τ is surjective if and only if it is pre-injective.

Note that Theorem 1.1 may be recovered from Theorem 1.2 by taking X = V G .
A group G is said to be surjunctive [14] if, for any finite alphabet A, every injective

cellular automaton τ : AG
→ AG over G is surjective. It was shown by Lawton (cf. [14])

that all residually finite groups are surjunctive. On the other hand, as injectivity implies pre-
injectivity, it immediately follows from the Garden of Eden theorem [8] that all amenable
groups are surjunctive. More generally, Gromov [16] and Weiss [23] proved that all sofic
groups are surjunctive. The class of sofic groups includes in particular all residually
amenable groups and therefore all residually finite groups as well as all amenable groups.
As far as we know, there is no example of a non-surjunctive nor even of a non-sofic group
in the literature up to now.

By analogy with the classical finite alphabet case, the following definition was
introduced in [3, Definition 1.1]. A group G is said to be L-surjunctive if, for any field K
and any finite-dimensional vector space V over K, every injective linear cellular automaton
τ : V G

→ V G is surjective. It turns out (see [3]) that a group G is L-surjunctive if and only
if G satisfies Kaplansky’s stable finiteness conjecture, that is, the group algebra K[G] is
stably finite for any field K (recall that a ring R is said to be stably finite if every one-
sided invertible square matrix over R is also two-sided invertible). A linear analogue of the
Gromov–Weiss theorem, namely that all sofic groups are L-surjunctive, was established
in [3, Theorem 1.2]. From this result we deduced that sofic groups satisfy the Kaplansky
conjecture on the stable finiteness of group algebras, a result previously established—with
completely different methods involving embeddings of the group rings into continuous von
Neumann regular rings—by Elek and Szabó [10].

Now, given a group G and a vector space V over a field K, let us say that a linear
subshift X ⊂ V G is L-surjunctive if every injective linear cellular automaton τ : X→ X is
surjective. The following result is an immediate consequence of Theorem 1.2.

COROLLARY 1.3. Let G be an amenable group, K a field, and V a finite-dimensional
vector space over K. Then every strongly irreducible linear subshift of finite type X ⊂ V G

is L-surjunctive.
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In fact, when the amenable group G is assumed to be countable, we can remove the
hypothesis that the subshift X is of finite type in the previous statement so that we get the
following theorem.

THEOREM 1.4. Let G be a countable amenable group, K a field, and V a finite-
dimensional vector space over K. Then every strongly irreducible linear subshift X ⊂ V G

is L-surjunctive.

We do not know whether Theorem 1.4 remains true if the countability assumption is
removed.

The paper is organized as follows. Section 2 contains the necessary preliminaries and
background material. We recall in particular the definition and main properties of mean
dimension for vector subspaces of configurations X ⊂ V G , where G is an amenable group
and V a finite-dimensional vector space. In §3 we study mean dimension of strongly
irreducible linear subshifts. We prove that if X ⊂ V G is a strongly irreducible linear
subshift then the mean dimension of X is greater than the mean dimension of any proper
linear subshift Y $ X (Proposition 3.2). This result implies in particular that every non-
zero strongly irreducible linear subshift has positive mean dimension (Corollary 3.3). In
§4 we use the Mittag–Leffler lemma for projective sequences of sets to prove that if G is a
countable group, V a finite-dimensional vector space, and X ⊂ V G a linear subshift, then
every linear cellular automaton τ : X→ V G has a closed image in V G for the prodiscrete
topology. This enables us to prove Theorem 1.4. The closed image property of linear
cellular automata is extended to possibly uncountable groups in §5 under the additional
hypothesis that the source linear subshift X has finite type. The proof of our Garden of
Eden theorem (Theorem 1.2) is given in §6. It consists in showing that both the surjectivity
and the pre-injectivity of τ are equivalent to the fact that the linear subshifts X and τ(X)
have the same mean dimension (cf. Corollary 6.4). In the last two sections we describe
some examples of linear cellular automata which are either pre-injective but not surjective
or surjective but not pre-injective.

2. Preliminaries and background
In this section we collect some preliminaries and background material that will be needed
in the following (for more details the reader is referred to [6]).

2.1. Neighborhoods. (See [2, §2] and [6, §5.4].) Let G be a group. Let E and � be
subsets of G. The E-neighborhood of � is the subset �+E

⊂ G consisting of all elements
g ∈ G such that the set gE meets �. Thus, one has

�+E
= {g ∈ G : gE ∩� 6=∅} =

⋃
e∈E

�e−1
=�E−1.

Remark. The definition of 1-irreducibility given in the introduction may be reformulated
by saying that, given a group G, a set A, and a finite subset 1⊂ G, a subshift X ⊂ AG

is 1-irreducible if the following condition is satisfied: if �1 and �2 are finite subsets
of G such that �+11 ∩�2 =∅ then, given any two configurations x1, x2 ∈ X , there exists
a configuration x ∈ X such that x coincides with x1 on �1 and with x2 on �2.
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The following facts will be frequently used in the following proposition.

PROPOSITION 2.1. Let G be a group. Let E and � be subsets of G. Then the following
hold:
(i) if 1G ∈ E, then �⊂�+E ;
(ii) if g ∈ G, then g(�+E )= (g�)+E so that we can omit parentheses and simply write

g�+E instead; and
(iii) if � and E are finite, then �+E is finite.

Proof. This immediately follows from the definition of �+E . 2

PROPOSITION 2.2. Let G be a group and let A be a set. Let τ : AG
→ AG be a

cellular automaton with memory set M. Suppose that there is a subset �⊂ G and two
configurations x, x ′ ∈ AG such that x and x ′ coincide on �. Then the configurations τ(x)
and τ(x ′) coincide outside (G\�)+M .

Proof. It suffices to observe that (1.2) implies that τ(x)(g) depends only on the restriction
of x to gM . 2

2.2. Amenable groups. (See for example [6, Ch. 4] and [15, 22].) A group G is said to
be amenable if there exists a left-invariant finitely additive probability measure defined on
the set P(G) of all subsets of G, that is, a map m : P(G)→ [0, 1] satisfying the following
conditions:
(A-1) m(A ∪ B)= m(A)+ m(B)− m(A ∩ B) for all A, B ∈ P(G) (finite additivity);
(A-2) m(G)= 1 (normalization); and
(A-3) m(g A)= m(A) for all g ∈ G and A ∈ P(G) (left-invariance).
By a fundamental result of Følner [13], a group G is amenable if and only if it admits a
net F = (F j ) j∈J consisting of non-empty finite subsets F j ⊂ G indexed by a directed set
J such that

lim
j

|F+E
j \F j |

|F j |
= 0 for every finite subset E ⊂ G, (2.1)

where we use | · | to denote cardinality of finite sets. Such a net F is called a right Følner
net for G.

All finite groups, all solvable groups, and all finitely generated groups of subexponential
growth are amenable. On the other hand, if a group G contains a non-abelian free subgroup
then G is not amenable.

