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Abstract

Let d3(n) be the divisor function of order three. Let g be a Hecke—-Maass form for I with Ag = (1/4 + £2)g.
Suppose that A¢(n) is the nth Hecke eigenvalue of g. Using the Voronoi summation formula for A,(n) and
the Kuznetsov trace formula, we estimate a shifted convolution sum of d3(n) and A4(n) and show that

Z ds(M)Ag(n — 1) <0 X394,

n<x

This corrects and improves the result of the author [‘Shifted convolution sum of d; and the Fourier
coeflicients of Hecke—Maass forms’, Bull. Aust. Math. Soc. 92 (2015), 195-204].
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1. Introduction

Let d3(n) be the divisor function of order three, which gives the coefficients of the
Dirichlet series for £3(s). Let f be a holomorphic Hecke eigenform of weight k for
I' = SL,(Z) whose Fourier expansion at infinity is

F@ = A e(nz)
n=1

with e(x) = €2**. In 1995, Pitt [10] first considered the shifted convolution sum

W(f,x) = )" ds(mAs(n— 1),

n<x

By analytical continuation of the Dirichlet series ), | d3(n)As(n — 1)/n’, he found that

\P(f, )C) < x71/72+£.
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In 2013, with the help of the idea on the shifted convolution sums for GL(3) X GL(2)
from [9], Munshi [8] improved the upper bound to x**/33*¢_ In 2015, the author [11]
considered the Maass case and further improved the bound to x?°/30*¢. These two
results rely on the estimates of exponential sums from [9, Lemma 11]. Recently, Xi
[13] pointed out that the estimate should have the form

T (n,qim’, h; q1,q1, q2) < q?/zqi/z V', q192).

The reason is that in the sum 7457 on [9, page 2359], « runs though a complete
residue system modulo q%, rather than modulo g;. Inserting the corrected estimate into
the argument of [11, page 203] gives the bound x*’/38+2_ The work of Pitt [ 10], Munshi
[8] and the author [11] rely on the Voronoi summation formula for the divisor function
and the circle method of Jutila. In 2016, by means of a smooth decomposition of d3(n),
Topacogullari [12] found a new approach in the holomorphic case using the Kuznetsov
trace formula and obtained

P(f, x) < x8/9%2,

which is still the best result. We adapt the idea of Topacogullari [12] to the Maass case
and prove the following result.

Turorem 1.1. Let g be a Hecke—Maass form for T with Ag = (1/4 + t*)g and Fourier
expansion

8@ =y Y A KiQrlnly)e(n).
n#0

Normalise g by setting A,(1) = 1 so that A,(n) is the nth Hecke eigenvalue of g. Let
n
dw) = ) ds(n)d,(n—1 (—)
() Z 3(m)Ag(n = w{ -
where w : R — [0, 00) is a smooth function with compact support in [1,2] such that
w” <y forv>0 and flw(v)(f)I dé <y forv>1,
where y = xT with a parameter 0 < n < 1. Then

D(w) < /67192 4 x112),

By the Rankin—Selberg theory, it is well known that

DA = Cox+ 0,7, (1.1)

n<x

Taking w = 0 in the intervals (0,1 — 1/y] U [2 + 1/y, 00),

> dsmagn 1) = d(w) + 0( S dsmagn - 1)|).

x<n<2x x<n<x+x/y
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For the error term, Cauchy’s inequality and (1.1) give the bound

> e -bi<( Y dz(n>)1 2( S =)

xX<n<x+x/y xX<n<x+x/y xX<n<x+x/y

< xl—n+s + x4/5—n/2+.9.

Combining this with the bound of ®(w) and taking n = é,

D dsmagn - 1) < £,

n<x

where the implied constant depends on ¢ and &.

Remark 1.2. Note that % is less than all the earlier exponents. Compared with the
work of the author [11] and Topacogullari [12], there are several differences and
new difficulties in this short note. Firstly, the circle method of Jutila, which plays
an important role in [11], disappears. Secondly, the Kuznetsov trace formula and the
large-sieve inequality are used to handle the Kloosterman sums. Finally, estimation of
Bessel functions in the Voronoi summation formula of 4;(n) is more complicated than
in the case of the holomorphic Hecke eigenforms in [12].

