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Abstract. We study the relation between topological entropy and the dispersion of
preimages. Symbolic dynamics plays a crucial role in our investigation. For forward
expansive maps, we show that the two pointwise preimage entropy invariants defined by
Hurley agree with each other and with topological entropy, and are reflected in the growth
rate of the number of preimages of a single point, called a preimage growth point for
the map. We extend this notion to that of an entropy point for a system, in which the
dispersion of preimages of an ε-stable set measures topological entropy. We show that for
maps satisfying a weak form of the specification property, every point is an entropy point
and that every asymptotically h-expansive homeomorphism (in particular, every smooth
diffeomorphism of a compact manifold) has entropy points. Examples are given of maps
in which Hurley’s invariants differ and of homeomorphisms with no entropy points.

1. Basic notation and statement of results
The formulation by Bowen [Bow71] and Dinaburg [Din70] of topological entropy htop(f )

for a continuous map f of a compact metric space X to itself can be summarized (following
[Bow78, p. 17]) in an intuitively appealing way. Imagine studying X with measurements of
high, but not absolute, resolution—points of X can be distinguished if and only if they are
at least some fixed ε > 0 apart. Count the number of distinct points we can detect. Now let
the map f act on X and repeat our measurements. Some previously indistinguishable
points may be pushed apart by f , so the number of points we can detect grows over time.
The rate at which this number grows is an indication of the dynamic complexity of f .

The apparent time-asymmetry of this formulation is illusory for an invertible system,
since for any homeomorphism htop(f

−1) = htop(f ). It is less clear how to ‘reverse
time’ in a general system and a number of different entropy-like invariants based on
the preimage structure of a map have been formulated and studied in recent years
[LW91, LP92, NP99, Hur95].
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In this paper, we consider a pair of such invariants formulated by Hurley [Hur95].
We find that for forward expansive maps, both invariants agree with htop(f ) and in fact are
captured by the preimage structure of a single point, which we call a preimage growth
point. This observation suggests to us the possibility of ‘localizing’ the entropy of a
more general class of maps—including some homeomorphisms—by reinterpreting and
extending Hurley’s invariants in terms of the preimage structure of stable sets. We are able
to establish that when X has finite covering dimension, this invariant agrees with htop(f ),
and when f is asymptotically h-expansive there exists an entropy point whose ε-stable
sets yield our invariant. In particular, this applies to C∞ diffeomorphisms of a compact
manifold.

Throughout this paper, f is a continuous map of a compact metric space X to itself.
We denote the base metric on X by d , but we also consider the Bowen–Dinaburg metrics
generated by f ,

d
f
n (x, y) := max

0≤i<n
d(f ix, f iy).

For ε > 0 and n ∈ N = {0, 1, 2, . . . }, n ≥ 1, a subset S ⊂ X is (n, ε)-separated
(with respect to f ) if distinct points are spaced at least ε apart when using the metric d

f
n :

x, y ∈ S, x �= y ⇒ d
f
n (x, y) > ε.

Compactness puts an upper bound on the cardinality of any (n, ε)-separated set in X; for
any subset K ⊂ X, let

max sep(n, ε,K) := max{#S | S ⊂ K and S is (n, ε)-separated}.
It is reasonable to expect the numbers max sep(n, ε,K) to grow roughly exponentially
with n; we can take the exponential growth rate of any sequence {cn}n≥1 of reals cn ≥ 0,

GR{cn} := lim sup
n→∞

1

n
log cn

(with log 0 := −∞). Topological entropy (originally formulated in terms of open covers
[AKM65]) is characterized by Bowen [Bow72] and Dinaburg [Din70] as

htop(f ) := lim
ε→0

GR{max sep(n, ε,X)}.
It is well known that htop(f ) is an invariant of topological conjugacy—in particular,
replacing d with any equivalent metric leads to the same value for htop(f ). Furthermore,
if f is invertible, then S is (n, ε)-separated with respect to f iff f n−1S is (n, ε)-separated
with respect to f −1, yielding the equality htop(f ) = htop(f

−1) for homeomorphisms.
When f is not invertible, the ‘inverse’ is set-valued, yielding the preimage set for n ≥ 0,

f −nx := {z ∈ X | f nz = x}.
Hurley’s invariants [Hur95] try to measure the maximum rate of dispersal of the preimage
sets of individual points; they are called pointwise preimage entropies in [NP99].
The difference between these two invariants is when the maximization takes place:

hm(f ) := lim
ε→0

GR
{

max
x∈X

max sep(n, ε, f −nx)
}

hp(f ) := sup
x∈X

lim
ε→0

GR{max sep(n, ε, f −nx)}.

https://doi.org/10.1017/S0143385703000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385703000221


Entropy and preimage sets 1787

The inequalities
hp(f ) ≤ hm(f ) ≤ htop(f )

are clear; Hurley also found a general upper bound for htop(f ) in terms of hm(f ) and a
second invariant [Hur95]. For f a homeomorphism, the pointwise preimage entropies are
automatically both zero (and so, in general, different from htop(f )). It was not known
whether these preimage entropies ever differ from each other; in §7 we construct an
example for which they do (see Example 7.1).

However, we find that these pointwise preimage entropies agree for a significant family
of maps. A map f : X → X is forward expansive with expansiveness constant c > 0 if

x, y ∈ X with d(f nx, f ny) ≤ c for all n ∈ N implies x = y.

This condition is independent of the base metric d .
Our first main result is that for forward expansive maps, both preimage entropies agree

with topological entropy and there is a point whose preimage sets grow at precisely this
rate. The statement can be made clearer if we note that if f is forward expansive with
constant c, then for every x ∈ X and n ≥ 1 the set f −nx is (n, ε)-separated for any
0 < ε < c, so that max sep(n, ε, f −nx) is just the cardinality #f −nx.

PROPOSITION 4.5. Let f : X → X be forward expansive with htop(f ) = log λ.
Then there is x ∈ X with #f −nx ≥ λn for all n and, in particular,

hp(f ) = hm(f ) = htop(f ).

We call a point x ∈ X with GR{#f −nx} = htop(f ) a preimage growth point for f .
The proof of hm(f ) = htop(f ) is based on the combinatorial Lemma 2.1, while

the proof of hp(f ) = htop(f ) follows from the more general Theorem 4.1. For this,
note that preimage sets under a homeomorphism are singletons, so preimage entropy
is automatically zero in this case. However, a modification of the definitions of
preimage entropy yields a non-trivial extension to a class of maps that also includes some
homeomorphisms. Recall that, given ε > 0, the ε-stable set of x under f is the set of
points whose forward orbit ε-shadows that of x:

S(f, x, ε) := {y ∈ X | d(f nx, f ny) ≤ ε for all n = 0, 1, 2, . . . }.
The preimages of these sets can be non-trivial and hence can disperse at a non-zero
exponential rate. Given x ∈ X and ε > 0, consider the dispersal rate

hs(f, x, ε) := lim
δ→0

GR{max sep(n, δ, f −nS(f, x, ε))}.
We show that forward expansive maps exist only on finite-dimensional spaces (adapting
an argument of Mañé). Then we show that in any finite-dimensional space, the topological
entropy of a map can be calculated in terms of the dispersion of preimages of ε-stable sets.

THEOREM 4.1. If f : X → X is continuous and X is a compact metric space of finite
covering dimension, then

sup
x∈X

hs(f, x, ε) = htop(f ) for all ε > 0.
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(We do not know whether the finite-dimensionality hypothesis is necessary.) This result
leads to two extensions of our earlier notion of preimage entropy point. For ε > 0 we
call x ∈ X an ε-entropy point for f if hs(f, x, ε) = htop(f ); it is simply an entropy point
if limε→0 hs(f, x, ε) = htop(f ). (Note, in particular, that this implies that f −nx �= ∅
for all n.) Since hs(f, x, ε) is decreasing in ε, an entropy point is an ε-entropy point
for each ε > 0. Note that while the notion of ε-entropy point depends on the choice of
metric, that of entropy point does not. For forward expansive maps, any preimage growth
point is an ε-entropy point for all sufficiently small ε > 0. Therefore, by Proposition 4.5,
forward expansive maps do have entropy points. Examples in §7 show that, in general, the
existence of ε-entropy points for each ε > 0 is not automatic, nor does such existence for
all ε > 0 guarantee the existence of an entropy point. However, we are able to establish
the existence of entropy points for maps which satisfy a very weak specification property
(Definition 3.1), as well as for a large class of maps, defined by Misiurewicz [Mis76]
(extending ideas of Bowen [Bow72]), as follows.