2.3. Tilings. (See [2, §2] and [6, §5.6].) Let G be a group. Let E and F be subsets of
G. A subset T ⊂ G is called an (E, F)-tiling if it satisfies the following conditions:
(T-1) the subsets gE , g ∈ T , are pairwise disjoint; and
(T-2) G =

⋃
g∈T gF .

Note that if T is an (E, F)-tiling then it is also an (E ′, F ′)-tiling for all E ′, F ′ such that
E ′ ⊂ E and F ⊂ F ′ ⊂ G.

An easy consequence of Zorn’s lemma is the following.

LEMMA 2.3. Let G be a group. Let E be a non-empty subset of G and let F = E E−1
=

{ab−1
: a, b ∈ E}. Then G contains an (E, F)-tiling.
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Proof. See [2, Lemma 2.2]. 2

In amenable groups we shall use the following lower estimate for the asymptotic growth
of tilings with respect to Følner nets.

LEMMA 2.4. Let G be an amenable group and let (F j ) j∈J be a right Følner net for G.
Let E and F be finite subsets of G and suppose that T ⊂ G is an (E, F)-tiling. For each
j ∈ J , let T j be the subset of T defined by T j = {g ∈ T : gE ⊂ F j }. Then there exist a real
number α > 0 and an element j0 ∈ J such that |T j | ≥ α|F j | for all j ≥ j0.

Proof. See [2, Lemma 4.3]. 2

2.4. Mean dimension. Let G be an amenable group, F = (F j ) j∈J a right Følner net for
G, and V a finite-dimensional vector space over some field K. Given a subset �⊂ G, we
shall denote by π� : V G

→ V� the projection map. Observe that π� is K-linear for every
�⊂ G. Observe also that the vector space V� is finite-dimensional if � is a finite subset
of G.

Let X be a vector subspace of V G . The mean dimension mdimF (X) of X with respect
to the right Følner net F is defined by

mdimF (X)= lim sup
j

dim(πF j(X))

|F j |
, (2.2)

where we use dim(·) to denote dimension of finite-dimensional K-vector spaces.
It immediately follows from this definition that mdimF (V G)= dim(V ) and that

mdimF (X)≤mdimF (Y ) whenever X and Y are vector subspaces of V G such that X ⊂ Y .
In particular, we have 0≤mdimF (X)≤ dim(V ) for every vector subspace X ⊂ V G .

An important property of linear cellular automata is the fact that they cannot increase
mean dimension of vector subspaces.

PROPOSITION 2.5. Let G be an amenable group, F = (F j ) j∈J a right Følner net for G,
and V a finite-dimensional vector space over a field K. Let τ : V G

→ V G be a linear
cellular automaton and let X ⊂ V G be a vector subspace. Then one has mdimF (τ (X))≤
mdimF (X).

Proof. See [2, Proposition 4.7]. 2

Remark. It may be shown that if G is an amenable group, F a right Følner net, V a finite-
dimensional vector space, and X ⊂ V G a linear subshift, then the lim sup in the definition
of mdimF (X) is in fact a true limit and that mdimF (X) is independent of the choice of
the right Følner net F for G. These two important facts can be deduced from the theory of
quasi-tiles in amenable groups developed by Ornstein and Weiss in [21] (see [9, 17, 20]).
However, we do not need them in the present paper.

2.5. Reversible linear cellular automata. Let G be a group and let A be a set. A cellular
automaton τ : X→ Y between subshifts X, Y ⊂ AG is said to be reversible if τ is bijective
and the inverse map τ−1

: Y → X is also a cellular automaton.

https://doi.org/10.1017/S0143385710000921 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385710000921


A Garden of Eden theorem for linear subshifts 87

It is well known that every bijective linear cellular automaton τ : X→ Y between
subshifts X, Y ⊂ AG is reversible when the alphabet A is finite (this may be easily deduced
from the compactness of AG and the Curtis–Hedlund theorem [19], which says that, when
the alphabet A is finite, a map between subshifts of AG is a cellular automaton if and only if
it is continuous and G-equivariant). On the other hand, if G contains an element of infinite
order and A is infinite then one can construct a bijective cellular automaton τ : AG

→ AG

that is not reversible (see [7, Corollary 1.2]). Similarly, if G contains an element of infinite
order and V is an infinite-dimensional vector space then one can construct a bijective linear
cellular automaton τ : V G

→ V G that is not reversible (see [7, Theorem 1.1]).
The following result is proved in [3].

THEOREM 2.6. Let G be a countable group, V a finite-dimensional vector space over
a field K, and X, Y ⊂ V G two linear subshifts. Then every bijective linear cellular
automaton τ : X→ Y is reversible.

Proof. See [3, Theorem 3.1]. 2

We will use the fact that mean dimension of linear subshifts is preserved by reversible
linear cellular automata.

PROPOSITION 2.7. Let G be an amenable group, F = (F j ) j∈J a right Følner net for G,
and V a finite-dimensional vector space over a field K. Let X, Y ⊂ V G be two linear
subshifts. Suppose that there exists a reversible linear cellular automaton τ : X→ Y . Then
one has mdimF (X)=mdimF (Y ).

Proof. As τ : X→ Y is a surjective linear cellular automaton, we have mdimF (Y )≤
mdimF (X) by Proposition 2.5. Similarly, we have mdimF (X)≤mdimF (Y ) since
τ−1
: Y → X is a surjective linear cellular automaton. Thus we have mdimF (X)=

mdimF (Y ). 2

By combining Theorem 2.6 and Proposition 2.7, we get the following corollary.

COROLLARY 2.8. Let G be a countable amenable group, F = (F j ) j∈J a right Følner net
for G, and V a finite-dimensional vector space over a field K. Let X, Y ⊂ V G be two
linear subshifts. Suppose that there exists a bijective linear cellular automaton τ : X→ Y .
Then one has mdimF (X)=mdimF (Y ).

3. Mean dimension of strongly irreducible linear subshifts
This section contains results on mean dimension of strongly irreducible linear subshifts.
We start with a slightly technical lemma, which will also be used in the next section.

LEMMA 3.1. Let G be an amenable group, F = (F j ) j∈J a right Følner net for G, and V a
finite-dimensional vector space over a field K. Let X ⊂ V G be a strongly irreducible linear
subshift and let 1 be a finite subset of G such that 1G ∈1 and X is 1-irreducible. Let
D, E and F be finite subsets of G with D+1 ⊂ E. Suppose that T ⊂ G is an (E, F)-tiling
and that Z is a vector subspace of X such that

πgD(Z)$ πgD(X) (3.1)

for all g ∈ T . Then one has mdimF (Z) <mdimF (X).
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Proof. As in Lemma 2.4, let us define, for each j ∈ J , the subset T j ⊂ T by T j = {g ∈ T :
gE ⊂ F j }. Observe that, for all j ∈ J and g ∈ T j , we have the inclusions gD ⊂ gD+1 ⊂

gE ⊂ F j . Denote, for j ∈ J and g ∈ T j , by π
F j

gD : V
F j → V gD the natural projection map.

