Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-11T10:22:38.898Z Has data issue: false hasContentIssue false

ON $\varphi $-AMENABILITY OF DUAL BANACH ALGEBRAS

Published online by Cambridge University Press:  09 July 2021

ALIREZA JABERI
Affiliation:
Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran e-mail: alirezajaberii1350@gmail.com
AMIN MAHMOODI*
Affiliation:
Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Rights & Permissions [Opens in a new window]

Abstract

Generalising the concept of injectivity, we study the notion of $\varphi $ -injectivity for dual Banach algebras. It provides a framework for studying $\varphi $ -amenability of enveloping dual Banach algebras.

Type
Research Article
Copyright
© 2021 Australian Mathematical Publishing Association Inc.

1. Introduction

In his memoir, Johnson [Reference Johnson3] introduced the cohomological notion of an amenable Banach algebra. The concept of $\varphi $ -amenability, which is a modification of Johnson’s amenability, was introduced by Kaniuth et al. [Reference Kaniuth, Lau and Pym4] and independently by Monfared [Reference Monfared8]. By way of background, $\varphi $ -amenability is a generalisation of the notion of (left) amenability for Lau algebras (or F-algebras); these are Banach algebras that are preduals of a von Neumann algebra where the identity element of the von Neumann algebra is a character [Reference Lau5]. The notion of injectivity for dual Banach algebras was introduced by Daws [Reference Daws1]. We recall the definitions in Definitions 2.1 and 2.4 below.

Motivated by these concepts, we define and study $\varphi $ -injective dual Banach algebras. In Section 2, we recall some background definitions and notation. In Section 3, we introduce and investigate $\varphi $ -injectivity of a dual Banach algebra $\mathfrak {A}$ . Among other things, we prove that $\varphi $ -injectivity is equivalent to $\varphi $ -amenability whenever $\varphi : \mathfrak {A} \longrightarrow \mathbb {C}$ is a $w^*$ -continuous homomorphism. In Section 4, using the idea of $\varphi $ -injectivity, we discuss $\varphi $ -amenability of the enveloping dual Banach algebra ${\textrm {WAP}}(\mathfrak {A}^*)^*$ of a Banach algebra $\mathfrak {A}$ . Besides examples, we will characterise $\varphi $ -amenability of ${\textrm {WAP}}(\mathfrak {A}^*)^*$ in terms of continuous representations from $\mathfrak {A}$ on reflexive Banach spaces. Section 5 is devoted to non- $\tilde {\varphi }$ -amenability of the algebra $ {\textrm {WAP}}(\ell ^1(\mathbb {N}_\wedge )^*)^*$ where $\varphi $ is the augmentation character on $\ell ^1(\mathbb {N}_\wedge )$ . Finally, in Appendix A, we shall see that every nonzero homomorphism $\varphi : \mathfrak {A} \longrightarrow \mathbb {C}$ becomes automatically a $w^*$ -continuous homomorphism $\varphi : {\textrm {WAP}}(\mathfrak {A}^*)^* \longrightarrow \mathbb {C}$ .

2. Preliminaries

For a Banach algebra $\mathfrak {A}$ , the projective tensor product $ \mathfrak {A} \widehat {\otimes } \mathfrak {A}$ is a Banach $\mathfrak {A}$ -bimodule in a canonical way. The diagonal operator $ \pi : \mathfrak {A} \widehat {\otimes } \mathfrak {A} \longrightarrow \mathfrak {A}$ defined by $\pi (a \otimes b) = ab$ is an $\mathfrak {A}$ -bimodule homomorphism. Let E be a Banach $\mathfrak {A}$ -bimodule. A continuous linear operator $D: \mathfrak {A} \longrightarrow E$ is called a derivation if it satisfies $ D(ab) = D(a) \cdot b + a \cdot D(b) $ for all $a,b \in \mathfrak {A}$ . Given $x \in E$ , the inner derivation $ad_x : \mathfrak {A} \longrightarrow E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$ . We write $\Delta (\mathfrak {A})$ for the set of all homomorphisms from $\mathfrak {A}$ onto $ \mathbb {C}$ .

Definition 2.1 [Reference Kaniuth, Lau and Pym4].

Let $\mathfrak {A}$ be a Banach algebra and let $\varphi \in \Delta (\mathfrak {A})$ . The algebra $\mathfrak {A}$ is $\varphi $ -amenable if there exists a bounded linear functional m on $\mathfrak {A}^*$ satisfying $m(\varphi ) = 1$ and $ m(f \cdot a) = \varphi (a) m(f)$ for all $a \in \mathfrak {A}$ and $f \in \mathfrak {A}^*$ .

Proposition 2.2 [Reference Kaniuth, Lau and Pym4, Theorem 1.1].

Let $\mathfrak {A}$ be a Banach algebra and let $\varphi \in \Delta (\mathfrak {A})$ . Then $\mathfrak {A}$ is $\varphi $ -amenable if and only if every derivation $D: \mathfrak {A} \longrightarrow E^*$ is inner, where E is a Banach $\mathcal A$ -bimodule such that $ a \cdot x = \varphi (a) x $ for all $a \in \mathfrak {A}$ and $x \in E$ .