We can apply the calculations involved in defining topological entropy to any subset
K ⊂ X. Let

htop(f,K) := lim
δ→0

GR{max sep(n, δ,K)}.
Bowen [Bow72] calls a map h-expansive if supx∈X htop(f, S(f, x, ε)) = 0 for some ε > 0,
while Misiurewicz [Mis76] calls f asymptotically h-expansive if

lim
ε→0

sup
x∈X

htop(f, S(f, x, ε)) = 0.

A map is asymptotically h-expansive precisely if its topological conditional entropy
vanishes [Mis76]. Every C∞ diffeomorphism of a compact mainfold to itself has this
property [Buz97]. Then applying a result from [BFF02] to the natural extension, that
any asymptotically h-expansive homeomorphism is a factor of some two-sided subshift,
together with Proposition 2.2, we establish that any asymptotically h-expansive map has
entropy points.

THEOREM 6.4. If f is an asymptotically h-expansive map then there exist entropy points
for f (even for the map restricted to its eventual image).

Proofs of these results involve the interplay between symbolic and topological
dynamics.

Recall the definition of the two-sided full shift on N symbols: let A be an ‘alphabet’
with N ‘letters’ (that is, A = {1, 2, . . . , N}) and form the space AZ of bisequences
x = (xi)i∈Z, xi ∈ A with the product of the discrete topology on A. This is a compact
metric space. The shift map g : AZ → AZ defined by (gx)i = xi+1 for all i ∈ Z

is a homeomorphism. A two-sided subshift is the restriction of g to some closed subset
X ⊂ AZ with gX = X. If we denote the subwords of x ∈ AZ by x[n,m] := xnxn+1 . . . xm

for n ≤ m, a two-sided subshift can always be specified by a list V of ‘forbidden words’:

x ∈ X ⇐⇒ x[n,m] /∈ V for all n ≤ m.

Any subshift is expansive: for some c > 0 we have

x, y ∈ X with d(gnx, gny) ≤ c for all n ∈ Z implies x = y.
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Truncation of negative-index entries gives the one-sided full shift on N symbols
f : AN → AN, which is a factor of g but is N-to-one instead of a homeomorphism. A one-
sided subshift is the restriction of f to a closed set Y ⊂ AN with fY ⊂ Y (a one-sided
subshift need not be onto). It is always forward expansive. A one-sided subshift is a factor
of some two-sided subshift iff fY = Y .

The various entropy invariants reduce to counting words in the case of subshifts. It is
well known that the topological entropy of a subshift f : X → X, one-sided or two-
sided, equals GR{#Wn}, where Wn is the set of admissible words of length n, i.e. the set
of words of length n which occur as subwords in some point of X. Similarly, if f is a
one-sided subshift, then f −nx = {wx | w ∈ Wn and wx ∈ X}. This is captured in the nth
predecessor set of x ∈ X, defined as

Pn(x) := {w ∈ Wn | wx ∈ X}.
Expansiveness implies that f −nx is (n, ε)-separated for all small ε > 0 and so

hm(f ) = GR
{

max
x∈X

#Pn(x)
}

and hp(f ) = sup
x∈X

GR{#Pn(x)}.

We begin with a tree lemma and use it to prove the existence of preimage growth points
for one-sided subshifts.

PROPOSITION 2.2. Let f : X → X be a one-sided subshift (not necessarily onto) with
htop(f ) = log λ. Then there is x ∈ X with

#Pn(x) ≥ λn for all n ≥ 1.

In particular, x is a preimage growth point for f and hp(f ) = hm(f ) = htop(f ).

This implies that two-sided subshifts do have entropy points. The referee has pointed
out to us that, using a conditional Breiman theorem and disintegration of measures, he can
show that for subshifts the set of entropy points has measure 1 with respect to each measure
of maximal entropy. So from a measure theoretical point of view, the set of entropy points
is always large.

There are, however, synchronized subshifts, not of finite type, for which the entropy
points form a subshift of finite type. In this case, the set of entropy points is the support of
the unique measure of maximal entropy, but is topologically small (first category) and fails
to reveal the non-shift of type nature of the synchronized shift. This example will be given
in a forthcoming paper.

We prove Proposition 2.2 by a simple combinatorial argument. In §4 we extend this
result to forward expansive maps.

2. Preimage growth points
In this section we establish the equality hp(f ) = hm(f ) for any forward expansive
map and show that in the particular case of one-sided subshifts, these invariants agree
with htop(f ). This is done by finding a point for which the preimage sets grow at the
required rate. Both results are applications of a result on the growth of branches in a tree.
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A tree rooted at v0 is a directed graph T = T (v0) with a distinguished vertex v0

(the root) such that for every vertex v ∈ V (T ) of T there is a unique path from v0 to v;
the number |v| of edges in this path stratifies T into levels:

Vk(v0) := {v ∈ V (T ) | |v| = k}, k ∈ N.

For any vertex v ∈ V (T ), we can take v as the root of the subtree T (v) whose vertices can
be reached from v; the levels Vk(v) of this subtree are numbered relative to v, so

Vk(v) := {v′ ∈ V (T (v)) | |v′| = |v| + k}.
Note that #V1(v) is the outdegree of v in T . Our result states that a lower bound on #VN(v0)

yields a vertex v ∈ V (T ) for which the sizes #Vk(v) of all (low) levels in the associated
subtree can be a priori estimated from below.

LEMMA 2.1. (Tree Lemma) Suppose T = T (v0) is a tree all of whose vertices have
outdegree at most M , with #VN(v0) > λN for some N ∈ N and λ ≥ 1. Then for every
1 ≤ k ≤ N satisfying (

M

λ

)k−1

≤ #VN(v0)

λN
(∗)

there exists a vertex v ∈ V (T ) such that

#Vi(v) ≥ λi for 1 ≤ i ≤ k.

Proof. Deleting all vertices in levels n < N which do not lead to a vertex in level N ,
we obtain a tree (again called T ) with no dead ends at any level n < N , but still with
#VN(v0) > λN . Suppose the statement of the lemma is not true—that is, for some
1 ≤ k ≤ N satisfying (∗) and every vertex v ∈ V (T ) there is an integer k(v) ≤ k

such that
#Vk(v)(v) < λk(v). (∗∗)

Let
W := {v ∈ V (T ) | N − k < |v| ≤ N}.

Set Y0 = {v0} and define subsets Yj ⊂ V (T ) inductively by

Yj+1 := (Yj ∩ W) ∪
⋃

u∈Yj\W
Vk(u)(u).