Consider, for each j ∈ J , the vector subspace π∗F j
(X)⊂ πF j(X) defined by

π∗F j
(X)= {q ∈ πF j(X) : π

F j
gD (q) ∈ πgD(Z) for all g ∈ T j }.

We claim that

dim(π∗F j
(X))≤ dim(πF j(X))− |T j | (3.2)

for all j ∈ J .
To prove our claim, let us fix an element j ∈ J and suppose that T j = {g1, g2, . . . , gm},

where m = |T j |. Consider, for each i ∈ {0, 1, . . . , m}, the vector subspace π (i)F j
(X)⊂

πF j(X) defined by

π
(i)

F j
(X)= {q ∈ πF j(X) : π

F j
gk D(q) ∈ πgk D(Z) for all 1≤ k ≤ i}.

Note that

π
(i)

F j
(X)⊂ π (i−1)

F j
(X)

for all i = 1, 2, . . . , m. Let us show that

dim(π (i)F j
(X))≤ dim(πF j(X))− i (3.3)

for all i ∈ {0, 1, . . . , m}. Since π (m)F j
(X)= π∗F j

(X), this will prove (3.2).

To establish (3.3), we use induction on i . For i = 0, we have π (i)F j
(X)= πF j(X) so that

there is nothing to prove. Suppose now that

dim(π (i−1)
F j

(X))≤ dim(πF j(X))− (i − 1)

for some i ≤ m − 1. By hypothesis (3.1), we can find an element p ∈ πgi D(X)\πgi D(Z).
As (gi D)+1 = gi D+1 ⊂ gi E and X is 1-irreducible, there exists an element x ∈ X
such that πgi D(x)= p and x is identically zero on F j\gi E . Now observe that πF j (x) ∈

π
(i−1)

F j
(X) since the sets g1 D, g2 D, . . . , gi−1 D are all contained in F j\gi E . On the other

hand, we have πF j (x) /∈ π
(i)

F j
(X) as πgi D(x)= p /∈ πgi D(Z). This shows that π (i)F j

(X) is

strictly contained in π (i−1)
F j

(X). Hence we have

dim(π (i)F j
(X))≤ dim(π (i−1)

F j
(X))− 1≤ (dim(πF j(X))− (i − 1))− 1= dim(πF j(X))− i,

by using our induction hypothesis. This establishes (3.3) and therefore (3.2).
By Lemma 2.4, we can find a real number α > 0 and an element j0 ∈ J such that

|T j | ≥ α|F j | for all j ≥ j0. Since πF j (Z)⊂ π
∗

F j
(X), we deduce from (3.2) that

dim(πF j (Z))≤ dim(πF j(X))− α|F j | for all j ≥ j0,
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so that

mdimF (Z) = lim sup
j

dim(πF j (Z))

|F j |

≤ lim sup
j

dim(πF j(X))

|F j |
− α

= mdimF (X)− α

< mdimF (X). 2

PROPOSITION 3.2. Let G be an amenable group, F = (F j ) j∈J a right Følner net for G,
and V a finite-dimensional vector space over a field K. Let X ⊂ V G be a strongly
irreducible linear subshift and Y ⊂ V G a linear subshift such that Y $ X. Then one has
mdimF (Y ) <mdimF (X).

Proof. As Y $ X and Y is closed in V G for the prodiscrete topology, we can find a finite
subset D ⊂ G such that πD(Y )$ πD(X). By the G-invariance of X and Y , this implies
that

πgD(Y )$ πgD(X)

for all g ∈ G.
Let 1 be a finite subset of G such that 1G ∈1 and X is 1-irreducible, and take

E = D+1. By virtue of Lemma 2.3, we can find a finite subset F ⊂ G and an (E, F)-
tiling T ⊂ G. Then, by taking Z = Y , all the hypotheses in Lemma 3.1 are satisfied so that
we get mdimF (Y ) <mdimF (X). 2

COROLLARY 3.3. Let G be an amenable group, F = (F j ) j∈J a right Følner net for G,
and V a finite-dimensional vector space over a field K. Let X ⊂ V G be a non-zero strongly
irreducible linear subshift. Then one has mdimF (X) > 0.

Proof. It suffices to apply Proposition 3.2 by taking Y = {0}. 2

Corollary 3.3 becomes false if we suppress the hypothesis that X is strongly irreducible
even for irreducible linear subshifts of finite type, as the following example shows.

Example 3.1. Take G = Z2 and the Følner sequence F = (Fn)n≥1 given by Fn =

{0, 1, . . . , n − 1}2 for all n ≥ 1. Let K be a field, V a non-zero finite-dimensional vector
space over K, and consider the subset X ⊂ V G defined by

X = {x ∈ V G
: x(g)= x(h) for all g, h ∈ G such that ρ(g)= ρ(h)},

where ρ : Z2
= Z× Z→ Z denotes the projection onto the second factor. In other words,

X consists of the configurations that are constant on each horizontal line in Z2. Observe
that X is a linear subshift of finite type with defining window D = {(0, 0), (1, 0)} and
defining law L = {y ∈ V D

: y(0, 0)= y(1, 0)}. On the other hand, X is irreducible.
Indeed, this immediately follows from the fact that if � is a finite subset of G, then we
can translate � vertically to get a subset �′ ⊂ Z2 such that � and �′ have disjoint images
under the projection ρ.

However, we have dim(πFn (X))= n dim(V ) and |Fn| = n2 for all n ≥ 1 so that
mdimF (X)= limn→∞ n−1 dim(V )= 0.
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4. The Mittag–Leffler lemma and the closed image property for linear subshifts
This section contains the proof of Theorem 1.4.

Let G be a group and let A be a set.
Suppose first that A is finite and let τ : X→ AG be a cellular automaton, where X ⊂ AG

is a subshift. It immediately follows from the compactness of X and the continuity of τ
that the image τ(X) is closed in AG for the prodiscrete topology. As τ is G-equivariant,
we deduce that τ(X) is a subshift of AG .

If G contains an element of infinite order and A is infinite then one can construct a
cellular automaton τ : AG

→ AG whose image is not closed in AG (see [7, Corollary 1.4]).
Similarly, if G contains an element of infinite order and V is an infinite-dimensional vector
space then one can construct a linear cellular automaton τ : V G

→ V G whose image is not
closed in V G (see [7, Theorem 1.3]).

On the other hand, if A = V is a finite-dimensional vector space over a field K and
τ : V G

→ V G is a linear cellular automaton, then the image of τ is closed in V G (see [2,
Lemma 3.1] for G countable and [5, Corollary 1.6] in the general case; see also [16, §4.D]).
As τ is G-equivariant and K-linear, this implies that τ(V G) is a linear subshift of V G .

In this section we extend this last result to linear cellular automata τ : X→ V G , where
G is a countable group, V is a finite-dimensional vector space, and X ⊂ V G is a linear
subshift. The key point in the proof relies on a general well-known result, namely the
Mittag–Leffler lemma for projective sequences of sets. This version of the Mittag–Leffler
lemma may be easily deduced from Theorem 1 in [1, TG II, §5] (see also [18, §I.3]). We
give an independent proof here for the convenience of the reader. Let us first recall a few
facts about projective limits of projective sequences in the category of sets.

