A SHIFTED CONVOLUTION SUM OF d_3 AND THE FOURIER COEFFICIENTS OF HECKE–MAASS FORMS II

HENGCAI TANG

(Received 13 June 2019; accepted 6 August 2019; first published online 26 September 2019)

Abstract

Let $d_3(n)$ be the divisor function of order three. Let g be a Hecke–Maass form for Γ with $\Delta g = (1/4 + t^2)g$. Suppose that $\lambda_g(n)$ is the nth Hecke eigenvalue of g. Using the Voronoi summation formula for $\lambda_g(n)$ and the Kuznetsov trace formula, we estimate a shifted convolution sum of $d_3(n)$ and $\lambda_g(n)$ and show that

$$\sum_{n \le x} d_3(n) \lambda_g(n-1) \ll_{t,\varepsilon} x^{8/9+\varepsilon}.$$

This corrects and improves the result of the author ['Shifted convolution sum of d_3 and the Fourier coefficients of Hecke–Maass forms', *Bull. Aust. Math. Soc.* **92** (2015), 195–204].

2010 Mathematics subject classification: primary 11F30; secondary 11F11, 11F66.

Keywords and phrases: divisor function, Hecke-Maass form, trace formula.

1. Introduction

Let $d_3(n)$ be the divisor function of order three, which gives the coefficients of the Dirichlet series for $\zeta^3(s)$. Let f be a holomorphic Hecke eigenform of weight k for $\Gamma = \mathrm{SL}_2(\mathbb{Z})$ whose Fourier expansion at infinity is

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz)$$

with $e(x) = e^{2\pi ix}$. In 1995, Pitt [10] first considered the shifted convolution sum

$$\Psi(f, x) = \sum_{n \le x} d_3(n) \lambda_f(n - 1).$$

By analytical continuation of the Dirichlet series $\sum_{n=1}^{\infty} d_3(n) \lambda_f(n-1)/n^s$, he found that

$$\Psi(f, x) \ll x^{71/72 + \varepsilon}.$$

This project is supported by the National Natural Science Foundation of China (No. 11871193) and the Foundation of Henan University (No. CX3071A0780001).

© 2019 Australian Mathematical Publishing Association Inc.

In 2013, with the help of the idea on the shifted convolution sums for $GL(3) \times GL(2)$ from [9], Munshi [8] improved the upper bound to $x^{34/35+\varepsilon}$. In 2015, the author [11] considered the Maass case and further improved the bound to $x^{29/30+\varepsilon}$. These two results rely on the estimates of exponential sums from [9, Lemma 11]. Recently, Xi [13] pointed out that the estimate should have the form

$$\mathcal{T}(n, q_1 m', h; q_1, q_1, q_2) \ll q_1^{7/2} q_2^{5/2} \sqrt{(m', q_1 q_2)}.$$

The reason is that in the sum $\mathcal{T}^{q_1=\tilde{q}_1}$ on [9, page 2359], α runs though a complete residue system modulo q_1^2 , rather than modulo q_1 . Inserting the corrected estimate into the argument of [11, page 203] gives the bound $x^{37/38+\varepsilon}$. The work of Pitt [10], Munshi [8] and the author [11] rely on the Voronoi summation formula for the divisor function and the circle method of Jutila. In 2016, by means of a smooth decomposition of $d_3(n)$, Topacogullari [12] found a new approach in the holomorphic case using the Kuznetsov trace formula and obtained

$$\Psi(f, x) \ll x^{8/9 + \varepsilon},$$

which is still the best result. We adapt the idea of Topacogullari [12] to the Maass case and prove the following result.

Theorem 1.1. Let g be a Hecke–Maass form for Γ with $\Delta g = (1/4 + t^2)g$ and Fourier expansion

$$g(z) = y^{1/2} \sum_{n \neq 0} \lambda_g(n) K_{it}(2\pi |n| y) e(nx).$$

Normalise g by setting $\lambda_g(1) = 1$ so that $\lambda_g(n)$ is the nth Hecke eigenvalue of g. Let

$$\Phi(w) = \sum_{n} d_3(n) \lambda_g(n-1) w \left(\frac{n}{x}\right),$$

where $w : \mathbb{R} \to [0, \infty)$ is a smooth function with compact support in [1, 2] such that

$$w^{(\nu)} \ll y^{\nu}$$
 for $\nu \ge 0$ and $\int |w^{(\nu)}(\xi)| d\xi \ll y^{\nu-1}$ for $\nu \ge 1$,

where $y = x^{\eta}$ with a parameter $0 < \eta < 1$. Then

$$\Phi(w) \ll x^{5/6+\varepsilon} (x^{7/192} + x^{\eta/2}).$$

By the Rankin-Selberg theory, it is well known that

$$\sum_{n \le x} |\lambda_g(n)|^2 = C_t x + O_t(x^{3/5}). \tag{1.1}$$

Taking w = 0 in the intervals $(0, 1 - 1/y] \cup [2 + 1/y, \infty)$,

$$\sum_{x < n \leq 2x} d_3(n) \lambda_g(n-1) = \Phi(w) + O\bigg(\sum_{x < n < x + x/y} |d_3(n) \lambda_g(n-1)|\bigg).$$

For the error term, Cauchy's inequality and (1.1) give the bound

$$\sum_{x < n < x + x/y} |d_3(n)\lambda_g(n-1)| \ll \left(\sum_{x < n < x + x/y} d_3^2(n)\right)^{1/2} \left(\sum_{x < n < x + x/y} |\lambda_g(n-1)|^2\right)^{1/2}$$

$$\ll x^{1-\eta+\varepsilon} + x^{4/5-\eta/2+\varepsilon}.$$

Combining this with the bound of $\Phi(w)$ and taking $\eta = \frac{1}{9}$,

$$\sum_{n \le x} d_3(n) \lambda_g(n-1) \ll x^{8/9+\varepsilon},$$

where the implied constant depends on t and ε .

