No CrossRef data available.
Article contents
STABILITY OF AN EXPONENTIAL-MONOMIAL FUNCTIONAL EQUATION
Published online by Cambridge University Press: 28 March 2018
Abstract
Let $N$ be a fixed positive integer and
$f:\mathbb{R}\rightarrow \mathbb{C}$. As a generalisation of the superstability of the exponential functional equation we consider the functional inequalities
$$\begin{eqnarray}\displaystyle & \displaystyle \big|f\big(\!\sqrt[N]{x^{N}+y^{N}}\big)-f(x)f(y)\big|\leq \unicode[STIX]{x1D719}(x), & \displaystyle \nonumber\\ \displaystyle & \displaystyle \big|f\big(\!\sqrt[N]{x^{N}+y^{N}}\big)-f(x)f(y)\big|\leq \unicode[STIX]{x1D713}(x,y) & \displaystyle \nonumber\end{eqnarray}$$
$x,y\in \mathbb{R}$, where
$\unicode[STIX]{x1D719}:\mathbb{R}\rightarrow \mathbb{R}^{+}$ is an arbitrary function and
$\unicode[STIX]{x1D713}:\mathbb{R}^{2}\rightarrow \mathbb{R}^{+}$ satisfies a certain condition.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.