2. Preliminaries

In this section, we introduce some lemmas. The first is the Voronoi summation
formula for A,(n), which is a variation of the result proved by Kowalski ez al. [6].

Lemma 2.1. Let f be a compactly supported smooth function on (0, ). Then

[

DL Amfm == ZQZ“””)S( ~b, mq)Gl( )

n=1 le m=1
n=b (mod c) 1

i- Z Z/l(m)S(bmq)Gz( )

gle = m=

where S (b, m; ¢) is the classical Kloosterman sum and

Gl(y)=f0 J()Jg (4 \xy) dx, Gz(y)=f0 J()K,(4m +/xy) dx 2.1)

with

T = (J2i(x) = J2ir(x)),  Kg(x) = 4e&g cos(mr) Kpir(x)
sin it

and aa = 1(mod q), &, = 1 or —1 according as g is even or odd.

Jo(x) = =

Proor. Kowalski et al. [6] showed that

Z Asme( % ) = Z tme( -2 (%) + < Z@(m)e(%’")@(%),

m 1
(2.2)
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where a, g are positive integers with (a, g) = 1. The property of additive characters
implies that

0o

3 dmfn = ZE}Z " W%mmm

nzb?;lodc) glc n=1 u(mod q)
! s (=bu\ < (nu
=02 2 AT el s
¢ gle u(mod q) q 7+ ‘4
Therefore, (2.2) gives the final result. .

By the power series expansion of the J-Bessel function and the K-Bessel function,
JO00, KV (x) < x forx< 1.

For large x, [1, (4.17)] implies that

w(x, 1)
1) = R{e( 520 ) (23)
Here,
8 t 1
w(x, 1) = tarcsinhf - V2 + X2 x x, fx. 1) < ——
t oxi Y12
for any integer j > 0. Furthermore,
T 1 _
Ky(x) = 4o cos(rn) [ e (1 + 0( )) < e 2.4)
2x X

Next, we introduce the Kuznetsov trace formula. Let I'y(g) be the Hecke congruence
subgroup of level g. Denote by M;(I'o(¢)) the space of holomorphic cusp forms
of weight k with dimension 6i(q) and fj; (1 < j < 6i(q)) the orthonormal Hecke
eigenbasis. The Fourier expansion of fj; around oo is

Fiu@) = )" wixlmye(ma).

m>1

For I'y(q), we have the spectral decomposition
L*(To(q)/H) = C & L2, (To(g)\H) & L, (To(q)\H),

where Lgusp(l"o(q)\H) is the space spanned by the cusp forms and L EIS(FO((])\H) isa
continuous direct sum spanned by Eisenstein series (see below).

Let ug be the constant function and let {u;};>; run over an orthonormal Hecke
eigenbasis of Lcugp(Fo(q)\H). Denote the real eigenvalues corresponding to these

functions by dg < 4; < A, < -+ . Each u; has a Fourier expansion

ui(2) = \y Y pi(mKi,QrnlyDe(nx),

n#0

https://doi.org/10.1017/5S000497271900100X Published online by Cambridge University Press


https://doi.org/10.1017/S000497271900100X

[5] A shifted convolution sum 405

where K,(y) is the K-Bessel function and K? = A; — 1/4. We choose the sign of «; so
that ik; > 0if 1; < 1/4 and x; > 0 if A; > 1/4. The Selberg eigenvalue conjecture that
A1 2 1/4 remains open. The eigenvalues with 0 < 2; < 1/4 as well as the corresponding
kj are called exceptional. Let 6 € R* be such that ix; < € for all exceptional «; uniformly
for all level g. The work of Kim and Sarnak [5] allows us to take 6 = 7/64.