We claim the numbers
lj :=

∑
y∈Yj

λ−|y|

are non-increasing in j : to see this, note that

lj+1 =
∑

w∈Yj ∩W

λ−|w| +
∑

u∈Yj ,u/∈W

∑
v∈Vk(u)(u)

λ−|v|

=
∑

w∈Yj ∩W

λ−|w| +
∑

u∈Yj ,u/∈W

#Vk(u)(u) · λ−(k(u)+|u|)

≤
∑

w∈Yj ∩W

λ−|w| +
∑

u∈Yj ,u/∈W

λ−|u|

= lj .
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The inequality in the third line is strict, if Yj+1 �= Yj , by (∗∗). Since k ≤ N , we have
lj ≤ l1 < l0 = 1 for all j ≥ 1. Now since k(u) ≤ k ≤ N the sets Yj are contained
in the finite set {v ∈ V (T ) | |v| ≤ N} and if min{|u| | u ∈ Yj } = n ≤ N − k, then
min{|u| | u ∈ Yj+1} > n; thus for some J we have YJ ⊂ W and hence YJ+1 = YJ .
By construction, for any j and v ∈ VN(v0) the path from v0 to v hits a unique vertex in Yj .
Since k(u) ≤ k we can find for every v ∈ VN(v0) some u ∈ YJ so that v ∈ VN−|u|(u) and
N − |u| < k. Therefore,

#VN(v0) =
∑
u∈YJ

#VN−|u|(u) ≤
∑
u∈YJ

MN−|u| =
∑
u∈YJ

λ(N−|u|) ·
(

M

λ

)N−|u|

≤
∑
u∈YJ

λ(N−|u|) · #VN(v0)

λN
= #VN(v0) · lJ < #VN(v0),

where the inequality comes from (∗) and the strict inequality from lJ < 1; but this
contradiction proves the lemma. �

We apply the Tree Lemma 2.1 to establish the existence of preimage growth points
(and thus also entropy points) for any one-sided subshift. We use the notation from §1.

PROPOSITION 2.2. Let f : X → X be a one-sided subshift (not necessarily onto) with
htop(f ) = log λ. Then there exists x ∈ X such that for all n ≥ 1

#f −nx = #Pn(x) ≥ λn.

In particular, x is a preimage growth point for f and

hp(f ) = hm(f ) = htop(f ).

Proof. We will denote #Wn by bn, #Pn(x) by ϕn(x) and for w ∈ Wm let ϕn(w) denote
#{u ∈ Wn | uw ∈ Wn+m}. By compactness there is x ∈ X with ϕn(x) ≥ 1 for all n, so we
can assume λ > 1. Since htop(f ) = GR{#Wn} and the sequence {bn} is submultiplicative,
its growth rate is an infimum; in particular, bn ≥ λn for all n ≥ 1. Pick a sequence {λk}
strictly increasing to λ with λ1 > 1. For each k there is N(k) ≥ k such that

(
b1

λk

)k−1

≤
(

λk+1

λk

)N(k)

. (∗)

Fix M ≥ 1. For each n ≥ 1, since

λn+M ≤ bn+M =
∑

w∈WM

ϕn(w)

there exists a word wn ∈ WM with ϕn(wn) ≥ λn+M/bM ≥ λn/bM . Note that this last
fraction grows faster than λn

k+1 for any fixed k and so since Wm is finite, there exists
w ∈ WM and n(k) ≥ N(k) satisfying

ϕn(k)(w) ≥ λ
n(k)
k+1 for all k. (∗∗)

Form a tree T := T (w) with Vn(T ) = Pn(w) and an edge from α ∈ Pn(w) to
β ∈ Pn+1(w) iff β = aα for some a ∈ W1 and for each a ∈ P1(w) there is an edge
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from w to aw. All vertices have outdegree at most b1 and Vi(T ) = ϕi(w), so (∗) and (∗∗)
give (

b1

λk

)k−1

≤ #Vn(k)(T )

λ
n(k)
k

.

Thus the Tree Lemma 2.1 applies to give for each k a vertex vk ∈ V (T ) with

#Vi(vk) ≥ λi
k for 1 ≤ i ≤ k.

Note that vkw ∈ W|vk |+M . Passing to a subsequence kj , we can assume that all vkj w

begin with the same word v ∈ WM . Fix i ∈ N. Then for all j with kj ≥ i we have
ϕi(v) ≥ ϕi(vkj w) = #Vi(vkj ) ≥ λi

kj
and thus ϕi(v) ≥ λi . So far, we have found for

each M ≥ 1 a word vM ∈ WM with ϕi(vM) ≥ λi for all i. Passing to a subsequence, we
can assume that these are initial words of a convergent sequence of points in X with limit
x ∈ X. Since ϕn(x) = limm→∞ ϕn(x[0,m)) and ϕn(x[0,m)) ≥ ϕn(vM) if x[0,m) is an
initial word of vM , the limit point x satisfies the condition required by the proposition. �

The equality hp(f ) = hm(f ), which holds for one sided subshifts by the preceding
result, can fail for a surjective map on a zero dimensional space (Example 7.1). However,
we can formulate general conditions which guarantee that it holds.

A map f : X → X has uniform separation of preimages if for some ε > 0, d(x, y) ≤ ε

and f x = fy implies x = y. This has two consequences: for any n ≥ 1, the preimage
set f −nx is (n, ε)-separated and its cardinality ϕn(x) := #f −nx, as a function of x ∈ X,
is upper semicontinuous: ϕn(x) ≥ lim supi ϕn(xi) whenever xi → x. To see the latter,
suppose ϕn(xi) = k for all i. Let {zi,1, . . . , zi,k} = f −nxi for i = 1, 2, . . . ; passing to
a subsequence we can assume that for each j the sequence zi,j converges to zj ∈ f −nx.
However, for j �= j ′, d(zi,j , zi,j ′ ) > ε for all i ⇒ d(zj , zj ′ ) ≥ ε. Thus ϕn(x) ≥ k.

Note, in particular, that every forward expansive map has these properties. We establish
hp(f ) = hm(f ) whenever f has uniform separation of preimages. The core of the
argument is that the upper semicontinuity of ϕn(x) for every n ≥ 1 implies the existence of
a point with GR{ϕn(x)} = hm(f ). Recall that an upper-semicontinuous function achieves
its maximum on any compact set and if ϕ1(x) ≤ M for all x ∈ X, then ϕn(x) ≤ Mn.

PROPOSITION 2.3. Suppose f : X → X is continuous and each of the functions
ϕn(x) = #f −nx is upper semicontinuous. If hm(f ) = log λ, then there exists x ∈ X

with
ϕn(x) ≥ λn for all n.

Proof. The proposition is trivial if λ = 1, since any point in the eventual image
⋂

f nX

works; so assume λ > 1. Set an := maxx∈X ϕn(x); the sequence {an} is submultiplicative,
so log λ = infn(log an)/n and hence an ≥ λn for each n. Fix a sequence {λk} strictly
increasing to λ with λ1 > 1 and note that for each k we can find N(k) ≥ k such that
(a1/λk)

k−1 ≤ aN(k)/λ
N(k)
k . Pick xk ∈ X with ϕN(k)(xk) = aN(k) and form a tree Tk rooted

at xk with Vi(Tk) = f −ixk and an edge from f (z) to z. The Tree Lemma 2.1 gives zk with
ϕi(zk) ≥ λi

k for 1 ≤ i ≤ k, so the set Xk := {x ∈ X | ϕi(x) ≥ λi
k for 1 ≤ i ≤ k} is non-

empty and closed (by the upper semicontinuity of ϕi). Since λk+1 > λk , Xk+1 ⊂ Xk and
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so by compactness
⋂

k≥1 Xk �= ∅. Since λk → λ, any point x ∈ ⋂
k≥1 Xk has ϕn(x) ≥ λn

for all n. �

Using the fact that f −nx is (n, ε)-separated if f has uniform separation of preimages,
we obtain as an immediate corollary the following.

COROLLARY 2.4. If f : X → X is continuous with uniform separation of preimages
(in particular, if f is forward expansive) and hm(f ) = log λ, then there is a point x ∈ X

with
#f −nx ≥ λn for all n

and, in particular,
hp(f ) = hm(f ).

In §4 we will see, in fact, that hp(f ) = hm(f ) = htop(f ) for forward expansive maps.

3. Entropy points
In this section we study the set E(f ) of entropy points for a map f : X → X.
Proposition 2.2 shows that this set is non-empty for any one-sided subshift. A natural
question is, how large can E(f ) be in general?

A non-mixing version of weak specification [DGS76, Definition 21.1] is that for every
ε > 0, there is N(ε) ∈ N such that, given any pair of points x, y ∈ X and n, m ≥ 1 there
exists a point z ∈ X and integers 0 ≤ k, l < N(ε) such that

d
f
n (y, z) ≤ ε, d

f
m(x, f n+kz) ≤ ε and f pz = z where p = n + k + m + l.

