Hostname: page-component-6bf8c574d5-vmclg Total loading time: 0 Render date: 2025-02-21T04:05:59.550Z Has data issue: false hasContentIssue false

Entropy and preimage sets

Published online by Cambridge University Press:  02 December 2003

DORIS FIEBIG
Affiliation:
Institut für Mathematische Stochastik, Universität Göttingen, Lotzestrasse 13, 37083 Göttingen, Germany (e-mail: fiebig@math.uni-goettingen.de)
ULF-RAINER FIEBIG
Affiliation:
Institut für Mathematische Stochastik, Universität Göttingen, Lotzestrasse 13, 37083 Göttingen, Germany (e-mail: fiebig@math.uni-goettingen.de)
ZBIGNIEW H NITECKI
Affiliation:
Department of Mathematics, Tufts University, Medford, MA 02155, USA (e-mail: zbigniew.nitecki@tufts.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the relation between topological entropy and the dispersion of preimages. Symbolic dynamics plays a crucial role in our investigation. For forward expansive maps, we show that the two pointwise preimage entropy invariants defined by Hurley agree with each other and with topological entropy, and are reflected in the growth rate of the number of preimages of a single point, called a preimage growth point for the map. We extend this notion to that of an entropy point for a system, in which the dispersion of preimages of an $\varepsilon$-stable set measures topological entropy. We show that for maps satisfying a weak form of the specification property, every point is an entropy point and that every asymptotically h-expansive homeomorphism (in particular, every smooth diffeomorphism of a compact manifold) has entropy points. Examples are given of maps in which Hurley's invariants differ and of homeomorphisms with no entropy points.

Type
Research Article
Copyright
2003 Cambridge University Press