The Eisenstein series is given by

Ed(z;s) = Z (o) forzeH, Rs> 1.
el \I'o(q)

Here, cis a cusp of T'y(g), I’ is the stabiliser of ¢ and o0 = ¢, ofll"ca'c =T'w. Note
that the space LEIS(FO(Q)\H) is the continuous direct sum spanned by E.(z;1/2 + ir)
(r € R). The Fourier expansion of E.(z; s) around oo is

1/2
E(z;8) = 0oy’ + VA———— s —1/2) Peo(s)y'™

I'(s)
2 S
+ 7;(;)/} ; 120 (5)Ks-1 2 (2lnly)e(nx),

where 0., = 1 if ¢ = oo and 0 otherwise. For a smooth function ¢, we define the Bessel
transforms

AT  Joir(x) = i (%) dx
o) = sinh(rr) ‘fo‘ 2i #x) x’
. 0 d
dik) = f L) =,
0 X
¢(r) = 4 COSh(ﬂr)f Ky (x)(x) d_x
T 0 X

With this notation, the Kuznetsov trace formula can be stated as follows.

LemMma 2.2 [3, Theorem 1]. Let m,n € N and let ¢ be a compactly supported smooth
function on (0, o). Then

S (m,n; c)¢(471 W)
c

c

¢=0(mod q)

= Z ij(m)pj(n)

—i cosh(nk;)

+— Zf gocm +lr)gocn(;+ir)$(r)dr

(k- 1)!
dlk—1)——— Wi (m) ()
T = o<zm;>d2) An(mn)! 1<]<29;c(q) g g
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and

S(m, —n; c)¢(4yr \/ﬁ)
c

¢=0(mod g) ¢
Plkj) ——
= Z COSh(l pjm)p;(n)

+ . Z j:m(mn)”tp(,m(% + ir) gof,n(% + ir)é(r) dr.

To bound qAﬁ o, (7) we use the following results from [2, Lemma 2.1].
Lemma 2.3. Let f : (0,00) = C be a smooth compactly supported function such that
1
supp f =X and [V < v V= 0,1,2,

for positive X, Y with X > Y. Then

—2r

1
0<r<-,
forO<r 1

o 1
Fn), fan < 1+
1+ |logY]|

for.f . fr) < ——

forr>0,
X\ 1 X
), fr), fr) <<( ) ( 5+ ﬁ) for r > max(X, 1).

Assume that w : (0, 0) — C is a smooth compactly supported function such that

1
suppw=X and w” <« —, v>0.
XV

For a > 0, define
1€ = elgn= Jwee)

Then we have the following bounds for the Bessel transforms of f.

Lemma 2.4 [12, Lemma 2.6]. Assume that X < 1, aX > 1. Then, for v, u >0,

Fin), fr) < X‘2’+8(X“ + ) for0<r<i,

(aX)” 4

f). fn), fr) < %(g)v forr>0.

We also use the large-sieve inequalities for Fourier coefficients of cusp forms.
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Lemma 2.5 [3, Theorem 2]. Let K, N > 1 and (a,) be a sequence of complex numbers.

Then
2
—_— anp j(n)
=k cosh(rk;) ;;v !
(k- D! —(k=1)/2 g Nl+e
Z W Z 'Zan” i) { (K2 + )Zlanlz.
2<k<K 1<j<6(q) ' n~N q N
2k "
K 2
. 1
a,,n”goc,n(— + ir) dr
%[ [l

Without averaging over n, we have the following result.

LemMa 2.6 [12, Lemmas 2.9 and 2.10]. For K, n > 1,

Z lo j(”)|2
cosh(nk ;)

lkjI<K
(k= 1)! ) )
20 Gt 2 WP 2 (Rnyeqm I
25ksK 1<j<bi(9) q
2)k
K 1 2
Zf ro,n(_‘f‘l.r) dr
—J-k 2

For the exceptional eigenvalues,

( 2)29

2 PiPX™ < X =

(h,q) '"|1 +
q

or X,q,h > 1 with h'?X > q.
q q

3. Proof of Theorem 1.1

Firstly, we need a smooth decomposition of d3(n), given by Meurman [7], in order
to apply the Kuznetsov trace formula. This is

ds3(n) = Z i(@vi(b)vi(c) = 3vi(a)vi(b) + 3vi(@)v2(b)(2 = v2(c))], (3.1)

abc=n

where

n© =5 e =o v%)

and v : R — [0, o0) a smooth function satisfying

suppv C [-2,2], v(&) =1 forée[-1,1], V™) < €™
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Let hyx be smooth compactly supported functions such that