Let N denote the set of non-negative integers. A projective sequence of sets consists of
a sequence (Xn)n∈N of sets together with maps fnm : Xm→ Xn defined for all m ≥ n that
satisfy the following conditions:
(PS-1) fnn is the identity map on Xn for all n ∈ N; and
(PS-2) fnk = fnm ◦ fmk for all n, m, k ∈ N such that k ≥ m ≥ n.
Such a projective sequence will be denoted (Xn, fnm) or simply (Xn). The projective limit
lim
←−

Xn of the projective sequence (Xn, fnm) is the subset of
∏

n∈N Xn consisting of the
sequences (xn)n∈N satisfying xn = fnm(xm) for all n, m ∈ N such that n ≤ m.

We say that the projective sequence (Xn) satisfies the Mittag–Leffler condition if, for
each n ∈ N, there exists m ∈ N such that fnk(Xk)= fnm(Xm) for all k ≥ m.

LEMMA 4.1. (Mittag–Leffler) If (Xn, fnm) is a projective system of non-empty sets that
satisfies the Mittag–Leffler condition then its projective limit X = lim

←−
Xn is not empty.

Proof. First observe that if (Xn, fnm) is an arbitrary projective sequence of sets, then
property (PS-2) implies that, for each n ∈ N, the sequence of sets fnm(Xm), m ≥ n, is
non-increasing. The set X ′n =

⋂
m≥n fnm(Xm) is called the set of universal elements in Xn

(cf. [18]). It is clear that the map fnm induces by restriction a map gnm : X ′m→ X ′n for all
n ≤ m and that (X ′n, gnm) is a projective sequence having the same projective limit as the
projective sequence (Xn, fnm).

Suppose now that all the sets Xn are non-empty and that the projective sequence
(Xn, fnm) satisfies the Mittag–Leffler condition. This means that, for each n ∈ N,
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there is an integer m ≥ n such that fnk(Xk)= fnm(Xm) for all k ≥ m. This implies that
X ′n = fnm(Xm) so that, in particular, the set X ′n is not empty. We claim that the map
gn,n+1 : X ′n+1→ X ′n is surjective for every n ∈ N. To see this, let n ∈ N and x ′n ∈ X ′n .
By the Mittag–Leffler condition, we can find an integer p ≥ n + 1 such that fnk(Xk)=

fnp(X p) and fn+1,k(Xk)= fn+1,p(X p) for all k ≥ p. It follows that X ′n = fnp(X p) and
X ′n+1 = fn+1,p(X p). Consequently, we can find x p ∈ X p such that x ′n = fnp(x p). Setting
x ′n+1 = fn+1,p(x p), we have x ′n+1 ∈ X ′n+1 and

gn,n+1(x
′

n+1)= fn,n+1(x
′

n+1)= fn,n+1 ◦ fn+1,p(x p)= fnp(x p)= x ′n .

This proves our claim that gn,n+1 is onto. Now, as the sets X ′n are non-empty, we can
construct by induction a sequence (x ′n)n∈N such that x ′n = gn,n+1(x ′n+1) for all n ∈ N. This
sequence is in the projective limit lim

←−
X ′n = lim

←−
Xn . This shows that lim

←−
Xn is not empty. 2

THEOREM 4.2. Let G be a countable group and let V be a finite-dimensional vector space
over a field K. Let τ : X→ V G be a linear cellular automaton, where X ⊂ V G is a linear
subshift. Then τ(X) is closed in V G for the prodiscrete topology and is therefore a linear
subshift of V G .

Proof. Since G is countable, we can find a sequence (An)n∈N of finite subsets of G such
that G =

⋃
n∈N An and An ⊂ An+1 for all n ∈ N. Let M be a memory set for τ . Let

Bn = {g ∈ G : gM ⊂ An}. Note that G =
⋃

n∈N Bn and Bn ⊂ Bn+1 for all n ∈ N. Denote
by πAn : V

G
→ V An and πBn : V

G
→ V Bn , n ∈ N, the corresponding projection maps.

Since M is a memory set for τ , it follows from (1.2) that if x and x ′ are elements in X
such that πAn (x)= πAn (x

′) then πBn (τ (x))= πBn (τ (x
′)). Therefore, given xn ∈ πAn (X)

and denoting by x̃n any configuration in X such that πAn (̃xn)= xn , the element

yn = πBn (τ (̃xn)) ∈ V Bn

does not depend on the particular choice of the extension x̃n . Thus we can define a
map τn : πAn (X)→ V Bn by setting τn(xn)= yn for all xn ∈ πAn (X). It is clear that τn is
K-linear.

Let now y ∈ V G and suppose that y is in the closure of τ(X). Then, for all n ∈ N, there
exists zn ∈ X such that

πBn (y)= πBn (τ (zn)). (4.1)

Consider, for each n ∈ N, the affine subspace Xn ⊂ πAn (X) defined by Xn = τ
−1
n (πBn (y)).

We have Xn 6=∅ for all n by (4.1). For n ≤ m, the restriction map πAm (X)→ πAn (X)
induces an affine map fnm : Xm→ Xn . Conditions (PS-1) and (PS-2) are trivially satisfied
so that (Xn, fnm) is a projective sequence. We claim that (Xn, fnm) satisfies the Mittag–
Leffler condition. Indeed, consider, for all n ≤ m, the affine subspace fnm(Xm)⊂ Xn .
We have fnm′(Xm′)⊂ fnm(Xm) for all n ≤ m ≤ m′ since fnm′ = fnm ◦ fmm′ . As the
sequence fnm(Xm) (m = n, n + 1, . . . ) is a non-increasing sequence of finite-dimensional
affine subspaces, it stabilizes, i.e., for each n ∈ N there exists an integer m ≥ n such that
fnk(Xk)= fnm(Xm) if k ≥ m. Thus, the Mittag–Leffler condition is satisfied. It follows
from Lemma 4.1 that the projective limit lim

←−
Xn is non-empty. Choose an element

(xn)n∈N ∈ lim
←−

Xn . We have that xn+1 coincides with xn on An and that xn ∈ πAn (X)
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for all n ∈ N. As X is closed in V G and G =
⋃

n∈N An , we deduce that there exists a
(unique) configuration x ∈ X such that x |An = xn for all n. We have τ(x)|Bn = τn(xn)=

yn = y|Bn for all n. Since G =
⋃

n∈N Bn , this shows that τ(x)= y. 2

COROLLARY 4.3. Let G be a countable amenable group, F = (F j ) j∈J a right Følner
net for G, and V a finite-dimensional vector space over a field K. Let τ : X→ Y be a
linear cellular automaton, where X, Y ⊂ V G are linear subshifts such that mdimF (X)=
mdimF (Y ) and Y is strongly irreducible. Then the following conditions are equivalent:
(a) τ is surjective; and
(b) mdimF (τ (X))=mdimF (X).