REMARK 1.2. Note that $\frac{8}{9}$ is less than all the earlier exponents. Compared with the work of the author [11] and Topacogullari [12], there are several differences and new difficulties in this short note. Firstly, the circle method of Jutila, which plays an important role in [11], disappears. Secondly, the Kuznetsov trace formula and the large-sieve inequality are used to handle the Kloosterman sums. Finally, estimation of Bessel functions in the Voronoi summation formula of $\lambda_j(n)$ is more complicated than in the case of the holomorphic Hecke eigenforms in [12].

2. Preliminaries

In this section, we introduce some lemmas. The first is the Voronoi summation formula for $\lambda_g(n)$, which is a variation of the result proved by Kowalski *et al.* [6].

Lemma 2.1. Let f be a compactly supported smooth function on $(0, \infty)$. Then

$$\sum_{\substack{n=1\\ e\equiv b \pmod{c}}}^{\infty} \lambda_g(n) f(n) = \frac{1}{c} \sum_{q|c} \frac{1}{q} \sum_{m=1}^{\infty} \lambda_g(m) S(-b, -m; q) G_1\left(\frac{m}{q^2}\right)$$

$$+\frac{1}{c}\sum_{q|c}\frac{1}{q}\sum_{m=1}^{\infty}\lambda_g(m)S(-b,m;q)G_2\left(\frac{m}{q^2}\right),$$

where S(b, m; c) is the classical Kloosterman sum and

$$G_1(y) = \int_0^\infty f(x) J_g(4\pi \sqrt{xy}) \, dx, \quad G_2(y) = \int_0^\infty f(x) K_g(4\pi \sqrt{xy}) \, dx \tag{2.1}$$

with

$$J_g(x) = -\frac{\pi}{\sin \pi i t} (J_{2it}(x) - J_{-2it}(x)), \quad K_g(x) = 4\varepsilon_g \cos(\pi t) K_{2it}(x)$$

and $a\bar{a} \equiv 1 \pmod{q}$, $\varepsilon_g = 1$ or -1 according as g is even or odd.

Proof. Kowalski et al. [6] showed that

$$\sum_{m=1}^{\infty} \lambda_g(m) e\left(\frac{am}{q}\right) f(m) = \frac{1}{q} \sum_{m=1}^{\infty} \lambda_g(m) e\left(-\frac{\bar{a}m}{q}\right) G_1\left(\frac{m}{q^2}\right) + \frac{1}{q} \sum_{m=1}^{\infty} \lambda_g(m) e\left(\frac{\bar{a}m}{q}\right) G_2\left(\frac{m}{q^2}\right), \tag{2.2}$$

where a, q are positive integers with (a, q) = 1. The property of additive characters implies that

$$\sum_{\substack{n=1\\n\equiv b\,(\text{mod }c)}}^{\infty} \lambda_g(n)f(n) = \frac{1}{c} \sum_{q|c} \sum_{n=1}^{\infty} \sum_{u\,(\text{mod }q)}^{*} e\left(\frac{(n-b)u}{q}\right) \lambda_g(n)f(n)$$
$$= \frac{1}{c} \sum_{q|c} \sum_{u\,(\text{mod }q)}^{*} e\left(\frac{-bu}{q}\right) \sum_{n=1}^{\infty} e\left(\frac{nu}{q}\right) \lambda_g(n)f(n).$$

Therefore, (2.2) gives the final result.

By the power series expansion of the *J*-Bessel function and the *K*-Bessel function,

$$J_g^{(\nu)}(x), K_g^{(\nu)}(x) \ll x^{-\nu} \quad \text{for } x \le 1.$$

For large x, [1, (4.17)] implies that

$$J_g(x) = \Re\left(e\left(\frac{w(x,t)}{2\pi}\right)f(x,t)\right). \tag{2.3}$$

Here,

$$w(x,t) = t \operatorname{arcsinh} \frac{x}{t} - \sqrt{t^2 + x^2} \ll x, \quad x^j \frac{\partial^j f(x,t)}{\partial x^j} \ll_t \frac{1}{x^{1/2}}$$

for any integer $j \ge 0$. Furthermore,

$$K_g(x) = 4\varepsilon_g \cos(\pi t) \sqrt{\frac{\pi}{2x}} e^{-x} \left(1 + O\left(\frac{1}{x}\right)\right) \ll_t e^{-x}.$$
 (2.4)

Next, we introduce the Kuznetsov trace formula. Let $\Gamma_0(q)$ be the Hecke congruence subgroup of level q. Denote by $M_k(\Gamma_0(q))$ the space of holomorphic cusp forms of weight k with dimension $\theta_k(q)$ and $f_{j,k}$ $(1 \le j \le \theta_k(q))$ the orthonormal Hecke eigenbasis. The Fourier expansion of $f_{j,k}$ around ∞ is

$$f_{j,k}(z) = \sum_{m \ge 1} \psi_{j,k}(m) e(mz).$$

For $\Gamma_0(q)$, we have the spectral decomposition

$$L^{2}(\Gamma_{0}(q)/\mathbb{H}) = \mathbb{C} \oplus L^{2}_{\text{cusp}}(\Gamma_{0}(q)\backslash\mathbb{H}) \oplus L^{2}_{\text{Eis}}(\Gamma_{0}(q)\backslash\mathbb{H}),$$

where $L^2_{\text{cusp}}(\Gamma_0(q)\backslash\mathbb{H})$ is the space spanned by the cusp forms and $L^2_{\text{Eis}}(\Gamma_0(q)\backslash\mathbb{H})$ is a continuous direct sum spanned by Eisenstein series (see below).

Let u_0 be the constant function and let $\{u_j\}_{j\geq 1}$ run over an orthonormal Hecke eigenbasis of $L^2_{\text{cusp}}(\Gamma_0(q)\backslash \mathbb{H})$. Denote the real eigenvalues corresponding to these functions by $\lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots$. Each u_j has a Fourier expansion

$$u_j(z) = \sqrt{y} \sum_{n \neq 0} \rho_j(n) K_{i\kappa_j}(2\pi n |y|) e(nx),$$

where $K_s(y)$ is the K-Bessel function and $\kappa_j^2 = \lambda_j - 1/4$. We choose the sign of κ_j so that $i\kappa_j \ge 0$ if $\lambda_j < 1/4$ and $\kappa_j \ge 0$ if $\lambda_j \ge 1/4$. The Selberg eigenvalue conjecture that $\lambda_1 \ge 1/4$ remains open. The eigenvalues with $0 < \lambda_j < 1/4$ as well as the corresponding κ_j are called exceptional. Let $\theta \in \mathbb{R}^+$ be such that $i\kappa_j \le \theta$ for all exceptional κ_j uniformly for all level q. The work of Kim and Sarnak [5] allows us to take $\theta = 7/64$.

