Let
$F$ be a non-Archimedean local field,
$G$ a connected reductive group defined and split over
$F$, and
$T$ a maximal
$F$-split torus in
$G$. Let
$\unicode[STIX]{x1D712}_{0}$ be a depth-zero character of the maximal compact subgroup
$T$ of
$T(F)$. This gives by inflation a character
$\unicode[STIX]{x1D70C}$ of an Iwahori subgroup
$\unicode[STIX]{x2110}\subset T$ of
$G(F)$. From Roche [Types and Hecke algebras for principal series representations of split reductive
$p$-adic groups, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 361–413],
$\unicode[STIX]{x1D712}_{0}$ defines a reductive
$F$-split group
$\widetilde{G}^{\prime }$ whose connected component
$G^{\prime }$ is an endoscopic group of
$G$, and there is an isomorphism of
$\mathbb{C}$-algebras
$\unicode[STIX]{x210B}(G(F),\unicode[STIX]{x1D70C})\rightarrow \unicode[STIX]{x210B}(\widetilde{G}^{\prime }(F),1_{\unicode[STIX]{x2110}^{\prime }})$ where
$\unicode[STIX]{x210B}(G(F),\unicode[STIX]{x1D70C})$ is the Hecke algebra of compactly supported
$\unicode[STIX]{x1D70C}^{-1}$-spherical functions on
$G(F)$ and
$\unicode[STIX]{x2110}^{\prime }$ is an Iwahori subgroup of
$G^{\prime }(F)$. This isomorphism gives by restriction an injective morphism
$\unicode[STIX]{x1D701}:Z(G(F),\unicode[STIX]{x1D70C})\rightarrow Z(G^{\prime }(F),1_{\unicode[STIX]{x2110}^{\prime }})$ between the centers of the Hecke algebras. We prove here that a certain linear combination of morphisms analogous to
$\unicode[STIX]{x1D701}$ realizes the transfer (matching of strongly
$G$-regular semi-simple orbital integrals). If
$\operatorname{char}(F)=p>0$, our result is unconditional only if
$p$ is large enough.