A weakening of that definition implies E(f ) = X.

Definition 3.1. The map f : X → X has the very weak specification property if for every
ε > 0, there is N(ε) ∈ N such that, given any pair of points x, y ∈ X and n, m ≥ 1 there
exists a point z ∈ X and an integer 0 ≤ k < N(ε) such that

d
f
n (y, z) ≤ ε and d

f
m(x, f n+kz) ≤ ε.

PROPOSITION 3.2. For any continuous map f : X → X with the very weak specification
property, hs(f, x, ε) = htop(f ) for every x ∈ X and every ε > 0. In particular, f is
surjective and E(f ) = X.

Proof. By compactness, for every pair of points x, y ∈ X and n ≥ 1 and ε > 0 there exists
0 ≤ k < N(ε) and a point z ∈ f −(n+k)S(f, x, ε) with d

f
n (y, z) ≤ ε.

Now fix x ∈ X, ε > 0, and given 0 < δ < ε, let En be a maximal (n, 3δ)-separated
subset of X. Then for some k = k(n) with 0 ≤ k < N(δ) there is a subset Fn ⊂ En

with #Fn ≥ #En/N(δ); for every y ∈ Fn we can find z = zy ∈ f −(n+k)S(f, x, ε) with

d
f
n (y, z) < δ. Then the set Gn := {zy | y ∈ Fn} is (n, δ)-separated, so also (n + k, δ)-

separated, and #Gn = #Fn. Thus for each n ≥ 1,

max sep(n + k(n), δ, f −n−k(n)S(f, x, ε)) ≥ max sep(n, 3δ,X)

N(δ)
.

Since k(n) ≤ N(δ) for all n, this proves GR{max sep(n, δ, f −nS(f, x, ε))} ≥
GR{max sep(n, 3δ,X)}. Taking δ → 0 shows hs(f, x, ε) ≥ htop(f ). �
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The induced action on the basic sets of Axiom A diffeomorphisms is forward transitive
and has the pseudo-orbit tracing property, which immediately implies the very weak
specification property. It is easily seen that transitive shifts of finite type (SFT) have
the non-mixing version of the very weak specification property and that this property is
preserved under taking factors. Thus sofic shifts also belong to the uncountable class
of subshifts with the non-mixing very weak specification property. It is known that for
subshifts the very weak specification property is equivalent to the notion of specification.
The same argument shows this is also true for the non-mixing versions. Any subshift
satisfying the non-mixing version of the very weak specification property is synchronized.
This is not true in general, since any irrational rotation of the circle has the very weak
specification property too.

We know that E(f ) �= ∅ for (one-sided) subshifts; we show that it can be a proper
subset of X. In §7 we give two examples that are even more extreme: in general E(f ) can
be empty.

Example 3.3. (A transitive subshift with ∅ �= E(f ) �= X.) Let A = {1, α, β} and let C :=
{1αnβn | n ≥ 0}. Let X ⊂ AZ be the closure of the set of points x ∈ AZ which can
be written as a bi-infinite concatenation of words from C and let f : X → X be the left
shift map. Since f is expansive, for all small ε > 0, hs(f, x, ε) ≤ GR{#Pn(x[0,∞))},
so hs(f, 1∞, ε) = htop(f ) > 0 and hs(f, x, ε) = 0 whenever there is some n ∈ Z with
xi = β for all i ≥ n. If xi �= β for infinitely many i ≥ 0 then, given ε > 0, there is
y ∈ S(f, x, ε) and k < 0 with yk = 1. Since Pn(y[k,∞)) = Pn(1∞) for any such y and
n ≥ 1, hs(f, x, ε) = hs(f, 1∞, ε) = htop(f ).

In this example, the set E(f ) is a residual set. However, there are also transitive
subshifts, with E(f ) a non-empty set of first category. Furthermore, it is interesting how the
size of the set E(f ) is related to the existence of a maximal measure. We know examples
with a non-empty set E(f ) which do not have a measure of maximal entropy, and there are
examples with infinite entropy, so having a measure of maximal entropy, with no entropy
points. However, so far we do not know if in the finite entropy case the existence of a
measure of maximal entropy implies the existence of entropy points. These issues will be
treated in a forthcoming paper.

LEMMA 3.4. Suppose f : X → X is continuous and A ⊂ X is a subset with f −nA �= ∅
for all n ∈ N. Then for all ε > 0

GR{max sep(n − 1, ε, f −nA)} = GR{max sep(n, ε, f −nA)}.
Proof. The inequality ‘≤’ is clear. To prove ‘≥’, cover X with open balls B1, . . . , Br of
radius ε/2 and for E ⊂ f −nA, set Ek = E ∩ f −nBk , 1 ≤ k ≤ r . If E is (n, ε)-separated
then each Ek is (n − 1, ε)-separated and at least one k satisfies #Ek ≥ #E/r; the desired
inequality follows. �

For any x ∈ E(f ), f −nx �= ∅ for all n ≥ 0, so E(f ) is always contained in the eventual
range X∞ := ⋂

n≥1 f nX. However, we can say more.

PROPOSITION 3.5. For any continuous map f : X → X (not necessarily surjective),
f (E(f )) = E(f ).
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Proof. The inclusion f (E(f )) ⊂ E(f ) holds because S(f, x, ε) ⊂ f −1S(f, f x, ε) for all
x ∈ X and ε > 0. To establish the opposite inclusion (which is easy if f is bijective),
suppose x ∈ E(f ); by definition the set f −1x is non-empty (and of course compact).
Now suppose that x is an entropy point. We construct a preimage y which is also an
entropy point.

CLAIM. For all k > 0, f −1x contains a 1/k-entropy point of f .

Proof. Choose a finite subset E of K := f −1x such that the open balls B1/k(z) :=
{y ∈ X | d(y, z) < 1/k}, z ∈ E cover K , and let U denote their union. Pick 0 < η < 1/k

so that f −1Bη(x) ⊂ U , and given δ > 0 for n ≥ 1, pick Fn a maximal (n, δ)-separated
subset of f −(n+1)S(f, x, η); then f nFn ⊂ U and we can partition Fn into sets Fn,z so that
f nFn,z ⊂ B1/k(z) for each z ∈ E. Since f z = x, η < 1/k and Fn,z ⊂ f −(n+1)S(f, x, η),
we obtain Fn,z ⊂ f −nS(f, z, 1/k), and so for each z ∈ E

#Fn,z ≥ max sep

(
n, δ, f −nS

(
f, z,

1

k

))
. (∗)

Now, E is finite so we can pick z ∈ E such that #Fn,z ≥ #Fn/#E for infinitely many n,
hence GR{#Fn,z} = GR{Fn}. However, since x ∈ E(f ), this together with (∗) and
Lemma 3.4 gives for each δ > 0 some element z ∈ E (depending on δ) such that

GR

{
max sep

(
n, δ, f −nS

(
f, z,

1

k

))}
≥ htop(f )

and the finiteness of E lets us pick z independent of δ, ensuring that z is a 1/k-entropy
point for f proving the claim. �

However, taking zk ∈ f −1x a 1/k-entropy point, we can assume that zk → z ∈ f −1x;
given ε > 0 there is some k such that S(f, zk, 1/k) ⊂ S(f, z, ε) which shows that z is an
ε-entropy point of f , hence z ∈ f −1x ∩ E(f ). �

When f is not surjective, one can compare the action of f on X with its restriction
g := f |X∞ to the eventual range: clearly g is surjective and htop(f ) = htop(g), so
E(g) ⊂ E(f ). These sets can be different as we show in a forthcoming paper.

4. Finite-dimensional systems
In this section we show that if X has finite covering dimension, then for any continuous
map f : X → X, supx∈X hs(f, x, ε) is independent of ε and equals htop(f ).
(The supremum might not be attained, as shown in Examples 7.2 and 7.3.) As a
consequence, we establish the equality hm(f ) = htop(f ) for forward expansive maps.
We note in passing that the analogous quantity obtained by replacing the ε-stable set of x

with the ε ball about x can be shown to achieve a maximum equal to htop(f ) by standard
arguments.