The Eisenstein series is given by

$$E_{\mathfrak{c}}(z;s) = \sum_{\tau \in \Gamma_{\mathfrak{c}} \backslash \Gamma_{0}(q)} \mathfrak{I}(\sigma_{\mathfrak{c}} \tau z)^{s} \quad \text{for } z \in \mathbb{H}, \ \mathfrak{K}s > 1.$$

Here, \mathfrak{c} is a cusp of $\Gamma_0(q)$, $\Gamma_{\mathfrak{c}}$ is the stabiliser of \mathfrak{c} and $\sigma_{\mathfrak{c}} \infty = \mathfrak{c}$, $\sigma_{\mathfrak{c}}^{-1} \Gamma_{\mathfrak{c}} \sigma_{\mathfrak{c}} = \Gamma_{\infty}$. Note that the space $L^2_{\mathrm{Eis}}(\Gamma_0(q) \setminus \mathbb{H})$ is the continuous direct sum spanned by $E_{\mathfrak{c}}(z; 1/2 + ir)$ $(r \in \mathbb{R})$. The Fourier expansion of $E_{\mathfrak{c}}(z; s)$ around ∞ is

$$\begin{split} E_{\mathfrak{c}}(z;s) &= \delta_{\mathfrak{c}\infty} y^s + \sqrt{\pi} \frac{\Gamma(s-1/2)}{\Gamma(s)} \varphi_{\mathfrak{c},0}(s) y^{1-s} \\ &+ \frac{2\pi^s \sqrt{y}}{\Gamma(s)} \sum_{n \neq 0} |n|^{s-1/2} \varphi_{\mathfrak{c},n}(s) K_{s-1/2}(2\pi |n| y) e(nx), \end{split}$$

where $\delta_{c\infty} = 1$ if $c = \infty$ and 0 otherwise. For a smooth function ϕ , we define the Bessel transforms

$$\hat{\phi}(r) = \frac{\pi}{\sinh(\pi r)} \int_0^\infty \frac{J_{2ir}(x) - J_{-2ir}(x)}{2i} \phi(x) \frac{dx}{x},$$

$$\tilde{\phi}(k) = \int_0^\infty J_k(x) \phi(x) \frac{dx}{x},$$

$$\check{\phi}(r) = \frac{4}{\pi} \cosh(\pi r) \int_0^\infty K_{2ir}(x) \phi(x) \frac{dx}{x}.$$

With this notation, the Kuznetsov trace formula can be stated as follows.

Lemma 2.2 [3, Theorem 1]. Let $m, n \in \mathbb{N}$ and let ϕ be a compactly supported smooth function on $(0, \infty)$. Then

$$\begin{split} \sum_{c \equiv 0 \, (\text{mod } q)} \frac{S \, (m, n; c)}{c} \phi \left(\frac{4\pi \, \sqrt{mn}}{c} \right) \\ &= \sum_{j=1}^{\infty} \frac{\hat{\phi}(\kappa_j)}{\cosh(\pi \kappa_j)} \, \overline{\rho_j(m)} \rho_j(n) \\ &+ \frac{1}{\pi} \sum_{c} \int_{-\infty}^{\infty} \left(\frac{m}{n} \right)^{-ir} \overline{\varphi_{c,m} \left(\frac{1}{2} + ir \right)} \varphi_{c,n} \left(\frac{1}{2} + ir \right) \hat{\phi}(r) \, dr \\ &+ \frac{1}{2\pi} \sum_{k \equiv 0 \, (\text{mod } 2)} \tilde{\phi}(k-1) \frac{i^k (k-1)!}{4\pi (\sqrt{mn})^{k-1}} \sum_{1 \leq i \leq \theta_k(q)} \overline{\psi_{j,k}(m)} \, \psi_{j,k}(n) \end{split}$$

and

$$\begin{split} \sum_{c \equiv 0 \, (\text{mod } q)} \frac{S \, (m, -n; c)}{c} \phi \Big(\frac{4\pi \, \sqrt{mn}}{c} \Big) \\ &= \sum_{j=1}^{\infty} \frac{\check{\phi}(\kappa_j)}{\cosh(\pi \kappa_j)} \overline{\rho_j(m)} \rho_j(n) \\ &+ \frac{1}{\pi} \sum_{c} \int_{-\infty}^{\infty} (mn)^{ir} \varphi_{c,m} \Big(\frac{1}{2} + ir \Big) \varphi_{c,n} \Big(\frac{1}{2} + ir \Big) \check{\phi}(r) \, dr. \end{split}$$

To bound $\hat{\phi}$, $\tilde{\phi}$, $\check{\phi}$, we use the following results from [2, Lemma 2.1].

Lemma 2.3. Let $f:(0,\infty)\to\mathbb{C}$ be a smooth compactly supported function such that

supp
$$f \times X$$
 and $f^{(v)} \ll \frac{1}{V^{v}}$, $v = 0, 1, 2$,

for positive X, Y with $X \gg Y$. Then

$$\begin{split} \hat{f}(ir), \check{f}(ir) \ll \frac{1+Y^{-2r}}{1+Y} & for \ 0 \leq r < \frac{1}{4}, \\ \hat{f}(r), \check{f}(r), \check{f}(r) \ll \frac{1+|\log Y|}{1+Y} & for \ r \geq 0, \\ \hat{f}(r), \check{f}(r), \check{f}(r) \ll \left(\frac{X}{Y}\right)^2 \left(\frac{1}{r^{5/2}} + \frac{X}{r^3}\right) & for \ r \gg \max(X, 1). \end{split}$$

Assume that $w:(0,\infty)\to\mathbb{C}$ is a smooth compactly supported function such that

$$\operatorname{supp} w \times X \quad \text{and} \quad w^{(v)} \ll \frac{1}{X^{v}}, \quad v \ge 0.$$

For $\alpha > 0$, define

$$f(\xi) := e\left(\xi \frac{\alpha}{2\pi}\right) w(\xi).$$

Then we have the following bounds for the Bessel transforms of f.