X 1
th =1, supphxC [—,X], h(v) < —
= 2 X’

where the summation runs over powers of two. Denote by /(a, b, ¢) the term in the
summation (3.1) and set

hapc(a, b, c) := h(a, b, c)hs(a)hp(b)hc(c)
and

OO, A B.C) = Y hapc(a. b, )Ay(abe - 1)w(“b C)

a,b,c
Thus,
d(w) = Z d(w, A, B, C).

AB,C

We can assume that
ABC=<xx, A< B<xC

because, otherwise, ®(w, A, B,C) =0
Set m = abc — 1. Then

Ow.ABCO) =Y > /1g(m)w(m+1

a,b m=1(mod ab)

=D, 2, Amfimab),

a,b m=1(mod ab)

m+1)

)hABc(d, b, 7

where ¢ £l
+1 +
f(&;a,b):= W( )hABC( b, —)
ab
Note that .
) _ Vi+V yV]
Supp f(30,0) =%, S f(E ) < S (32)

For the inner sum, we apply the Voronoi summation formula (Lemma 2.1). Thus,

®(w, A, B,C) = ZZZA (m)MGl( Za, b)

a,b clab m=1

3D I W RICLLELN (PN

a,b clab m=1

=0 (w,A,B,C)+ D(w,A,B,C),

where G|, G, are given by (2.1) with f(x) replaced by f(x;a, b). In what follows, we
only consider @, because @, can be estimated similarly. By an elementary argument
withab = ct, s = (a,1), a = a; s, t = t; s and the property of the Mobius function,

(DI(W,A,B,C):Z/J( )Zz/lg( )Z S(l -m;c) F(e,m;a,r,s, t)

arle
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Here,
A AB
ax—, ¢cx—, nsI<KA,
rs rs
and _
t
F(C,m;a,r,s,t):: ﬂf Jg(_” Vm.x)f(.x;ars, c—)dx
c Jo c a
Trivially,

ar
F(e,m;a,r,s,1) < x'**—.
c

By the properties of Bessel functions (z¥J,(2))’ = z'J,_1(2) (see [4, Section 7.13.2 (17)]),

(3.2) and partial integration,
v—1 Cv+1/2 ar

Fe,mya,rs,t) < ——7r——+—
(c,m;a,r,s,1) 12304 217

for m > ¢?/x. Define
x°y? (AB\?
o= 2 (A2,
x \rst

For m > My, the contribution to @, is negligible, where 14(n) < n’/%**¢. So, it suffices
to consider the sums

S 17_ 5
R(Msa,r,5,1)i= )" dgm) )" %F(a m:a,r, s, 1),
m~M arlc

where M < M. In order to use the Kuznetsov trace formula (Lemma 2.2), we define

drm t
—)dx,
c a

F(c,m;a,r,s,t) = h(m)ﬁ | Jo(c \/)_c)f(x; ars,

where h(m) is a smooth compactly supported function such that
1
h(my=1 forme[M,2M], suppf=M and h¥(m)< w

Then

4dr \m )

F(c,m;a,r,s,t) = F(—,m;a, r,S,t
c
for m € [M,2M]. Next, let

Go(A) := x“sg min (M,

)
M2
for 0 < A < 1. We have
1
F(c, m;a,r,s,t) = f Go(D)G(c;a,r, s, H)e(mA)dA
0

with

Y
Gac,a,r,s,t) = lim f F(c,y;a, r, s, e(—Ay) dy.
-y

Go(/l) Y>>+
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Hence,

[10]

R(M:a.r.s.f) = f Go(/l)Z/l(m)e(m/l)ZS d,—m;c) (4ﬂ;/_ a,r,s,t)d/l.

m~M arle

(3.3)

For the inner sum over ¢, we apply the Kuznetsov trace formula (the second formula

in Lemma 2.2) and get

S(1,-m;c) , (4nm
Z cmcGﬂ( ﬂcm

;a9r’ s9t)
arle
Z Gl(Kj,a 7,8, 1) ——

COSh(ﬂ'K N pj(Dpj(m)

I\
+ = Z f m%p.i(= +ly)socm(2+zy)Gﬂ(y;a,r,s,t)dy-

For G, we use the following result, which will be proved in Section 4.