If U is a finite cover of X, we define its mesh, mesh(U), with respect to any metric
as the maximum diameter of its elements. For any subset S ⊂ X, the multiplicity of
U on S is the number of elements of U intersecting S; the order of U is its maximal
multiplicity on singleton sets S = {x}, x ∈ X, and the star order of U is its maximal
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multiplicity on its own elements S ∈ U . The space X has covering dimension at most n

if there exist open covers of X with arbitrarily small mesh and order bounded by n + 1.
This notion is independent of the metric used [Eng78, Theorem 1.6.12] and replacing
‘open’ with ‘closed’ gives an equivalent condition [Eng78, Proposition 3.1.3]. Finite
covering dimension can be characterized by the condition that X has open (respectively
closed) covers of arbitrarily small mesh whose orders (respectively star orders) are
bounded.

THEOREM 4.1. If f : X → X is continuous and X is a compact metric space of finite
covering dimension, then

sup
x∈X

hs(f, x, ε) = htop(f ) for all ε > 0.

Proof. Suppose X has covers of arbitrary small mesh whose star orders are bounded by K .

CLAIM. Let ε > 0. Then supx∈X hs(f, x, ε) ≥ htop(f ) − log K .

Proof. Pick 0 < δ < ε/2 and let GR{max sep(n, δ,X)} = log λ. Suppose A =
{A1, . . . , AN } is a closed cover of X with mesh < δ and star order ≤K . A given x ∈ X

has least one itinerary with respect to A. For any y = (yi)i≥0 ∈ {1, . . . , N}N define
π(y) := ⋂∞

i=0 f −iAyi ; the set

Y := {y = (yi)i∈N ∈ {1, . . . , N}N | π(y) �= ∅}
defines a one-sided subshift g : Y → Y on N symbols. Since A has mesh less than δ, if
x ∈ π(y) and x ′ ∈ π(y ′), then d(f ix, f ix ′) > δ implies yi �= y ′

i . Thus the number of
allowed words for g satisfies #Wn ≥ max sep(n, δ,X) and so

htop(g) ≥ log λ.

Proposition 2.2 gives y ∈ Y with #g−ny ≥ λn for all n ≥ 1; pick x ∈ π(y) and fix n ≥ 1.
Form En ⊂ X by picking a point z ∈ π(u) for each u ∈ g−ny. For any such z ∈ En,
f nz ∈ π(y), so, since A has mesh < δ < ε/2, we have

En ⊂ f −nS(f, x, ε).

Since A has star order less than or equal to K , given u ∈ g−ny the number of points
v ∈ g−ny with Avi ∩ Aui �= ∅ for all 0 ≤ i < n is bounded by Kn. Pick η > 0 so that
Ai ∩ Aj = ∅ implies d(Ai,Aj ) > η; then

max sep(n, η,En) ≥ #g−ny

Kn
≥

(
λ

K

)n

.

Thus, since En ⊂ f −nS(f, x, ε) and log λ = GR{max sep(n, δ,X)}, we obtain

GR{max sep(n, η, f −nS(f, x, ε))} ≥ GR{max sep(n, η,En)}
≥ GR{max sep(n, δ,X)} − log K

and taking δ → 0 gives the claim. �
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Now, for ε > 0 and m ≥ 1, uniform continuity gives εm > 0 such that

S(f m, x, εm) ⊂ S(f, x, ε) for every x ∈ X.

Given m ≥ 1 and δ > 0, for n ≥ 1 let En ⊂ (f m)−nS(f m, x, εm) be a maximal
(n, δ)-separated set for f m. Note also that En ⊂ f −mnS(f, x, ε) is also (mn, δ)-separated
for f . Thus

hs(f, x, ε) ≥ lim
δ→0

lim sup
n→∞

1

nm
log #En

= 1

m
lim sup
n→∞

1

n
log #En = 1

m
hs(f

m, x, εm).

The claim (with f replaced by f m and ε by εm) then gives

sup
x∈X

hs(f, x, ε) ≥ lim
m→∞

1

m
sup
x∈X

hs(f
m, x, εm)

≥ lim
m→∞

1

m
(htop(f

m) − log K) = htop(f ).

proving the theorem. �

We adapt to forward expansive maps an argument of Mañé [Man79], to show that if
f : X → X is a forward expansive map on a compact metric space X, then X has finite
covering dimension. The argument yields a condition on orders, but our application will
use the corresponding condition on star orders. For Mañé’s argument, it is useful to invoke
an alternate formulation of forward expansiveness, which follows from the usual one by
uniform continuity arguments.

Remark 4.2. A continuous map f : X → X on a compact metric space is forward
expansive with expansiveness constant c′ > 0 if and only if, for every 0 < c < c′ and
for every ε > 0, there is N = N(ε) such that for all x, y ∈ X,

d
f
N(x, y) < c ⇒ d(x, y) < ε.

The finite dimensionality of a compact metric space carrying a forward expansive map
follows from the following variation of Mañé’s argument.

LEMMA 4.3. Given f : X → X satisfying the condition of Remark 4.2, suppose X can be
covered by n open sets U1, . . . , Un of d

f

N(c/2)-diameter less than c/2. Then for all ε > 0

there is a cover of X by open sets of d-mesh less than ε and order at most n2.

Proof. Fix an integer M ≥ max{N(ε), N(c/2)}. For each pair of indices i, j ∈ {1, . . . , n},
define

Ui,j := Ui ∩ f −(M−N(c/2))Uj .

We show that each Ui,j is a disjoint union of open sets of d-diameter less than ε, giving
the required cover.

On Ui,j define x ∼ y ⇐⇒ d
f
M(x, y) < c. This relation is symmetric and reflexive;

for transitivity, note that d
f
M(x, y) < c implies

d(f rx, f ry) <
c

2
for r = 0, . . . ,M − N

( c

2

)
,
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but since f M−N(c/2)x and f M−N(c/2)y both belong to Uj ,

d(f rx, f ry) <
c

2
for r = M − N

( c

2

)
+ 1, . . . ,M − 1

and hence d
f
M(x, y) < c/2. The equivalence classes with respect to ‘∼’ are

Ui,j (x) := {y ∈ Ui,j | d
f
M(x, y) < c}.

which are open sets of d-diameter less than ε. �

This immediately yields the following.

COROLLARY 4.4. If f : X → X is a forward expansive map of a compact metric
space X, then X has finite covering dimension.

The definition of forward expansiveness (with expansiveness constant c) is clearly
equivalent to the statement that S(f, x, ε) = {x} for every x ∈ X and 0 < ε ≤ c;
in particular hs(f, x, ε) = GR{#f −nx} and preimage growth points are entropy points.
By Corollary 2.4, Corollary 4.4 and Theorem 4.1 we have the following.

PROPOSITION 4.5. Suppose f : X → X is a forward expansive continuous map with
htop(f ) = log λ. Then the set E(f ) of entropy points is the same as the (non-empty) set of
preimage growth points for f and there is a point x ∈ X with

#f −nx ≥ λn for all n.

In particular,
hp(f ) = hm(f ) = htop(f ).

5. Natural extensions and factor maps
Recall that the natural extension of a surjective map f : X → X is the homeomorphism
f̂ : X̂ → X̂ where X̂ ⊂ XZ is the space of ‘branches’ of f −1

X̂ := {x̂ = (x̂i)i∈Z ∈ XZ | f x̂i = x̂i+1 for all i ∈ Z}
endowed with the metric

d̂(x̂, ŷ) :=
∞∑
i=0

2−id(x̂−i , ŷ−i )

and f̂ is the left shift map (f̂ x̂)i = x̂i+1. The projection π : X̂ → X given by πx̂ := x̂0

is a factor map, that is a continuous surjection satisfying π ◦ f̂ = f ◦ π . Note that, for x̂,
ŷ ∈ X̂ and n ≥ 1, we have

d̂(f̂ n−1x̂, f̂ n−1ŷ) =
n−1∑
i=0

2−id(x̂n−1−i , ŷn−1−i ) +
∞∑
i=n

2−id(x̂n−1−i , ŷn−1−i )

≤ 2 · df
n (πx̂, πŷ) + 2−(n−1) diam X.