Lemma 2.4 [12, Lemma 2.6]. Assume that $X \ll 1$, $\alpha X \gg 1$. Then, for ν , $\mu \geq 0$,

$$\begin{split} \hat{f}(ir), \check{f}(ir) \ll X^{-2r+\varepsilon} \bigg(X^{\mu} + \frac{1}{(\alpha X)^{\nu}} \bigg) \quad for \ 0 \leq r < \frac{1}{4}, \\ \hat{f}(r), \check{f}(r), \check{f}(r) \ll \frac{\alpha^{\varepsilon}}{\alpha X} \bigg(\frac{\alpha X}{r} \bigg)^{\nu} \quad for \ r \geq 0. \end{split}$$

We also use the large-sieve inequalities for Fourier coefficients of cusp forms.

Lemma 2.5 [3, Theorem 2]. Let K, $N \ge 1$ and (a_n) be a sequence of complex numbers. Then

$$\begin{split} & \sum_{|\kappa_{j}| \leq K} \frac{1}{\cosh(\pi \kappa_{j})} \bigg| \sum_{n \sim N} a_{n} \rho_{j}(n) \bigg|^{2} \\ & \sum_{\substack{2 \leq k \leq K \\ 2|k}} \frac{(k-1)!}{(4\pi)^{k-1}} \sum_{1 \leq j \leq \theta_{k}(q)} \bigg| \sum_{n \sim N} a_{n} n^{-(k-1)/2} \psi_{j,k}(n) \bigg|^{2} \\ & \sum_{\mathfrak{c}} \int_{-K}^{K} \bigg| \sum_{n \sim N} a_{n} n^{ir} \varphi_{\mathfrak{c},n} \bigg(\frac{1}{2} + ir \bigg) \bigg|^{2} dr \end{split} \right\} \ll \bigg(K^{2} + \frac{N^{1+\varepsilon}}{q} \bigg) \sum_{n \sim N} |a_{n}|^{2}. \end{split}$$

Without averaging over n, we have the following result.

Lemma 2.6 [12, Lemmas 2.9 and 2.10]. For $K, n \ge 1$,

$$\begin{split} &\sum_{|\kappa_{j}| \leq K} \frac{|\rho_{j}(n)|^{2}}{\cosh(\pi\kappa_{j})} \\ &\sum_{\substack{2 \leq k \leq K \\ 2|k}} \frac{(k-1)!}{(4\pi)^{k-1}} \sum_{1 \leq j \leq \theta_{k}(q)} |\psi_{j,k}(n)|^{2} \\ &\sum_{\epsilon} \int_{-K}^{K} \left| \varphi_{\epsilon,n} \left(\frac{1}{2} + ir\right) \right|^{2} dr \end{split} \leqslant K^{2} + (qKn)^{\epsilon} (q,n)^{1/2} \frac{n^{1/2}}{q}. \end{split}$$

For the exceptional eigenvalues,

$$\sum_{\kappa_j \, \text{exc.}} |\rho_j(h)|^2 X^{4i\kappa_j} \ll (Xh)^{\varepsilon} \frac{(hX^2)^{2\theta}}{q^{4\theta}} (h, q)^{1/2} \left(1 + \frac{h^{1/2}}{q}\right)$$

for $X, q, h \ge 1$ with $h^{1/2}X \ge q$.

3. Proof of Theorem 1.1

Firstly, we need a smooth decomposition of $d_3(n)$, given by Meurman [7], in order to apply the Kuznetsov trace formula. This is

$$d_3(n) = \sum_{abc=n} [\nu_1(a)\nu_1(b)\nu_1(c) - 3\nu_1(a)\nu_1(b) + 3\nu_1(a)\nu_2(b)(2 - \nu_2(c))], \tag{3.1}$$

where

$$v_1(\xi) = v\left(\frac{\xi}{x^{1/3}}\right), \quad v_2(\xi) = v\left(\frac{\xi}{\sqrt{x/a}}\right)$$

and $\nu: \mathbb{R} \to [0, \infty)$ a smooth function satisfying

supp
$$v \subset [-2, 2]$$
, $v(\xi) = 1$ for $\xi \in [-1, 1]$, $v^{(n)}(\xi) \ll |\xi|^{-n}$.

Let h_X be smooth compactly supported functions such that

$$\sum_{Y} h_X = 1, \quad \operatorname{supp} h_X \subset \left[\frac{X}{2}, X\right], \quad h_X^{(\nu)} \ll \frac{1}{X^{\nu}},$$

where the summation runs over powers of two. Denote by h(a, b, c) the term in the summation (3.1) and set

$$h_{ABC}(a, b, c) := h(a, b, c)h_A(a)h_B(b)h_C(c)$$

and

$$\Phi(w, A, B, C) := \sum_{a,b,c} h_{ABC}(a, b, c) \lambda_g(abc - 1) w \left(\frac{abc}{x}\right).$$

Thus,

$$\Phi(w) = \sum_{A,B,C} \Phi(w,A,B,C).$$

We can assume that

$$ABC \times x$$
, $A \ll B \ll C$

because, otherwise, $\Phi(w, A, B, C) = 0$.