Proof. The implication (a) ⇒ (b) is trivial. Conversely, suppose that mdimF (τ (X))=
mdimF (X). Theorem 4.2 implies that τ(X) is a linear subshift of V G . As τ(X)⊂ Y , it
then follows from Proposition 3.2 that τ(X)= Y . Thus, τ is surjective. 2

Proof of Theorem 1.4. Let X ⊂ V G be a strongly irreducible linear subshift and suppose
that τ : X→ X is an injective linear cellular automaton. Let us show that τ is surjective.
Let F = (F j ) j∈J be a right Følner net for G. We know that τ(X) is a linear subshift by
Theorem 4.2. As τ induces a bijective linear cellular automaton from X onto τ(X), we
have mdimF (τ (X))=mdimF (X) by using Corollary 2.8. Since X is strongly irreducible,
this implies that τ is surjective by Corollary 4.3. Thus X is L-surjunctive. 2

5. The closed image property for linear subshifts of finite type
In this section we show that Theorem 4.2 remains true for any (possibly uncountable)
group G if we add the hypothesis that the linear subshift X ⊂ V G is of finite type. The
proof relies on the fact that a subshift of finite type can be factorized along the left cosets
of any subgroup containing a defining window. In order to state this last result in a more
precise way, let us first introduce some notation.

Let G be a group and let A be a set. Let H be a subgroup of G and denote by
G/H = {gH : g ∈ G} the set consisting of all left cosets of H in G. For every coset
c ∈ G/H , we equip the set Ac

=
∏

g∈c A with its prodiscrete topology and we denote
by πc : AG

→ Ac the projection map. Since the cosets c ∈ G/H form a partition of G, we
have a natural identification of topological spaces

AG
=

∏
c∈G/H

Ac.

With this identification, we have x = (x |c)c∈G/H for each x ∈ AG , where x |c = πc(x) ∈ Ac

is the restriction of the configuration x to c.
Given a coset c ∈ G/H and an element g ∈ c, let φg : H → c denote the bijective map

defined by φg(h)= gh for all h ∈ H . Then φg induces a homeomorphism φ∗g : Ac
→ AH

given by φ∗g(y)= y ◦ φg for all y ∈ Ac.

PROPOSITION 5.1. Let G be a group and let A be a set. Let X ⊂ AG be a subshift of
finite type. Let D ⊂ G be a defining window and L ⊂ AD a defining law for X, so that
X = XG(D, L). Suppose that H is a subgroup of G such that D ⊂ H. Then one has:
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(i) X =
∏

c∈G/H Xc, where Xc = πc(X)⊂ Ac denotes the projection of X on Ac;
(ii) X H = X H (D, L); and
(iii) φ∗g(Xc)= X H for all c ∈ G/H and g ∈ c.

Proof. In order to establish (i), it suffices to show that
∏

c∈G/H Xc ⊂ X since the converse
inclusion is trivial. Suppose that x̃ = (̃x |c)c∈G/H ∈

∏
c∈G/H Xc. Let g ∈ G and consider

the left coset c = gH . Then we can find x ∈ X such that x̃ |c = x |c. As gD ⊂ gH = c, we
have

(g−1 x̃)(d)= x̃(gd)= x(gd)= (g−1x)(d)

for all d ∈ D. It follows that (g−1 x̃)|D = (g−1x)|D ∈ L for all g ∈ G. We deduce that
x̃ ∈ XG(D, L)= X . This completes the proof of (i).

If x ∈ X then (h−1x |H )|D = (h−1x)|D ∈ L for all h ∈ H . Thus, we have X H ⊂

X H (D, L). Conversely, suppose that y ∈ X H (D, L). Choose a complete set of
representatives R ⊂ G for the left cosets of H in G and consider the configuration x ∈ AG

defined by x(rh)= y(h) for all r ∈ R and h ∈ H . Then we clearly have x ∈ XG(D, L)=
X and x |H = y. Thus X H (D, L)⊂ X H . This completes the proof of (ii).

Let now c ∈ G/H and g ∈ c. In order to prove

φ∗g(Xc)⊂ X H , (5.1)

let yc ∈ φ
∗
g(Xc). Then there exists a (unique) xc ∈ Xc such that yc = φ

∗
g(xc). Let x ∈ X

such that πc(x)= xc. For all h ∈ H and d ∈ D, we have

(h−1 yc)(d)= yc(hd)= xc(ghd)= x(ghd)= (gh)−1x(d),

so that (h−1 yc)|D = ((gh)−1x)|D ∈ L since x ∈ X = XG(D, L). This shows that yc ∈

X H (D, L)= X H and (5.1) follows. Conversely, suppose that xH ∈ X H and consider the
configuration xc = φ

∗
g(xH ) ∈ Ac. Let us show that xc ∈ Xc. Since xH ∈ X H , we can find a

configuration x ∈ X such that xH = x |H . Setting y = gx ∈ X , we have

y(gh)= g−1 y(h)= x(h)= xH (h)= xc(gh),

for all h ∈ H . Thus xc = y|c ∈ Xc. This gives X H ⊂ φ
∗
g(Xc). From this and (5.1) we

finally deduce (iii). 2

COROLLARY 5.2. Suppose that G is a group that is not finitely generated. Then:
(i) if A is a set and X ⊂ AG is a subshift of finite type that is not reduced to a single

configuration then X is infinite; and
(ii) if V is a vector space over a field K and X ⊂ V G is a linear subshift of finite type that

is not reduced to the zero configuration then X is infinite-dimensional (as a vector
space over K).

Proof. Let A be a set, X ⊂ AG a subshift of finite type, and D ⊂ G a defining window for
X . Let H denote the subgroup of G generated by D. Observe that H is of infinite index
in G since G is not finitely generated. With the above notation, we have X =

∏
c∈G/H Xc

by Proposition 5.1. Moreover, for all c ∈ G/H and g ∈ c, we have φ∗g(Xc)= X H . As all
the maps φ∗g are bijective, we deduce that X is either reduced to a single configuration or
infinite. This proves (i).
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Suppose now that A = V is a vector space over some field K. Then Xc is a vector
subspace of V c and φ∗g : Xc→ X H is an isomorphism of K-vector spaces for all c ∈ G/H
and g ∈ c. As X =

∏
c∈G/H Xc, we conclude that X is either reduced to the zero

configuration or infinite-dimensional. This shows (ii). 2

Example. Let G be a group that is not finitely generated and let V be a non-zero finite-
dimensional vector space over a field K. Suppose that G0 is a finite index subgroup of
G. Consider the linear subshift X ⊂ V G consisting of the configurations x ∈ V G which
are fixed by each element of G0. We clearly have dim(X)= [G : G0] dim(V ) <∞. Thus
X is not of finite type by Corollary 5.2(ii).

THEOREM 5.3. Let G be a (possibly uncountable) group and let V be a finite-dimensional
vector space over a field K. Let τ : X→ V G be a linear cellular automaton, where
X ⊂ V G is a linear subshift of finite type. Then τ(X) is closed in V G for the prodiscrete
topology and is therefore a linear subshift of V G .

Proof. Let M ⊂ G be a memory set and µ : V M
→ V a local defining map for τ . Also

let D ⊂ G be a defining window for X and denote by H the subgroup of G generated by
M and D. Note that H is finitely generated since both M and D are finite sets.

