No CrossRef data available.
Published online by Cambridge University Press: 26 September 2019
Let $d_{3}(n)$ be the divisor function of order three. Let
$g$ be a Hecke–Maass form for
$\unicode[STIX]{x1D6E4}$ with
$\unicode[STIX]{x1D6E5}g=(1/4+t^{2})g$. Suppose that
$\unicode[STIX]{x1D706}_{g}(n)$ is the
$n$th Hecke eigenvalue of
$g$. Using the Voronoi summation formula for
$\unicode[STIX]{x1D706}_{g}(n)$ and the Kuznetsov trace formula, we estimate a shifted convolution sum of
$d_{3}(n)$ and
$\unicode[STIX]{x1D706}_{g}(n)$ and show that
$$\begin{eqnarray}\mathop{\sum }_{n\leq x}d_{3}(n)\unicode[STIX]{x1D706}_{g}(n-1)\ll _{t,\unicode[STIX]{x1D700}}x^{8/9+\unicode[STIX]{x1D700}}.\end{eqnarray}$$
$d_{3}$ and the Fourier coefficients of Hecke–Maass forms’, Bull. Aust. Math. Soc.92 (2015), 195–204].
This project is supported by the National Natural Science Foundation of China (No. 11871193) and the Foundation of Henan University (No. CX3071A0780001).