Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-06T18:57:46.653Z Has data issue: false hasContentIssue false

Partially Observed Boolean Sequences and Noise Sensitivity

Published online by Cambridge University Press:  13 February 2014

DANIEL AHLBERG*
Affiliation:
Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA 94720-5070, USA (e-mail: dahlberg@msri.org)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ${\mathcal H}$ denote a collection of subsets of {1,2,. . .,n}, and assign independent random variables uniformly distributed over [0,1] to the n elements. Declare an element p-present if its corresponding value is at most p. In this paper, we quantify how much the observation of the r-present (r>p) set of elements affects the probability that the set of p-present elements is contained in ${\mathcal H}$. In the context of percolation, we find that this question is closely linked to the near-critical regime. As a consequence, we show that for every r>1/2, bond percolation on the subgraph of the square lattice given by the set of r-present edges is almost surely noise sensitive at criticality, thus generalizing a result due to Benjamini, Kalai and Schramm.

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

References

[1]Ahlberg, D., Broman, E., Griffiths, S. and Morris, R. (2014) Noise sensitivity in continuum percolation. Israel J. Math., (accepted).CrossRefGoogle Scholar
[2]Benjamini, I., Kalai, G. and Schramm, O. (1999) Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90 543.Google Scholar
[3]Bey, C. (2003) An upper bound on the sum of squares of degrees in a hypergraph. Discrete Math. 269 259263.Google Scholar
[4]Bollobás, B. and Riordan, O. (2006) Percolation, Cambridge University Press.Google Scholar
[5]Garban, C., Pete, G. and Schramm, O. (2010) The Fourier spectrum of critical percolation. Acta Math. 205 19104.CrossRefGoogle Scholar
[6]Garban, C. and Steif, J. E. (2012) Noise sensitivity and percolation. In Probability and Statistical Physics in Two and More Dimensions, Vol. 15 of Clay Mathematics Proceedings, AMS, pp. 49154.Google Scholar
[7]Kahn, J., Kalai, G. and Linial, N. (1988) The influence of variables on Boolean functions. In 29th Annual Symposium on Foundations of Computer Science, pp. 68–80.CrossRefGoogle Scholar
[8]Kesten, H. (1987) Scaling relations for 2D-percolation. Comm. Math. Phys. 109 109156.Google Scholar
[9]Nolin, P. (2008) Near-critical percolation in two dimensions. Electron. J. Probab. 13 15621623.CrossRefGoogle Scholar
[10]Schramm, O. and Steif, J. E. (2010) Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. (2) 171 619672.Google Scholar
[11]Smirnov, S. and Werner, W. (2001) Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729744.CrossRefGoogle Scholar