Using the uniform continuity of f̂ this yields the following.
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LEMMA 5.1. Given ε > 0, there exists δ > 0 and m ∈ N such that, for all n ≥ m, d
f
n (πx̂,

πŷ) < δ implies d̂(f̂ nx̂, f̂ nŷ) < ε.

We show that entropy points for f lift to the natural extension.

LEMMA 5.2. Suppose f : X → X is a continuous surjection of a compact metric space.
Then E(f ) ⊂ π(E(f̂ )).

Proof. Suppose x ∈ E(f ). Using Proposition 3.5 we can find an element x̂ ∈ π−1x such
that x̂−n is an entropy point for every n ∈ N. Given ε > 0, we will find i ∈ N and δ > 0
so that

hs(f̂ , x̂, ε) ≥ hs(f, x̂−i , δ).

Using the fact that x̂−i is an entropy point for f and taking as ε and δ go to zero, we then
see that x̂ is an entropy point for f̂ .

Let δ > 0 and m ∈ N as in Lemma 5.1. Now fix i ≥ m. Then π−1S(f, x̂−i , δ) ⊂
f̂ −iS(f̂ , x̂, ε) so that setting Kn := f̂ i−nπ−1S(f, x̂−i , δ) we have

Kn ⊂ f̂ −nS(f̂ , x̂, ε) (∗)

and since π is surjective
πKn = f i−nS(f, x̂−i , δ). (∗∗)

Given γ > 0 pick η > 0 so that d(ŷ, ŷ ′) < η guarantees d(πŷ, πŷ ′) < γ . If E is
an (n, γ )-separated subset of πKn, then its preimage in Kn is (n, η)-separated and has
cardinality at least #E. It follows that for each n

max sep(n, η,Kn) ≥ max sep(n, γ, πKn)

and taking as γ → 0 and η → 0 yields

lim
η→0

GR{max sep(n, η,Kn)} ≥ lim
η→0

GR{max sep(n, η, πKn)}. (∗ ∗ ∗)

Thus

hs(f̂ , x̂, ε) = lim
η→0

GR{max sep(n, η, f̂ −nS(f̂ , x̂, ε))}
≥ lim

η→0
GR{max sep(n, η,Kn)} by (*)

≥ lim
η→0

GR{max sep(n, η, πKn)} by (***)

= lim
η→0

GR{max sep(n, η, f i−nS(f, x̂−i , δ))} by (**)

= lim
η→0

GR{max sep(n, η, f nS(f, x̂−i , δ))} by Lemma 3.4.

The last quantity is hs(f, x̂−i , δ). �

COROLLARY 5.3. If f : X → X is a forward expansive surjection and x ∈ X is a
preimage growth point for f , then there is an entropy point x̂ ∈ X̂ for f̂ with πx̂ = x.

Proof. Since f is forward expansive, preimage growth points for f are entropy points. �
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A one-sided subshift is forward expansive and so preimage growth points are entropy
points. Therefore, by Proposition 2.2, every one-sided subshift has entropy points.

COROLLARY 5.4. Every two-sided subshift has entropy points.

Proof. A two-sided subshift is the natural extension of its one-sided projection, which is a
one-sided subshift and thus has entropy points. Since it is onto, by Lemma 5.2 this gives
an entropy point in the two-sided subshift. �

To prove that π(E(f̂ )) = E(f ), we introduce a property which ensures that a factor
map takes entropy points to entropy points and that the natural projection has this property.
Example 7.3 shows that, in general, a factor map does not preserve entropy points.

Definition 5.5. Suppose g : Y → Y , f : X → X are continuous (not necessarily
surjective) maps of compact metric spaces Y and X, respectively, and π : Y → X is a
factor map. For n = 1, 2, . . . , δ > 0 and x ∈ X, set

Vn,δ(x) := {y ∈ Y | d
f
n (π(y), x) ≤ δ}.

We say that π is uniformly entropy preserving (u.e.p.) if for every ε > 0 and λ > 1 there
exists δ > 0 and N ∈ N such that

max sep(n, ε, Vn,δ(x)) < λn for all x ∈ X and all n ≥ N.

Standard arguments show that this definition is independent of the choice of the metrics
on X and Y . We show that the u.e.p. condition guarantees that π takes entropy points to
entropy points. First we establish a useful technical lemma.

LEMMA 5.6. Suppose π : Y → X is a u.e.p. factor map from g : Y → Y to f : X → X.
For any sequence Kn of subsets of Y ,

lim
ε→0

GR{max sep(n, ε,Kn)} = lim
ε→0

GR{max sep(n, ε, πKn)}.
Proof. For any ε > 0 and λ > 1, pick δ > 0 and N as in the u.e.p. condition. If E

is a maximal (n, δ)-separated subset of πKn, then E is also (n, δ) spanning and so
Kn ⊂ ⋃

x∈E Vn,δ(x), which implies

max sep(n, ε,Kn) ≤
∑
xεE

max sep(n, ε, Vn,δ(x)) < λn max sep(n, δ, πKn)

and taking the growth rate on both sides, then letting λ → 1 and ε, δ → 0, we obtain the
inequality

lim
ε→0

GR{max sep(n, ε,Kn)} ≤ lim
δ→0

GR{max sep(n, δ, πKn)}.
The opposite inequality follows as (***) in the proof of Lemma 5.2. �

Remark 5.7. There are two ways that this lemma can be used. First, taking Kn = K

independent of n we can conclude that for any set K ⊂ Y , htop(g,K) = htop(f, πK)

and, in particular, htop(g) = htop(f ). Second, picking K ⊂ Y closed and assuming
Kn := g−nK is non-empty for all n, the lemma gives the inequality

lim
ε→0

GR{max sep(n, ε, g−nK)} ≤ lim
ε→0

GR{max sep(n, ε, f −nπK)}.
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Note that if K happens to be the full preimage of its projection, then the inclusion, and
hence the inequality above, becomes equality.

PROPOSITION 5.8. If π : Y → X is a u.e.p. factor map between g : Y → Y and
f : X → X, then:
(1) for any ε1 > 0 there exists ε2 > 0 such that π takes any ε2-entropy point for g to an

ε1-entropy point for f ; and
(2) π(E(g)) ⊂ E(f ).

Proof. Given ε1 > 0, by uniform continuity there exists ε2 > 0 such that for any y ∈ Y

πS(g, y, ε2) ⊂ S(f, π(y), ε1)

so that if y is an ε2-entropy point for g, taking K = S(g, y, ε2) in Remark 5.7 gives

htop(g) ≥ htop(f ) ≥ hs(f, π(y), ε1) ≥ hs(g, y, ε2) = htop(g)

and so π(y) is an ε1-entropy point for f . In particular, it follows that entropy points for g

map to entropy points for f . �

LEMMA 5.9. For any surjective continuous map f : X → X of a compact metric space,
the natural projection π : X̂ → X is u.e.p.

Proof. Given ε > 0, pick 2δ > 0 and m ∈ N as in Lemma 5.1. Then for all n ≥ m,

max sep(n, ε, Vn,δ(x)) ≤ max sep(m, ε, Vn,δ(x)) ≤ max sep(m, ε, X̂),

which gives the lemma. �

Other examples of u.e.p. maps are bounded-to-one factor maps and maps with
conditional entropy zero between invertible systems. We use this later.

COROLLARY 5.10. Suppose f : X → X is a continuous surjection of a compact metric
space. Then π(E(f̂ )) = E(f ). In particular, f has entropy points if and only if f̂ has
entropy points.