Setting Xc = πc(X) for all c ∈ G/H , we have X =
∏

c∈G/H Xc by Proposition 5.1. On
the other hand, if x ∈ X , c ∈ G/H , and g ∈ c, then τ(x)(g) depends only on the restriction
of x to c, since gM ⊂ gH = c. This implies that τ may be written as a product

τ =
∏

c∈G/H

τc, (5.2)

where τc : Xc→ V c is the unique map that satisfies τc(x |c)= (τ (x))|c for all x ∈ X . Note
that τH : X H → V H is the linear cellular automaton over H with memory set M ⊂ H and
local defining map µ.

Let us show that the maps τc and τH are conjugate by φ∗g , that is,

τc = (φ
∗
g)
−1
◦ τH ◦ φ

∗
g . (5.3)

Let y ∈ Xc and let x ∈ X extending x . For all h ∈ H , we have

(φ∗g ◦ τc)(y)(h) = φ
∗
g(τc(y))(h)

= (τc(y) ◦ φg)(h)

= τc(y)(gh)

= τ(x)(gh)

= g−1τ(x)(h)

= τ(g−1x)(h),

where the last equality follows from the G-equivariance of τ . Now observe that the
configuration g−1 x̃ ∈ X extends x ◦ φg ∈ X H . Thus, we have

(φ∗g ◦ τc)(x)(h)= τH (x ◦ φg)(h)= τH (φ
∗
g(x))(h)= (τH ◦ φ

∗
g)(x)(h).

This shows that φ∗g ◦ τc = τH ◦ φ
∗
g , which gives (5.3) since φ∗g is bijective.
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As the subgroup H ⊂ G is finitely generated and therefore countable, we deduce from
Theorem 4.2 that τH (X H ) is closed in V H for the prodiscrete topology. Since φ∗g is a
homeomorphism, it follows that

τc(Xc)= (φ
∗
g)
−1(τH (X H ))

is closed in V c for all c ∈ G/H . Thus,

τ(X)=
∏

c∈G/H

πc(τ (X))=
∏

c∈G/H

τc(Xc)

is a closed subspace of V G . 2

COROLLARY 5.4. Let G be a (possibly uncountable) amenable group, F = (F j ) j∈J

a right Følner net for G, and V a finite-dimensional vector space over a field K.
Let τ : X→ Y be a linear cellular automaton, where X, Y ⊂ V G are linear subshifts
satisfying mdimF (X)=mdimF (Y ). Suppose that X is of finite type and that Y is strongly
irreducible. Then the following conditions are equivalent:
(a) τ is surjective; and
(b) mdimF (τ (X))=mdimF (X).

Proof. The implication (a) ⇒ (b) is trivial. Conversely, suppose that mdimF (τ (X))=
mdimF (X). Theorem 5.3 implies that τ(X) is a linear subshift of V G . As τ(X)⊂ Y , it
then follows from Proposition 3.2 that τ(X)= Y . Thus, τ is surjective. 2

6. Proof of the Garden of Eden theorem
This section contains the proof of Theorem 1.2. Let us start with the following theorem.

THEOREM 6.1. Let G be an amenable group, F = (F j ) j∈J a right Følner net for G, and
V a finite-dimensional vector space over a field K. Let X ⊂ V G be a strongly irreducible
linear subshift of finite type and let τ : X→ V G be a linear cellular automaton. Then the
following conditions are equivalent:
(a) τ is pre-injective; and
(b) mdimF (τ (X))=mdimF (X).

For the proof of (a)⇒ (b) in Theorem 6.1, we shall use the following lemma.

LEMMA 6.2. Let G be a group and let V be a finite-dimensional vector space over a field
K. Let X ⊂ V G be a strongly irreducible linear subshift of finite type and suppose that
M is a finite subset of G such that X is M-irreducible, 1G ∈ M, and M−1 is a defining
window for X. Then, given any configuration x ∈ X and any finite subset �⊂ G, there
exists a configuration z ∈ X that coincides with x on� and is identically zero on G\�+M .

Proof. Let x ∈ X and�⊂ G a finite subset. Note that we have the inclusions�⊂�+M
⊂

�+M2
⊂�+M3

since 1G ∈ M . As both x and the zero configuration belong to X and X
is M-irreducible, we can find a configuration z′ ∈ X that coincides with x on � and is
identically zero on �+M3

\�+M . Now consider the configuration z ∈ V G that coincides
with z′ on �+M3

and is identically zero on G\�+M3
. Observe that if g ∈�+M2

then
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gM−1
⊂�+M3

and therefore z coincides with z′ on gM−1, while if g ∈ G\�+M2
then

gM−1
⊂ G\�+M and therefore z is identically zero on gM−1. As both z′ and the zero

configuration belong to X and M−1 is a defining window for X , we deduce that z ∈ X . On
the other hand, z coincides with x on � and is identically zero on G\�+M . Consequently,
z has the required properties. 2

Proof of (a)⇒ (b) in Theorem 6.1. Suppose that mdimF (τ (X)) <mdimF (X). Let Y =
τ(X). Let M ⊂ G be a memory set for τ . Up to enlarging the subset M if necessary, we
can also suppose that 1G ∈ M and that X is M-irreducible and admits M−1 as a defining
window.

We first observe that π
F+M2

j
(Y ) is a vector subspace of πF j (Y )× V F+M2

j \F j so that we

have
dim(π

F+M2
j

(Y ))≤ dim(πF j (Y ))+ |F
+M2

j \F j | dim(V ). (6.1)

On the other hand, as (F j ) j∈J is a right Følner net for G, we have

lim
j

|F+M2

j \F j |

|F j |
= 0

by (2.1). Therefore, after dividing the two sides of (6.1) by |F j | and taking the lim sup
over j , we get

lim sup
j

dim(π
F+M2

j
(Y ))

|F j |
≤ lim sup

j

dim(πF j (Y ))

|F j |
=mdimF (Y ).

As mdimF (Y ) <mdimF (X) by our assumption, this implies that there exists j0 ∈ J such
that

dim(π
F+M2

j0

(Y )) < dim(πF j0
(X)). (6.2)

Consider now the finite-dimensional vector subspace Z ⊂ X consisting of all
configurations z ∈ X whose support {g ∈ G : z(g) 6= 0} is contained in F+M

j0
. By virtue

of Lemma 6.2, we have
πF j0
(Z)= πF j0

(X). (6.3)

On the other hand, we deduce from Proposition 2.2 that τ(z) is identically zero on

G\F+M2

j0
for every z ∈ Z . Consequently, we have

dim(τ (Z)) = dim(π
F+M2

j0

(τ (Z)))

≤ dim(π
F+M2

j0

(Y ))

< dim(πF j0
(X)) (by (6.2))

= dim(πF j0
(Z)) (by (6.3)).

As dim(πF j0
(Z))≤ dim(Z), this implies that dim(τ (Z)) < dim(Z). It follows that we can

find two distinct configurations z1, z2 ∈ Z such that τ(z1)= τ(z2). Since all configurations
in Z coincide outside F+M

j0
, this shows that τ is not pre-injective. 2
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For the proof of (b)⇒ (a), we shall use the following lemma.