Lemma 3.1. Let

X% (AB\? rst st
M, = —(—) , = =NM—, Z:= M—.
! rst AB M AB

For M <« M,

Glik;a,r, s, 1) < B2 0<k< i,
£

. X
Guk,a,rs,t) €« ——, K

Tren K20

\%

For M <« M <« My and any v > (),

G(ik;a,r,s,1) < x”’, 0<k< }‘,

xf (ZY
Gukia,r,s,1) < 25/2( ) k> 0.

Putting (3.5) into (3.3),

1 3
R(M;a,r,s,1) = f Go(D) )" EAM; a,r,5,1)dA,
0

=1
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where
Ei(M;a,r,s,t) = I;)GA(Kj;a, 7,S,1) /s)ljl(( ) Z A (m)e(mA)p j(m),
p,(1)

EZ(M;aarys,t) = Z GA(Kj;a7r9Sat)

Kj exc.

1 < o 1
Ex(M:a,r,s,0) = — GO, 5.t (_+-)w
s(M:a,r,s,1) ﬂg‘fmﬂwars>%J2 iy |m

m le;/[ Ag(m)e(m/l)pj(m)’

x 3 Ametmdgn( 5

+ iy) dy.
m~M 2

Firstly, we consider E\(M;a,r, s, t). For M < M, we split the sum into two parts
En(M;a,r,s,1) = Yo<<1 (- )y Enn(M;a,r,s,1) = X, 51 (--+), according as «; < 1 or
not. By Cauchy’s inequality,

lo;(DI” )1/2

Ein(M;a,r, s, t) < max IGA(Kj;a, 7, S, t)l(z _
0<k;<1 cosh(rx ;)

K,'<1
% (KZ: cosh(m</)

2)1/2
Lemmas 3.1, 2.5 and 2.6 and (1.1) give the bound

1 \1/2 M2 AB AR
En(M;a,r,s,1) < xe(l +—) (1 +—) M'? <« ( +—)
ar ar rt \x\/2 X

Zﬂmwmmm

Thus,

VM et I(AB A2 B2

1
. 1+
fOGo(/l)En(M,a,r,s,t)d/I <<f0 x 8§ ~ W_FT)LM

! it 1 1(AB A?B?
o [ aent LL(AB AR,
/M B]‘l/l2 rt X1/2 X

< X*(x'?A + A3?B) <« XO/6*%, (3.9)

For E|,, we use the dyadic subdivision. Setting K = 2,

N (DI? \1/2
En(M;a,r,s,t) < Z max |G/1(KJ,a rs, t)|( Z lo;(D) )
k=0

K<k;<2K Kook cosh(rx;)
1/2
X —_— .
( Z cosh(mg) )
Applying Lemmas 3.1, 2.5 and 2.6 and (1.1) again,
2 322
) 1)‘/ (K2+M)/M”2 xE(AB A/B).

Z A (me(mA)p;

(o)

En(M;a,r,s,0 < x* )

K<kj<2K
— —_— +
1/2
= X X

— (K" +
KS/Z( ar ar
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Hence, as before,
1
f Go(DE(M;a,r,s,1)dl < x/%. (3.10)
0

Secondly, for M| <« M < M, write
Ei\(M;a,r,s,t) = Eis(M;a,r,s,t)+ Eiu(M;a,r,s,t) := Z(' )+ Z(' ).
K,-SZ K,->Z

Similarly to the first case,

x‘g M2 12 sy2 /AR A32B?
Es(M;a,r,s,1) < 2 ) M2 < ( —)

23/2(Z T anie e \x2 T x

and

£\,1/2 AB A3/ZBZ
Eyu(M;a,r,s,t) < l( )