Set m = abc - 1. Then

$$\Phi(w, A, B, C) = \sum_{a,b} \sum_{m \equiv 1 \pmod{ab}} \lambda_g(m) w \left(\frac{m+1}{x}\right) h_{ABC} \left(a, b, \frac{m+1}{ab}\right)$$
$$= \sum_{a,b} \sum_{m \equiv 1 \pmod{ab}} \lambda_g(m) f(m; a, b),$$

where

$$f(\xi; a, b) := w\left(\frac{\xi + 1}{x}\right) h_{ABC}\left(a, b, \frac{\xi + 1}{ab}\right).$$

Note that

$$\operatorname{supp} f(*; a, b) \times x, \quad \frac{\partial^{\nu_1 + \nu_2}}{\partial \xi^{\nu_1} \partial b^{\nu_2}} f(\xi; a, b) \ll \frac{y^{\nu_1}}{x^{\nu_1} B^{\nu_2}}. \tag{3.2}$$

For the inner sum, we apply the Voronoi summation formula (Lemma 2.1). Thus,

$$\Phi(w, A, B, C) = \sum_{a,b} \sum_{c|ab} \sum_{m=1}^{\infty} \lambda_g(m) \frac{S(1, -m; c)}{c} G_1\left(\frac{m}{c^2}; a, b\right)$$

$$+ \sum_{a,b} \sum_{c|ab} \sum_{m=1}^{\infty} \lambda_g(m) \frac{S(1, m; c)}{c} G_2\left(\frac{m}{c^2}; a, b\right)$$

$$:= \Phi_1(w, A, B, C) + \Phi_2(w, A, B, C),$$

where G_1 , G_2 are given by (2.1) with f(x) replaced by f(x; a, b). In what follows, we only consider Φ_1 because Φ_2 can be estimated similarly. By an elementary argument with ab = ct, s = (a, t), $a = a_1 s$, $t = t_1 s$ and the property of the Möbius function,

$$\Phi_1(w,A,B,C) = \sum_{r,s,t} \frac{\mu(r)}{r^2 st} \sum_a \sum_m \lambda_g(m) \sum_{arlc} \frac{S(1,-m;c)}{c} \frac{F(c,m;a,r,s,t)}{a}.$$

Here,

$$a \times \frac{A}{rs}$$
, $c \times \frac{AB}{rst}$, $r, s, t \ll A$,

and

$$F(c,m;a,r,s,t) := \frac{ar}{c} \int_0^\infty J_g \left(\frac{4\pi}{c} \sqrt{mx} \right) f\left(x;ars,\frac{ct}{a} \right) dx.$$

Trivially,

$$F(c,m;a,r,s,t) \ll x^{1+\varepsilon} \frac{ar}{c}.$$

By the properties of Bessel functions $(z^{\nu}J_{\nu}(z))' = z^{\nu}J_{\nu-1}(z)$ (see [4, Section 7.13.2 (17)]), (3.2) and partial integration,

$$F(c, m; a, r, s, t) \ll \frac{y^{\nu - 1}}{x^{\nu/2 - 3/4}} \frac{c^{\nu + 1/2}}{m^{\nu/2 + 1/4}} \frac{ar}{c}$$

for $m \gg c^2/x$. Define

$$M_0 = \frac{x^{\varepsilon} y^2}{x} \left(\frac{AB}{rst}\right)^2.$$

For $m > M_0$, the contribution to Φ_1 is negligible, where $\lambda_g(n) \le n^{7/64+\varepsilon}$. So, it suffices to consider the sums

$$R(M; a, r, s, t) := \sum_{m \sim M} \lambda_g(m) \sum_{ar \mid c} \frac{S(1, -m; c)}{c} F(c, m; a, r, s, t),$$

where $M \le M_0$. In order to use the Kuznetsov trace formula (Lemma 2.2), we define

$$\tilde{F}(c,m;a,r,s,t) := h(m) \frac{arc}{4\pi \sqrt{m}} \int_0^\infty J_g(c\sqrt{x}) f\left(x;ars, \frac{4\pi \sqrt{m}}{c} \frac{t}{a}\right) dx,$$

where h(m) is a smooth compactly supported function such that

$$h(m) = 1$$
 for $m \in [M, 2M]$, supp $f \times M$ and $h^{(v)}(m) \ll \frac{1}{M^{v}}$.

Then

$$F(c, m; a, r, s, t) = \tilde{F}\left(\frac{4\pi\sqrt{m}}{c}, m; a, r, s, t\right)$$

for $m \in [M, 2M]$. Next, let

$$G_0(\lambda) := x^{1+\varepsilon} \frac{rt}{B} \min\left(M, \frac{1}{M\lambda^2}\right)$$

for $0 < \lambda < 1$. We have

$$\tilde{F}(c, m; a, r, s, t) = \int_0^1 G_0(\lambda) G_{\lambda}(c; a, r, s, t) e(m\lambda) d\lambda$$

with

$$G_{\lambda}(c; a, r, s, t) := \frac{1}{G_0(\lambda)} \lim_{Y \to +\infty} \int_{-Y}^{Y} \tilde{F}(c, y; a, r, s, t) e(-\lambda y) \, dy.$$

410 H. C. Tang [10]

Hence,

$$R(M; a, r, s, t) = \int_0^1 G_0(\lambda) \sum_{m \sim M} \lambda_g(m) e(m\lambda) \sum_{ar \mid c} \frac{S(1, -m; c)}{c} G_{\lambda} \left(\frac{4\pi \sqrt{m}}{c}; a, r, s, t\right) d\lambda.$$

$$(3.3)$$

For the inner sum over c, we apply the Kuznetsov trace formula (the second formula in Lemma 2.2) and get

$$\sum_{ar|c} \frac{S(1, -m; c)}{c} G_{\lambda} \left(\frac{4\pi \sqrt{m}}{c}; a, r, s, t \right)$$

$$= \sum_{j=1}^{\infty} \frac{\check{G}_{\lambda}(\kappa_{j}; a, r, s, t)}{\cosh(\pi \kappa_{j})} \overline{\rho_{j}(1)} \rho_{j}(m)$$

$$+ \frac{1}{\pi} \sum_{\epsilon} \int_{-\infty}^{\infty} m^{iy} \varphi_{\epsilon, 1} \left(\frac{1}{2} + iy \right) \varphi_{\epsilon, m} \left(\frac{1}{2} + iy \right) \check{G}_{\lambda}(y; a, r, s, t) \, dy.$$
(3.5)

For \check{G}_{λ} , we use the following result, which will be proved in Section 4.