Proof. Since π is u.e.p. by Lemma 5.9, it maps entropy points for f̂ to entropy points for
f , by Proposition 5.8. The other inclusion follows from Lemma 5.2. �

6. Asymptotically h-expansive maps
In passing, we remark that by a result of Kulesza [Ku] any expansive homeomorphism
has a bounded-to-one subshift extension (see [BFF02, Remark B.9]) and bounded-to-one
maps are u.e.p. by an elementary proof. This implies E(f ) �= ∅ for expansive systems.
Here we show that every asymptotically h-expansive map on a compact metric space has
entropy points. We first use a result from [BFF02] to obtain the invertible case. To state this
result, we recall the definition of conditional entropy of a factor map [BFF02]. Suppose
f : X → X and g : Y → Y are homeomorphisms of compact metric spaces and
π : Y → X is a factor map. If U is an open cover of Y and V ⊂ Y , let N(U |V ) denote
the minimum cardinality of a collection U covering V (this is finite by compactness of Y ).
For two finite open covers U and V of Y , set

N(U |V) := max{N(U |V ) | V ∈ V}.
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For n = 1, 2, . . . , set Un the common refinement of the preimage covers g−1U, . . . , g−nU
and

h(g,U,V) := GR{N(Un|Vn)},
h(g|V) := sup{h(g,U,V) | U a finite open cover of Y }.

Finally, we define the conditional entropy of π as

e∗(π) := inf{h(g|π−1A) | A a finite open cover of X}.
We use the following theorem.

THEOREM 6.1. [BFF02, Theorem 7.4] Suppose f : X → X is an asymptotically
h-expansive homeomorphism of a compact metric space. Then there exists a two-sided
subshift g : Y → Y and a factor map π : Y → X such that e∗(π) = 0.

To apply this to our situation, we recall the definition by Downarowicz and Serafin [DS]
of the topological conditional entropy of (Y , g) given the factor (X, f ):

h(Y |X) = sup
U

inf
A

h(g,U |π−1A).

Obviously h(Y |X) ≤ e∗(π) by definition. Furthermore, we show the following.

LEMMA 6.2. If π : Y → X is a factor map from (Y, g) to (X, f ) then

h(Y |X) = 0 ⇐⇒ π is u.e.p.

Proof. ‘⇒’ Pick ε > 0 and λ > 1. Let U be a finite open cover of Y with mesh(U) < ε.
Since h(Y |X) = 0, we can find a finite open cover A of X with h(g,U |π−1A) < log λ.
We can find N so that for all n ≥ N ,

N(Un|(π−1A)n) < λn. (∗)

Let δ > 0 be a Lebesgue number for A. Given x ∈ X and n ≥ N , there is an element
A ∈ An containing the ball B = {x ′ ∈ X|df

n (x ′, x) < δ} and pick E ⊂ Vn,δ(x) a maximal
(n, ε)-separated set for g, noting that

Vn,δ(x) = π−1B ⊂ π−1A.

Since mesh(U) < ε, distinct points of E belong to different elements of Un, so

N(Un|π−1An) ≥ #E = max sep(n, ε, Vn,δ(x)).

Then (∗) shows that π is u.e.p.
‘⇐’ Given U and λ > 1, let 3ε be a Lebesgue number for U . Let N and δ be as in

Definition 5.5. Let A be a finite open cover of Y with mesh(A) < δ. Fix n ≥ N . Given
an element A ∈ An pick a point x ∈ A. Then π−1A ⊂ Vn,δ(x). Let E ⊂ Vn,δ(x) be
(n, ε)-separated with cardinality max sep(n, ε, Vn,δ(x)). Then E is (n, ε) spanning, i.e. the
sets

Fy := {w ∈ Y | d
g
n (w, y) ≤ ε}, y ∈ E

cover Vn,δ(x) and thus π−1A. Each set Fy is contained in a single element of Un,
so π−1A can be covered by at most #E = max sep(n, ε, Vn,δ(x)) sets. Therefore,
N(Un|π−1A) ≤ λn for all n ≥ 1 and h(Y |X) ≤ log λ. The result follows by letting
λ → 1. �
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We now can easily prove the following proposition.

PROPOSITION 6.3. Any asymptotically h-expansive homeomorphism of a compact metric
space has entropy points.

Proof. Let g : Y → Y be the subshift given by Theorem 6.1. By Corollary 5.4,
E(g) �= ∅, and by Lemma 6.2 the projection π is uniformly entropy preserving, hence
by Proposition 5.8, ∅ �= π(E(g)) ⊂ E(f ). �

THEOREM 6.4. For f : X → X any asymptotically h-expansive map on a compact metric
space, E(f ) �= ∅.

Proof. By restricting to the eventual image we may assume that f is onto. Let f̂ : X̂ → X̂

be the natural extension of f . Given ε > 0, pick δ > 0 such that for any x̂ ∈ X̂,

πS(f̂ , x̂, δ) ⊂ S(f, π(x̂), ε),

so that for all x̂ ∈ X̂ and all δ′ ≤ δ,

htop(f̂ , S(f̂ , x̂, δ′)) ≤ htop(f̂ , S(f̂ , x̂, δ))

≤ htop(f, πS(f̂ , x̂, δ)) ≤ htop(f, S(f, π(x̂), ε)).

Taking the supremum over x̂ ∈ X̂ and the limit as ε → 0, it follows that f̂ is asymptotically
h-expansive and so E(f̂ ) �= ∅ by Proposition 6.3. However, then Proposition 5.8 gives
∅ �= π(E(f̂ )) ⊂ E(f ). �

7. Examples
In this section we present examples in which the various kinds of ‘entropy points’ defined
earlier fail to exist and we give an example where hp(f ) �= hm(f ).

Example 7.1. (A surjective map f : X → X on a zero-dimensional space X with
hp(f ) = 0 < hm(f ).) We define f : X → X as a zero-dimensional factor of a two-
sided subshift g : Y → Y . Let A := {0, 1, 2, 3, 4} and endow AZ and AN×N with the
product topology of the discrete topology on A. Denote by g : AZ → AZ the left shift
map and by f : AN×N → AN×N the left shift map on rows; that is, (f x)m,i = xm,i+1

for m, i ∈ N. Now define a map π : AZ → AN×N by πy = x, where y = (yi)i∈Z and
x = (xm,i)m,i≥0, and

xm,i = yi if yi ∈ {3, 4} while xm,i = yi−m if yi /∈ {3, 4}.
The map π is continuous and π ◦ g = f ◦ π , since (πy)m,i is determined by yi−m and yi .
Now for n ≥ 1 and w ∈ {1, 2}n let yn,w ∈ AZ be the point w∞0n(34n)∞ with y

n,w
−1 = 0

and y
n,w
0 = 3. Let Y be the closure of the set

{gkyn,w | k ∈ Z, n ≥ 1, w ∈ {1, 2}n}
and X = π(Y ). From now on by π we mean the map π |Y : Y → X.