LEMMA 6.3. Let G be a group and let V be a finite-dimensional vector space over a field
K. Let X ⊂ V G be a linear subshift of finite type and let D be a defining window for X with
1G ∈ D. Let (�i )i∈I be a family of subsets of G such that�+D

i ∩�+D
j =∅ for all distinct

i, j ∈ I . Also let (xi )i∈I be a family of configurations in X such that the support of xi is
contained in �i for each i ∈ I . Then the configuration x ∈ V G defined by x(g)= xi (g) if
g ∈�i for some (necessarily unique) i ∈ I , and by x(g)= 0 otherwise, satisfies x ∈ X.

Proof. If g ∈�+D
i for some (necessarily unique) i ∈ I then x coincides with xi on gD.

Otherwise, x is identically zero on gD. As D is a defining window for X , this shows that
x ∈ X . 2

Proof of (b)⇒ (a) in Theorem 6.1. Suppose that τ is not pre-injective. This means that we
can find a configuration x0 ∈ X with finite support�= {g ∈ G : x0(g) 6= 0} 6=∅ satisfying
τ(x0)= 0. Let M be a memory set for τ . We can also assume that 1G ∈ M , that M = M−1,
and that M is a defining window for X . Let E =�+M2

. Then, by Lemma 2.4, we can find
a finite subset F ⊂ G and an (E, F)-tiling T ⊂ G. Note that, for each g ∈ G, the support
of the configuration gx0 is the set g�. As g�⊂ g�+M , this implies that πg�+M (gx0) 6= 0.
Let us choose, for each g ∈ T , a hyperplane Hg ⊂ πg�+M (X) such that πg�+M (gx0) /∈ Hg .

Consider now the vector subspace Y ⊂ X consisting of all the configurations y ∈ X that
satisfy πg�+M (y) ∈ Hg for all g ∈ T . We claim that τ(Y )= τ(X). To see this, let x be an
arbitrary configuration in X . Then, for each g ∈ T , there exists a scalar λg ∈K such that
πg�+M (x + λggx0) ∈ Hg . Now observe that (g�)+M

∩ (g′�)+M
⊂ gE ∩ g′E =∅ for all

distinct g, g′ ∈ T (cf. the defining property (T-1) of a tiling in §2.3). Since X is of finite
type with defining window M and 1G ∈ M , it follows from Lemma 6.3 that we can find
a configuration x ′0 ∈ X such that πg�(x ′0)= πg�(λggx0) for all g ∈ T and x ′0 is identically
zero outside

∐
g∈T g�. Note that in fact we have

π
g�+M2 (x ′0)= πg�+M2 (λggx0) (6.4)

for each g ∈ T , since the configuration gx0 is identically zero outside g�.
Consider the configuration y = x + x ′0. By construction we have y ∈ Y . Let us show

that τ(y)= τ(x). Since y = x outside
∐

g∈T g�, we deduce from Proposition 2.5 that
τ(y) and τ(x) coincide outside

∐
g∈T g�+M . Now, if h ∈ g�+M for some (necessarily

unique) g ∈ T , then hM = hM−1
⊂ g�+M2

and therefore

τ(y)(h) = τ(x + x ′0)(h)

= τ(x + λggx0)(h) (by (6.4))

= τ(x)(h)+ λggτ(x0) (by linearity and G-equivariance of τ )

= τ(x)(h) (since x0 is in the kernel of τ ).

Thus τ(x)= τ(y). This proves our claim that τ(X)= τ(Y ).
Using Proposition 2.5, we deduce that

mdimF (τ (X))=mdimF (τ (Y ))≤mdimF (Y ). (6.5)
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Now observe that, for all g ∈ T , we have

(gx0)|�+M ∈ πg�+M (X)\πg�+M (Y )

and hence
πg�+M (Y )$ πg�+M (X).

Therefore, we can apply Lemma 3.1 to the strongly irreducible linear subshift X and the
vector subspace Y ⊂ X by taking 1= M and D =�+M . This gives us mdimF (Y ) <
mdimF (X) which, combined with (6.5), implies that mdimF (τ (X)) <mdimF (X). 2

This completes the proof of Theorem 6.1.

COROLLARY 6.4. Let G be an amenable group, F = (F j ) j∈J a right Følner net for G,
and V a finite-dimensional vector space over a field K. Let τ : X→ Y be a linear cellular
automaton, where X, Y ⊂ V G are linear subshifts satisfying mdimF (X)=mdimF (Y ).
Suppose that X is strongly irreducible of finite type and that Y is strongly irreducible.
Then the following conditions are equivalent:
(a) τ is surjective;
(b) mdimF (τ (X))=mdimF (X); and
(c) τ is pre-injective.

Proof. The equivalence of conditions (a) and (b) follows from Corollary 5.4. The
equivalence between conditions (b) and (c) follows from Theorem 6.1. 2

Proof of Theorem 1.2. This follows immediately from the equivalence between condi-
tions (a) and (c) in Corollary 6.4 by taking X = Y . 2

7. Pre-injective but not surjective linear cellular automata
In this section we give examples of pre-injective but not surjective linear cellular automata
τ : X→ X , where G is a group, V is a finite-dimensional vector space, and X ⊂ V G

is a linear subshift. We recall that Theorem 1.2 implies that there is no such example
with X strongly irreducible of finite type, and in particular with X = V G , if the group
G is amenable. When G contains a non-abelian free subgroup and dim(V )= 2, one can
construct a linear cellular automaton τ : V G

→ V G that is pre-injective but not surjective.
This was done in [4, Example 4.10] for free groups of rank two in a more general setting,
namely for linear cellular automata whose alphabet is a module over any non-zero ring.

PROPOSITION 7.1. Let G be a group and let V be a two-dimensional vector space over a
field K. Suppose that G contains a non-abelian free subgroup (e.g. G is a non-abelian free
group). Then there exists a linear cellular automaton τ : V G

→ V G that is pre-injective
but not surjective.

Proof. We may assume V =K2. Let p1 and p2 be the endomorphisms of V defined
respectively by p1(v)= (λ1, 0) and p2(v)= (λ2, 0) for all v = (λ1, λ2) ∈ V . Let a
and b be two elements in G generating a free subgroup of rank two. Consider the map
τ : V G

→ V G given by

τ(x)(g)= p1(x(ga))+ p2(x(gb))+ p1(x(ga−1))+ p2(x(gb−1))
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for all x ∈ V G and g ∈ G. Clearly τ is a linear cellular automaton admitting M =
{a, b, a−1, b−1

} as a memory set. We have τ(V G)⊂ (K× {0})G $ V G so that τ is not
surjective.