Lemma 3.1. Let

$$M_1 := \frac{x^{\varepsilon}}{x} \left(\frac{AB}{rst}\right)^2, \quad \Xi := \sqrt{M} \frac{rst}{AB}, \quad Z := \sqrt{xM} \frac{rst}{AB}.$$

For $M \ll M_1$,

$$\check{G}_{\lambda}(i\kappa; a, r, s, t) \ll \Xi^{-2\kappa}, \quad 0 < \kappa \le \frac{1}{4},$$

$$\check{G}_{\lambda}(\kappa; a, r, s, t) \ll \frac{x^{\varepsilon}}{1 + \kappa^{5/2}}, \quad \kappa \ge 0.$$
(3.6)

For $M_1 \ll M \ll M_0$ and any $v \ge 0$,

$$\check{G}_{\lambda}(i\kappa; a, r, s, t) \ll x^{-\nu}, \quad 0 < \kappa \le \frac{1}{4}, \tag{3.7}$$

$$\check{G}_{\lambda}(\kappa; a, r, s, t) \ll \frac{x^{\varepsilon}}{Z^{5/2}} \left(\frac{Z}{\kappa}\right)^{\nu}, \quad \kappa > 0.$$
 (3.8)

Putting (3.5) into (3.3),

$$R(M;a,r,s,t) = \int_0^1 G_0(\lambda) \sum_{l=1}^3 E_l(M;a,r,s,t) d\lambda,$$

where

$$E_{1}(M; a, r, s, t) = \sum_{\kappa_{j} \geq 0} \check{G}_{\lambda}(\kappa_{j}; a, r, s, t) \frac{\rho_{j}(1)}{\cosh(\pi \kappa_{j})} \sum_{m \sim M} \lambda_{g}(m) e(m\lambda) \rho_{j}(m),$$

$$E_{2}(M; a, r, s, t) = \sum_{\kappa_{j} \in \text{xc.}} \check{G}_{\lambda}(\kappa_{j}; a, r, s, t) \frac{\overline{\rho_{j}(1)}}{\cosh(\pi \kappa_{j})} \sum_{m \sim M} \lambda_{g}(m) e(m\lambda) \rho_{j}(m),$$

$$E_{3}(M; a, r, s, t) = \frac{1}{\pi} \sum_{c} \int_{-\infty}^{\infty} \check{G}_{\lambda}(y; a, r, s, t) \varphi_{c,1} \left(\frac{1}{2} + iy\right) m^{iy}$$

$$\times \sum_{m \sim M} \lambda_{g}(m) e(m\lambda) \varphi_{c,m} \left(\frac{1}{2} + iy\right) dy.$$

Firstly, we consider $E_1(M; a, r, s, t)$. For $M \ll M_1$, we split the sum into two parts $E_{11}(M; a, r, s, t) = \sum_{0 \le \kappa_j \le 1} (\cdots)$, $E_{12}(M; a, r, s, t) = \sum_{\kappa_j > 1} (\cdots)$, according as $\kappa_j \le 1$ or not. By Cauchy's inequality,

$$\begin{split} E_{11}(M; a, r, s, t) &\ll \max_{0 \leq \kappa_j \leq 1} |\check{G}_{\lambda}(\kappa_j; a, r, s, t)| \bigg(\sum_{\kappa_j \leq 1} \frac{|\rho_j(1)|^2}{\cosh(\pi \kappa_j)} \bigg)^{1/2} \\ &\times \bigg(\sum_{\kappa_j \leq 1} \frac{1}{\cosh(\pi \kappa_j)} \bigg| \sum_{m \sim M} \lambda_g(m) e(m\lambda) \rho_j(m) \bigg|^2 \bigg)^{1/2}. \end{split}$$

Lemmas 3.1, 2.5 and 2.6 and (1.1) give the bound

$$E_{11}(M; a, r, s, t) \ll x^{\varepsilon} \left(1 + \frac{1}{ar}\right)^{1/2} \left(1 + \frac{M}{ar}\right)^{1/2} M^{1/2} \ll \frac{x^{\varepsilon}}{rt} \left(\frac{AB}{x^{1/2}} + \frac{A^{3/2}B^2}{x}\right).$$

Thus,

$$\int_{0}^{1} G_{0}(\lambda) E_{11}(M; a, r, s, t) d\lambda \ll \int_{0}^{1/M} x^{1+\varepsilon} \frac{rt}{B} M \frac{1}{rt} \left(\frac{AB}{x^{1/2}} + \frac{A^{3/2}B^{2}}{x} \right) d\lambda$$

$$+ \int_{1/M}^{1} x^{1+\varepsilon} \frac{rt}{B} \frac{1}{M\lambda^{2}} \frac{1}{rt} \left(\frac{AB}{x^{1/2}} + \frac{A^{3/2}B^{2}}{x} \right) d\lambda$$

$$\ll x^{\varepsilon} (x^{1/2}A + A^{3/2}B) \ll x^{5/6+\varepsilon}.$$
(3.9)

For E_{12} , we use the dyadic subdivision. Setting $K = 2^k$,

$$\begin{split} E_{12}(M; a, r, s, t) \ll \sum_{k=0}^{\infty} \max_{K < \kappa_j \leq 2K} |\check{G}_{\lambda}(\kappa_j; a, r, s, t)| \Big(\sum_{K < \kappa_j \leq 2K} \frac{|\rho_j(1)|^2}{\cosh(\pi \kappa_j)} \Big)^{1/2} \\ \times \Big(\sum_{K < \kappa_j \leq 2K} \frac{1}{\cosh(\pi \kappa_j)} \bigg| \sum_{m \sim M} \lambda_g(m) e(m\lambda) \rho_j(m) \bigg|^2 \Big)^{1/2}. \end{split}$$

Applying Lemmas 3.1, 2.5 and 2.6 and (1.1) again,

$$E_{12}(M;a,r,s,t) \ll x^{\varepsilon} \sum_{k=1}^{\infty} \frac{1}{K^{5/2}} \left(K^2 + \frac{1}{ar}\right)^{1/2} \left(K^2 + \frac{M}{ar}\right)^{1/2} M^{1/2} \ll \frac{x^{\varepsilon}}{rt} \left(\frac{AB}{x^{1/2}} + \frac{A^{3/2}B^2}{x}\right).$$