—_— + —_—
rt \x!/2 X
Then, for [ = 3,4,

1
f Go(VE (M a,r,s,1)dd < x>0+, (3.11)
0
Combining (3.9), (3.10) and (3.11),
1
f Go(DE((M;a,r,s,1)dd < x>0+ (3.12)
0

We estimate E3(M;a,r,s,t) in the same way. If M < M;, divide the integral
into [—1, 1] and (—c0, —1) U (1, o) and, if M > M, divide the integral into [-Z, Z]
and (—co, —=Z) U (Z, o). Define E3(M;a,r, s,t) (1 <1<4) as above. Similarly to
E.(M;a,r,s,t), we obtain the bound

1
f Go(D)E5(M;a,r, s,1)dd < x>/6t1/2+2 (3.13)
0

The treatment of the exceptional eigenvalues, thatis, E»(M;a,r, s,1), is as follows. If
M > M, trivially, the bound for G, in (3.7) implies that the contribution is negligible.
But, for M <« My, (3.6) is not sufficient for our purpose. Instead, Cauchy’s inequality
and Lemma 2.6 give the estimate

)1 2

1 4ik; 172
Ex(M;a,r, s,1) < (Z (E) ij(l)IZ) (Z m
— Kj €xc. /

Kj€xc.

1 AB 1\¥/  M\\/? L1 X AB AP
(AL MY e A A
M rst ar ar rtA29 x1/2 x

Z Ag(m)e(mA)p m)

which implies that

1
f Go(DEx(M;a,r, s,1)dA < x/670/3+¢ (3.14)
0

Combining (3.12), (3.13) and (3.14), we complete the proof.

For ®,(w, A, B, C), the only difference is that J, is replaced by K,,. If M < M, this
case is basically the same as for the J-Bessel functions, while, if M > M, it is simple
because of (2.4) and can be trivially estimated.
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4. Proof of Lemma 3.1

Recall that
Y

lim F(k,y;a,r,s, e(=y)dy,
Goyroe J e

A)}il?of h(y)e(— /ly)—f Hi(k,y:€ a1, 5,0 dé dy,

Gulk;a,r,s,t) =

Galk;a,r, s,1) =
Aksa,r, s, t) Got

where

4
Hi(k,y;&,a,1,8,1) := kJg(k \/E)f(f; ars, ”K‘/yé)‘

By the properties of J, and f, as a function of «,

OV H v
supp H; < &, 6KV1 < xSE( ) .

m| =,

Lemma 2.4 implies that

H, (ik,y;&,a,1, 8, 1) < B 0<k< i;
ﬁl(K,y;f,a,r,s,t) < 1—2/2, k>0
Trivially,
. rx VM M 1
G.lik;a,r, s, 1) < Bl - : K 0<Kk< =
Go(/l) min (M, W)
N arxVM x*= M x°=
Gaukya,r,s, ) < s < 50 K > 0.
Go(d) 1+« min (M, M/12)1+K
By partial integration twice,
N 1 1
Ga(ikya,r, s, 1) < —E_ZK, 0<k<-—;
MA2Gy() 4

X2
M2Go() 1+ 52

This gives the first statement of Lemma 3.1.
For M > M, by partial integration and (2.3),

(fw e(w(Kz—‘f’t))W(K,y;f,a, T, S, t)df)

Gv/l(K; a,rs, )<

F(K,y;a,r,s,t) h(y)2 z\/_

with
et nn o O (FIENE 5
W(K’y"f’aara‘g»t)' ( t— \/g f( \/Et)f( ac ))
Note that the bounds gl

e W w
suppw =< =&, < 7
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hold. Let
w(k «/E, 1)
2

Hy(k,y;€,a,1,5,1) 1= e( )W(K,y; é,a,r, s, t).

Taking a = w(k V&, 1) < v/ and X = Z in Lemma 2.4,

T . -V 1.
Hy(ik,y;¢,a,r,8,1) < x77, 0SK<Z,

—

. 2 (Z\
Hy(k,y;€,a,1,5,1) < xszs/z(;) , k>0,

which imply the bounds (3.7) and (3.8).
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