Let us show that τ is pre-injective. Suppose it is not. Then there exists a configuration
x0 ∈ V G with non-empty finite support �⊂ G such that τ(x0)= 0. Let F denote the free
subgroup generated by a and b. Choose a left coset c0 ∈ G/F such that c0 meets �. The
coset c0 may be viewed as a regular tree of degree four by joining two elements g, h ∈ c0

if and only if h−1g ∈ M . Consider now an element g0 ∈� that is an ending point of the
minimal tree spanned by c0 ∩� in the tree c0. Observe that, among the four elements in c0

that are adjacent to g0, there are at least three elements outside �. As g0 is in the support
of x0, we must have p1(x0(g0)) 6= 0 or p2(x0(g0)) 6= 0. If p1(x0(g0)) 6= 0, let us choose g1

outside� such that g0 = g1a or g0 = g1a−1. This gives a contradiction since g0 is then the
only element in � that is adjacent to g1 so that (7) implies that τ(x)(g1)= p1(x(g0)) 6= 0.
If p1(x0(g0))= 0 then p2(x0(g0)) 6= 0. In this case, we choose an element g2 outside �
such that g0 = g2b or g0 = g2b−1. We then get τ(x0(g2))= p2(x0(g0)) 6= 0, which yields
also a contradiction. 2

PROPOSITION 7.2. Let G be a group and let V be a one-dimensional vector space over a
field K. Then the following hold:
(i) if G is infinite, then there exist a linear subshift X ⊂ V G and a linear cellular

automaton τ : X→ X that is pre-injective but not surjective;
(ii) if G contains an infinite subgroup of infinite index, then there exist an irreducible

linear subshift X ⊂ V G and a linear cellular automaton τ : X→ X that is pre-
injective but not surjective;

(iii) if G is not locally finite (e.g. G = Z), then there exist a linear subshift of finite type
X ⊂ V G and a linear cellular automaton τ : X→ X that is pre-injective but not
surjective; and

(iv) if G contains an infinite finitely generated subgroup of infinite index (e.g. G = Z2),
then there exist an irreducible linear subshift of finite type X ⊂ V G and a linear
cellular automaton τ : X→ X that is pre-injective but not surjective.

Proof. Suppose that H is an infinite subgroup of G. Consider the subset X ⊂ V G

consisting of the configurations x ∈ V G which are constant on each left coset of H . Clearly
X is a non-zero linear subshift of V G . The linear cellular automaton τ : X→ X defined
by τ(x)= 0 for all x ∈ X is not surjective. However, τ is pre-injective. Indeed, as every
left coset of H is infinite, any two configurations in X that are almost equal must coincide.
We obtain (i) by taking H = G.

If H is of infinite index in G, we can find, for every finite subset �⊂ G, an element
g ∈ G so that no left coset of H meets both � and g�. This shows that X is irreducible
and (ii) follows.

If H admits a finite generating subset D ⊂ H , then X is of finite type since X =
XG(D, L), where L ⊂ V D denotes the vector subspace of V D consisting of all constant
maps from D to V . This shows (iii).

Finally, if H is both finitely generated and of infinite index in G, then X is an irreducible
linear subshift of finite type by the preceding observations. This gives (iv). 2
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Note that none of the linear subshifts X ⊂ V G appearing in the proof of Proposition 7.2
is strongly irreducible (G amenable or not). Indeed, suppose that 1 is a finite subset
of G. Then, as H is infinite, we can find an element h0 ∈ H that is not in 1. The sets
�1 = {h0} and �2 = {1G} satisfy �+11 ∩�2 =∅. However, if x1 ∈ V G is a non-zero
constant configuration, we have x1 ∈ X but there is no configuration x ∈ X that coincides
with x1 on �1 and with the zero configuration on �2.

8. Surjective but not pre-injective linear cellular automata
In this section we describe examples of surjective but not pre-injective linear cellular
automata τ : X→ X , where G is a group, V is a finite-dimensional vector space, and
X ⊂ V G is a linear subshift. We recall that Theorem 1.2 implies that there is no such
example with X strongly irreducible of finite type, and in particular with X = V G , if the
group G is amenable. When G contains a non-abelian free subgroup and dim(V )= 2,
one can construct a linear cellular automaton τ : V G

→ V G that is surjective but not pre-
injective. This was done in [4, Example 4.11] for free groups of rank two in a more general
setting, namely for linear cellular automata whose alphabet is a module over any non-zero
ring.

PROPOSITION 8.1. Let G be a group and let V be a two-dimensional vector space over
a field K. Suppose that G contains a non-abelian free subgroup (e.g. G is a non-abelian
free group). Then there exists a linear cellular automaton τ : V G

→ V G that is surjective
but not pre-injective.

Proof. We may assume V =K2. Let q1 and q2 be the endomorphisms of V respectively
defined by q1(v)= (λ1, 0) and q2(v)= (0, λ1) for all v = (λ1, λ2) ∈ V . Let a and b be two
elements in G generating a free subgroup of rank two. Consider the map τ : V G

→ V G

given by

τ(x)(g)= q1(x(ga))+ q1(x(ga−1))+ q2(x(gb))+ q2(x(gb−1))

for all x ∈ V G and g ∈ G. Clearly τ is a linear cellular automaton admitting M =
{a, b, a−1, b−1

} as a memory set. The configuration that takes the value (0, 1) at 1G

and is identically zero on G\{1G} has non-empty finite support and is in the kernel of τ .
Therefore τ is not pre-injective.

Let us show that τ is onto. Let z = (z1, z2) ∈ V G . We have to show the existence of
a configuration x = (x1, x2) ∈ V G such that z = τ(x). Let F denote the free subgroup
of G generated by a and b. For h ∈ F , we denote by `(h) the word length of h, that is,
the smallest integer n ≥ 0 such that h can be written as a product h = s1s2 · · · sn , where
si ∈ M for 1≤ i ≤ n. Let R ⊂ G be a complete set of representatives for the left cosets
of F in G so that every element g ∈ G can be uniquely written in the form g = rh with
r ∈ R and h ∈ F . We define x(g) by induction on `(h). If `(h)= 0, that is, g ∈ R, we set
x(g)= (0, 0). If `(h)= 1, that is, g = rs for some r ∈ R and s ∈ M , we set

x(g)=


(z1(r), 0) if s = a,

(z2(r), 0) if s = b,

(0, 0) if s = a−1 or s = b−1.
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Suppose now that, for some integer n ≥ 2, the value of x has been defined at each element
of the form rh, where r ∈ R and h ∈ F satisfies `(h)≤ n − 1. Let g = rh, where r ∈ R
and h ∈ H satisfies `(h)= n. Then h can be uniquely written in the form h = kss′, where
k ∈ F satisfies `(k)= n − 2 and s, s′ ∈ M are such that ss′ 6= 1G . We set

x(g)=



(z1(rks)− x1(rk), 0) if s ∈ {a, a−1
} and s = s′,

(z2(rks), 0) if s ∈ {a, a−1
} and s′ = b,

(z1(rk), 0) if s ∈ {b, b−1
} and s′ = a,

(z2(rk)− x2(rks), 0) if s ∈ {b, b−1
} and s′ = s,

(0, 0) otherwise.

The configuration x defined in this way clearly satisfies z = τ(x). This shows that τ is
surjective. 2

REFERENCES
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