Hence, as before,

$$\int_0^1 G_0(\lambda) E_{12}(M; a, r, s, t) d\lambda \ll x^{5/6 + \varepsilon}. \tag{3.10}$$

Secondly, for $M_1 \ll M \ll M_0$, write

$$E_1(M; a, r, s, t) = E_{13}(M; a, r, s, t) + E_{14}(M; a, r, s, t) := \sum_{\kappa_i < Z} (\cdots) + \sum_{\kappa_i > Z} (\cdots).$$

Similarly to the first case,

$$E_{13}(M;a,r,s,t) \ll \frac{x^{\varepsilon}}{Z^{3/2}} \left(Z^2 + \frac{M^{1/2}}{(ar)^{1/2}} \right)^{1/2} M^{1/2} \ll \frac{x^{\varepsilon} y^{1/2}}{rt} \left(\frac{AB}{x^{1/2}} + \frac{A^{3/2}B^2}{x} \right)$$

and

$$E_{14}(M;a,r,s,t) \ll \frac{x^{\varepsilon} y^{1/2}}{rt} \bigg(\frac{AB}{x^{1/2}} + \frac{A^{3/2}B^2}{x} \bigg).$$

Then, for l = 3, 4,

$$\int_0^1 G_0(\lambda) E_{1l}(M; a, r, s, t) d\lambda \ll x^{5/6 + \eta/2 + \varepsilon}. \tag{3.11}$$

Combining (3.9), (3.10) and (3.11),

$$\int_0^1 G_0(\lambda) E_1(M; a, r, s, t) d\lambda \ll x^{5/6 + \eta/2 + \varepsilon}.$$
 (3.12)

We estimate $E_3(M; a, r, s, t)$ in the same way. If $M \ll M_1$, divide the integral into [-1, 1] and $(-\infty, -1) \cup (1, \infty)$ and, if $M \gg M_1$, divide the integral into [-Z, Z] and $(-\infty, -Z) \cup (Z, \infty)$. Define $E_{3l}(M; a, r, s, t)$ $(1 \le l \le 4)$ as above. Similarly to $E_{1l}(M; a, r, s, t)$, we obtain the bound

$$\int_0^1 G_0(\lambda) E_3(M; a, r, s, t) d\lambda \ll x^{5/6 + \eta/2 + \varepsilon}. \tag{3.13}$$

The treatment of the exceptional eigenvalues, that is, $E_2(M; a, r, s, t)$, is as follows. If $M \gg M_1$, trivially, the bound for \check{G}_{λ} in (3.7) implies that the contribution is negligible. But, for $M \ll M_1$, (3.6) is not sufficient for our purpose. Instead, Cauchy's inequality and Lemma 2.6 give the estimate

$$E_{2}(M; a, r, s, t) \ll \left(\sum_{\kappa_{j} \text{ exc.}} \left(\frac{1}{\Xi}\right)^{4i\kappa_{j}} |\rho_{j}(1)|^{2}\right)^{1/2} \left(\sum_{\kappa_{j} \text{ exc.}} \frac{1}{\cosh(\pi\kappa_{j})} \left|\sum_{m \sim M} \lambda_{g}(m)e(m\lambda)\rho_{j}(m)\right|^{2}\right)^{1/2}$$

$$\ll x^{\varepsilon} \left(\frac{1}{\sqrt{M}} \frac{AB}{rst} \frac{1}{ar}\right)^{2\theta} \left(1 + \frac{M}{ar}\right)^{1/2} M^{1/2} \ll x^{\varepsilon} \frac{1}{rt} \frac{x^{\theta}}{A^{2\theta}} \left(\frac{AB}{x^{1/2}} + \frac{A^{3/2B^{2}}}{x}\right),$$

which implies that

$$\int_0^1 G_0(\lambda) E_2(M; a, r, s, t) d\lambda \ll x^{5/6 + \theta/3 + \varepsilon}. \tag{3.14}$$

Combining (3.12), (3.13) and (3.14), we complete the proof.

For $\Phi_2(w, A, B, C)$, the only difference is that J_g is replaced by K_g . If $M \ll M_1$, this case is basically the same as for the *J*-Bessel functions, while, if $M \gg M_1$, it is simple because of (2.4) and can be trivially estimated.

4. Proof of Lemma 3.1

Recall that

$$G_{\lambda}(\kappa; a, r, s, t) = \frac{1}{G_0(\lambda)} \lim_{Y \to \infty} \int_{-Y}^{Y} \tilde{F}(\kappa, y; a, r, s, t) e(-\lambda y) dy,$$

$$\check{G}_{\lambda}(\kappa; a, r, s, t) = \frac{1}{G_0(\lambda)} \lim_{Y \to \infty} \int_{-Y}^{Y} h(y) e(-\lambda y) \frac{ar}{4\pi \sqrt{y}} \int_{-\infty}^{\infty} \check{H}_1(\kappa, y; \xi, a, r, s, t) d\xi dy,$$

where

$$H_1(\kappa, y; \xi, a, r, s, t) := \kappa J_g(\kappa \sqrt{\xi}) f\left(\xi; ars, \frac{4\pi \sqrt{y}}{\kappa} \frac{t}{a}\right).$$

By the properties of J_g and f, as a function of κ ,

$$\operatorname{supp} H_1 \times \Xi, \quad \frac{\partial^{(\nu)} H_1}{\partial \kappa^{\nu}} \ll \kappa^{\varepsilon} \Xi \left(\frac{\chi^{\varepsilon}}{\Xi}\right)^{\nu}.$$

Lemma 2.4 implies that

$$\begin{split} \check{H}_1(i\kappa,y;\xi,a,r,s,t) &\ll \Xi^{1-2\kappa}, \quad 0 \leq \kappa < \frac{1}{4}; \\ \check{H}_1(\kappa,y;\xi,a,r,s,t) &\ll \frac{x^{\varepsilon}\Xi}{1+\kappa^{5/2}}, \quad \kappa \geq 0. \end{split}$$

