Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-06T10:48:03.910Z Has data issue: false hasContentIssue false

On the Discriminants of the Powers of an Algebraic Integer

Published online by Cambridge University Press:  22 May 2019

Stéphane R. Louboutin*
Affiliation:
Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France Email: stephane.louboutin@univ-amu.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For $\unicode[STIX]{x1D6FC}$ an algebraic integer of any degree $n\geqslant 2$, it is known that the discriminants of the orders $\mathbb{Z}[\unicode[STIX]{x1D6FC}^{k}]$ go to infinity as $k$ goes to infinity. We give a short proof of this result.

Type
Article
Copyright
© Canadian Mathematical Society 2019

References

Dubickas, A., On the discriminant of the power of an algebraic number. Stud. Sci. Math. Hungar. 44(2007), 2734. https://doi.org/10.1556/SScMath.2006.1001Google Scholar
Evertse, J.-H. and Györy, K., Discriminant equations in Diophantine number theory. New Math. Monogr., 32, Cambridge University Press, Cambridge, 2017. https://doi.org/10.1017/CBO9781316160763CrossRefGoogle Scholar
Grossman, E. H., Units and discriminants of algebraic number fields. Comm. Pure Appl. Math. 27(1974), 741747. https://doi.org/10.1002/cpa.3160270603CrossRefGoogle Scholar
Louboutin, S., On some cubic or quartic algebraic units. J. Number Theory 130(2010), 956960. https://doi.org/10.1016/j.jnt.2009.09.002CrossRefGoogle Scholar
Louboutin, S., On the fundamental units of a totally real cubic order generated by a unit. Proc. Amer. Math. Soc. 140(2012), 429436. https://doi.org/10.1090/S0002-9939-2011-10924-9CrossRefGoogle Scholar
Louboutin, S., Fundamental units for some orders generated by a unit. In: Publ. Math. Besançon Algèbre et Théorie des Nombres, Presses Univ. Franche-Comté, Besançon, 2015, pp. 4168.Google Scholar