We now show that f : X → X has hm(f ) ≥ (1/2) log 2. Let δ > 0 be so small that
x, x ′ ∈ X with x0,0 �= x ′

0,0 implies d(x, x ′) ≥ δ. For n ≥ 1 let y = limk→∞ gk(n+1)yn,w,
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the point (34n)∞ ∈ Y with y0 = 3. For w ∈ {1, 2}n let xw := πg−2nyn,w.
Then f 2nxw = πyn,w = πy. Note further that for w �= w′ there is some 0 ≤ i < n

so that (xw)0,i �= (xw′
)0,i and thus x = πy satisfies max sep(2n, ε, f −2nx) ≥ 2n for each

ε < δ. This shows hm(f ) ≥ (1/2) log 2.
Next we show that hp(f ) = 0. Since max sep(n, ε, f −nx) ≤ #f −nx it suffices

to show that c(x) := GR{#f −nx} = 0 for all x ∈ X. We have v ∈ f −nx and
u ∈ π−1v ⇒ x = f nv = f nπu = πgnu and so gnu ∈ π−1x. Thus we have the
following.
(1) #f −nx = #{πu | u ∈ g−nπ−1x} ≤ #π−1x.
If x0,i /∈ {3, 4} for some i ≥ 0 then for any y ∈ π−1x we have yk = x0,k for all k ≥ i and
yk = xi−k,i for k ≤ i. Thus #π−1x = 1, and from (1) we have the following.
(2) x0,i /∈ {3, 4} for some i ≥ 0 implies #f −nx = 1 for all n; thus c(x) = 0.
Now consider x with x0,i ∈ {3, 4} for all i ≥ 0. Let y ∈ Y with πy = x. We distinguish
three cases according to the number of threes. If #{i ≥ 0 | x0,i = 3} ≤ 1 then #{i ∈ Z |
yi = 3} ≤ 1, since otherwise y[k,∞) = (34n)∞ for some k ∈ N and n ≥ 1. Thus y is
in the orbit of one of the points 4∞, 0∞34∞ or 4∞34∞. If yk = 3 for some k < −n then
πy = x = 4∞ and thus by (1) #f −nx ≤ #{u ∈ g−nπ−1x | uk = 3 ⇒ k ≥ −n} and,
therefore, we have the following.
(3) #{i ≥ 0 | x0,i = 3} ≤ 1 ⇒ #f −nx ≤ 2n + 1 for all n and thus c(x) = 0.
Finally, if #{i ≥ 0 | x0,i = 3} ≥ 2 then pick i ≥ 0 and n ≥ 1 such that x0,i = x0,i+n+1 = 3
and x0,j = 4 for i + 1 ≤ j ≤ i + n. Then y[i, i + n + 1] = 34n3 and thus either y is
in the orbit of the point (34n)∞ or y = gkyn,w for some k ≤ 0 and some w ∈ {1, 2}n.
Thus x0,0 = 4 implies #f −1x = 1. If x0,0 = 3 and v ∈ f −1x with v0,0 �= 4 then each
u ∈ π−1v equals g−1yn,w for some w ∈ {1, 2}n, and if v0,0 = 4 then (v0,i)i≥0 = 4(34n)∞.
Thus #f −1x = 2n + 1 and by (2) we have #f −mx ≤ m · (2n + 1), hence c(x) = 0.

Example 7.2. (A homeomorphism which has no ε-entropy points for ε sufficiently small.)
For n = 1, 2, . . . , let Sn ⊂ {0, 1}Z be the subshift with forbidden words Vn :=
{1n+1}. Then it is straightforward to establish the inequality

n

n + 1
log 2 ≤ htop(Sn) ≤ 1

n + 1
log(2n+1 − 1)

so that htop(Sn) < log 2 and limn→∞ htop(Sn) = log 2. Let Un ⊂ {0, 1}Z be the finite orbit
of the point un = (10n)∞ which has un

0 = 1. Finally let U0 = {u ∈ {0, 1}Z | #{i ∈ Z |
ui = 1} ≤ 1} and put S0 := U0. Let U := ⋃∞

n=0 Un. Then U is closed. We denote the nth
row of a point x = (xn,i)n,i∈N×Z ∈ {0, 1}N×Z by xn, that is

xn = (xn,i)i∈Z ∈ {0, 1}Z.
Then for n ∈ N let

Xn := {x ∈ {0, 1}N×Z | x0 ∈ Un, x
n ∈ Sn and xi = 0∞ for all i ∈ N − {0, n}}.

The set X := ⋃∞
n=0 Xn is closed. Let f : X → X be the left shift; that is,

(f x)n,i = xn,i+1 for x = (xn,i)n,i∈N×Z ∈ X. Note that f |X0 : X0 → X0 is conjugate
to the subshift U0 and for n ≥ 1 the map f |Xn : Xn → Xn is conjugate to the
subshift Un × Sn. Since max sep(n,δ,X) ≥ #Wn(Um × Sm) for all δ > 0 small enough,
htop(f ) = limm htop(Um × Sm) = log 2.
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Let d be a metric on X generating the product topology of the discrete topology on {0, 1}.
Fix ε0 > 0 so that for any x, y ∈ X

x0,0 �= y0,0 ⇒ d(x, y) > ε0.

Now let 0 < ε < ε0 and x ∈ X. Then x ∈ Xn for some n ≥ 0. If y ∈ X with
d(f ix, f iy) ≤ ε for all i ≥ 0, then x0,i = y0,i for all i ≥ 0 and thus y ∈ Xn as well.
Thus S(f, x, ε) ⊂ Xn and, therefore, since f (Xn) = Xn, hs(f, x, ε) = hs(f |Xn, x

n, ε) ≤
htop(f |Xn) and thus hs(f, x, ε) ≤ htop(Sn) < log 2 = htop(f ) which shows that x is not
an ε-entropy point.

Example 7.3. (A factor map π : Y → X from g : Y → Y to f : X → X with
E(g) �= ∅, but E(f ) = ∅.) We adopt the notation of Example 7.2. First we define for
each n = 1, 2, . . . , a factor map from the full 2-shift to the subshift Sn via the n + 1 block
map that assigns to each word of length n + 1 its first letter, provided some letter in the
word is 0, and assigns to the word 1n+1 the letter 0. This map is a retraction—it equals the
identity on Sn.

Now form a set Y of arrays like the set X in Example 7.2, but using the full 2-shift in
place of the subshift Sn for n ≥ 1. The factor maps defined above induce a factor map
from the shift g : Y → Y to the shift f : X → X and htop(g) = htop(f ). For n ≥ 1, every
point of Yn is an entropy point for g, so we have the required example.

Example 7.4. (A homeomorphism which has ε-entropy points for each ε > 0, but no
entropy points.) Again X will be a closed subset of {0, 1}N×Z and f will be the left shift
map on rows. We use the notation, the subshifts Sn and U(n) := Un and the set X0 from
Example 7.2. Let P := {n ∈ N | n ≥ 2 prime}. For p, k ∈ P let

Xp,k := {x ∈ {0, 1}N×Z | x0 ∈ Up, xp ∈ U(pk), xpk ∈ Sk

and xi = 0∞ for all i ∈ N − {0, p, pk}}.
Then the set

X :=
⋃

p,k∈P

Xp,k ∪ X0

is closed and the left shift map on rows f : X → X is a homeomorphism with
htop(f ) = limk htop(Sk) = log 2 with an argument as in Example 7.2. Let ε > 0.
Fix p ∈ P so large that for any x, y ∈ X

xn,i = yn,i for 0 ≤ n < p and −p ≤ i ≤ p implies d(x, y) < ε.

Let x ∈ Xp,p with x0,0 = 1. We show that x is an ε-entropy point for f . Fix k ∈ P .
Consider y ∈ Xp,k with yp,0 = 1. Then y0 = x0 and xi = yi = 0∞ for 1 ≤ i < p.
Thus d(f ix, f iy) ≤ ε for all i and, in particular y ∈ S(f, x, ε). It follows that
{z ∈ Xp,k | z0,n = 1} ⊂ f −nS(f, x, ε) is a set of entropy htop(Sk). Therefore, we
have hs(f, x, ε) ≥ limk htop(Sk) = log 2 = htop(f ) and x is an ε-entropy point.

To show that f has no entropy points fix x ∈ X. If x ∈ X0, then pick ε0 > 0 so that for
all u, v ∈ X

u0,0 �= v0,0 ⇒ d(u, v) > ε0.
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Then for 0 < ε < ε0, y ∈ S(f, x, ε) implies y ∈ X0 and thus hs(f, x, ε) = 0 < htop(f ).
If x ∈ Xp,k for some p, k ∈ P , then choose ε0 > 0 so that for all u, v ∈ X

u0,0 �= v0,0 or up,0 �= vp,0 ⇒ d(u, v) > ε0.

Then for 0 < ε < ε0, y ∈ S(f, x, ε) implies yp = xp and so y ∈ Xp,k since p is prime
and xp �= 0∞. Thus hs(f, x, ε) ≤ htop(Sk) < htop(f ).
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