Trivially,

$$\begin{split} \check{G}_{\lambda}(i\kappa;a,r,s,t) \ll \frac{arx\,\sqrt{M}}{G_0(\lambda)}\Xi^{1-2\kappa} \ll \frac{M}{\min\big(M,\frac{1}{M\lambda^2}\big)}\Xi^{-2\kappa}, \quad 0 \leq \kappa < \frac{1}{4}; \\ \check{G}_{\lambda}(\kappa;a,r,s,t) \ll \frac{arx\,\sqrt{M}}{G_0(\lambda)}\,\frac{x^{\varepsilon}\Xi}{1+\kappa^{5/2}} \ll \frac{M}{\min\big(M,\frac{1}{M\lambda^2}\big)}\,\frac{x^{\varepsilon}\Xi}{1+\kappa^{5/2}}, \quad \kappa \geq 0. \end{split}$$

By partial integration twice,

$$\check{G}_{\lambda}(i\kappa; a, r, s, t) \ll \frac{1}{M\lambda^2 G_0(\lambda)} \Xi^{-2\kappa}, \quad 0 \le \kappa < \frac{1}{4};
\check{G}_{\lambda}(\kappa; a, r, s, t) \ll \frac{1}{M\lambda^2 G_0(\lambda)} \frac{x^{\varepsilon}\Xi}{1 + \kappa^{5/2}}, \quad \kappa \ge 0.$$

This gives the first statement of Lemma 3.1.

For $M \gg M_1$, by partial integration and (2.3),

$$\tilde{F}(\kappa, y; a, r, s, t) = h(y) \frac{ar}{2\pi i \sqrt{y}} \Re \left(\int_{0}^{\infty} e^{\left(\frac{w(\kappa \sqrt{\xi}, t)}{2\pi}\right)} \tilde{w}(\kappa, y; \xi, a, r, s, t) d\xi \right)$$

with

$$\tilde{w}(\kappa,y;\xi,a,r,s,t) := \frac{\partial}{\partial \xi} \left(\frac{\sqrt{t^2 + \kappa^2 \xi} \sqrt{\xi}}{t - \kappa \sqrt{\xi}} f(\kappa \sqrt{\xi},t) f(\xi;ars, \frac{4\pi t \sqrt{y}}{ac}) \right).$$

Note that the bounds

$$\operatorname{supp} \tilde{w} \times \Xi, \quad \tilde{w}^{(\nu)} \ll \frac{\Xi^{1-\nu}}{Z^{3/2}}$$

414 H. C. Tang [14]

hold. Let

$$H_2(\kappa, y; \xi, a, r, s, t) := e \left(\frac{w(\kappa \sqrt{\xi}, t)}{2\pi} \right) \tilde{w}(\kappa, y; \xi, a, r, s, t).$$

Taking $\alpha = w(\kappa \sqrt{\xi}, t) \approx \sqrt{\xi}$ and $X = \Xi$ in Lemma 2.4,

$$\begin{split} \check{H}_2(i\kappa, y; \xi, a, r, s, t) &\ll x^{-\nu}, \quad 0 \leq \kappa < \frac{1}{4}; \\ \check{H}_2(\kappa, y; \xi, a, r, s, t) &\ll x^{\varepsilon} \frac{\Xi}{Z^{5/2}} \left(\frac{Z}{\kappa}\right)^{\nu}, \quad \kappa > 0, \end{split}$$

which imply the bounds (3.7) and (3.8).

Acknowledgement

The author expresses his sincere gratitude to the referee for a careful reading and several helpful suggestions.

References

- [1] V. Blomer and J. Buttcane, 'On the subconvexity problem for *L*-functions on GL(3)', *Ann. Sci. ENS.* (to appear), arXiv:1504.02667.
- [2] V. Blomer, G. Harcos and P. Michel, 'A Burgess-like subconvex bound for twisted *L*-functions', Forum Math. 19 (2007), 61–105.
- [3] J.-M. Deshouillers and H. Iwaniec, 'Kloosterman sums and Fourier coefficients of cusp forms', Invent. Math. 70 (1982), 219–288.
- [4] A. Erdélyi, W. Magnus, F. Obergettinger and F. Tricomi, Higher Transcendental Functions II (McGraw-Hill, New York, 1953).
- [5] H. H. Kim and P. Sarnak, 'Appendix 2: refined estimates towards the Ramanujan and Selberg conjectures', J. Amer. Math. Soc. 16 (2003), 175–181.
- [6] E. Kowalski, P. Michel and J. Vanderkam, 'Rankin–Selberg L-functions in the level aspect', Duke Math. J. 114 (2002), 123–191.
- [7] T. Meurman, 'On the binary additive divisor problem', in: *Turku Sympos. Number Theory, Turku, 1999* (de Gruyter, Berlin, 2001), 223–246.
- [8] R. Munshi, 'Shifted convolution of divisor function d₃ and Ramanujan τ-function', in: *The Legacy of Srinivasa Ramanujan*, Ramanujan Mathematical Society Lecture Notes Series, 20 (Ramanujan Mathematical Society, Mysore, 2013), 251–260.
- [9] R. Munshi, 'Shifted convolution sums for GL(3) × GL(2)', *Duke Math. J.* **162** (2013), 2345–2362.
- [10] N. J. E. Pitt, 'On shifted convolutions of $\zeta^3(s)$ with automorphic *L*-functions', *Duke Math. J.* 77 (1995), 383–406.
- [11] H. C. Tang, 'Shifted convolution sum of d₃ and the Fourier coefficients of Hecke–Maass forms', Bull. Aust. Math. Soc. 92 (2015), 195–204.
- [12] B. Topacogullari, 'The shifted convolution sum of divisor functions', Q. J. Math. 67 (2016), 331–363.
- [13] P. Xi, 'A shifted convolution sum for GL(3) × GL(2)', Forum Math. 30 (2018), 1013–1027.

HENGCAI TANG, School of Mathematics and Statistics,

Institute of Modern Mathematics, Henan University, Kaifeng,

Henan 475004, PR China

e-mail: hctang@henu.edu.cn