Let $\mathfrak {A}$ be a Banach algebra. A Banach $\mathfrak {A}$ -bimodule E is dual if there is a closed submodule $E_*$ of $E^*$ such that $E = (E_*)^*$ . We call $E_*$ the predual of E. A Banach algebra $\mathfrak {A}$ is dual if it is dual as a Banach $\mathfrak {A}$ -bimodule. We write $\mathfrak {A} = (\mathfrak {A}_*)^*$ if we wish to stress that $\mathfrak {A}$ is a dual Banach algebra with predual $\mathfrak {A}_*$ .

Let $\mathfrak {A} $ be a dual Banach algebra and let E be a Banach $\mathfrak {A}$ -bimodule. Then $\sigma wc(E)$ stands for the set of all elements $ x \in E$ such that the maps

(*) $$ \begin{align} \mathfrak{A} \longrightarrow E, \quad a \longmapsto \left \{ \begin{array}{@{}ll} a\cdot x \\ x \cdot a \end{array} \right. \end{align} $$

are $w^*$ - $wk$ -continuous. It is well known that $\sigma wc(E)$ is a closed submodule of E.

Suppose that $\mathfrak {A}$ is a Banach algebra and that E is a Banach $\mathfrak {A}$ -bimodule. An element $x \in E$ is weakly almost periodic if the maps in $(*)$ are weakly compact. The set of all weakly almost periodic elements in E is denoted by $ {\textrm {WAP}}(E)$ .

Let $\mathfrak {A}$ be a Banach algebra. For $ \varphi \in {\textrm {WAP}}(\mathfrak {A}^*)$ and $\Psi \in {\textrm {WAP}}(\mathfrak {A}^*)^*,$ define $ \Psi \cdot \varphi \in {\textrm {WAP}}(\mathfrak {A}^*)$ by $ \langle a , \Psi \cdot \varphi \rangle = \langle \varphi \cdot a , \Psi \rangle $ for all $a \in \mathfrak {A}$ . This turns ${\textrm {WAP}}(\mathfrak {A}^*)^*$ into a Banach algebra by letting

$$\begin{align*}\langle \varphi , \Phi \Psi \rangle = \langle \Psi \cdot \varphi , \Phi \rangle \quad ( \Phi , \Psi \in {\textrm{WAP}}(\mathfrak{A}^*)^* ,\ \varphi \in {\textrm{WAP}}(\mathfrak{A}^*) ).\end{align*}$$

More precisely, ${\textrm {WAP}}(\mathfrak {A}^*)^*$ is a dual Banach algebra and there is a (continuous) homomorphism $ \imath : \mathfrak {A} \longrightarrow {\textrm {WAP}} (\mathfrak {A}^*)^*$ whose range is $w^*$ -dense. Indeed, the map $ \imath $ is obtained by composing the canonical inclusion $ \mathfrak {A} \longrightarrow \mathfrak {A}^{**}$ with the adjoint of the inclusion map $ {\textrm {WAP}} (\mathfrak {A}^*) \hookrightarrow \mathfrak {A} ^*$ [Reference Runde10].

Proposition 2.3 [Reference Runde10, Theorem 4.10].

Let $\mathfrak {A}$ be a Banach algebra, let $\mathfrak {B}$ be a dual Banach algebra and let $ \theta : \mathfrak {A} \longrightarrow \mathfrak {B}$ be a (continuous) homomorphism. Then there exists a unique $w^*$ -continuous homomorphism $ \tilde {\theta } : {\textrm {WAP}}(\mathfrak {A}^*)^* \longrightarrow \mathfrak {B}$ such that $ \theta = \tilde {\theta } \circ \imath $ . In particular, every $w^*$ -continuous homomorphism from ${\textrm {WAP}}(\mathfrak {A}^*)^*$ into $\mathfrak {B}$ is uniquely determined by its restriction to $\mathfrak {A}$ .

Let $ \mathcal {S}$ be a subset of an algebra $ \mathcal {H}$ . We use $ \mathcal {S}^c$ to denote the commutant of $ \mathcal {S}$ in $ \mathcal {H}$ , that is, $ \mathcal {S}^c = \{ h \in \mathcal {H} \ : \ hs = sh , \ s \in \mathcal {S} \} $ . It is obvious that $\mathcal {S}^c$ is a closed subalgebra of $ \mathcal {H}$ . For Banach spaces E and F, we write $ \mathcal {L}(E,F)$ for the set of all bounded linear maps from E into F and $ \mathcal {L}(E)$ for $ \mathcal {L}(E,E)$ . We also write $I_{E}$ for the identity map on E.

Let E be a Banach space and let $ \mathcal {S} \subseteq \mathcal {L}(E)$ be a subalgebra. A quasi expectation for $ \mathcal {S}$ is a projection $ Q : \mathcal {L}(E) \longrightarrow \mathcal {S}^c $ such that $ Q( c T d) = c Q(T) d$ for $ c,d \in \mathcal {S}^c$ and $T \in \mathcal {L}(E)$ .

Definition 2.4 [Reference Daws1, Definition 6.12].

A dual Banach algebra $\mathfrak {A}$ is injective if, whenever $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ is a $w^*$ -continuous unital representation, then there is a quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^c$ .

Connes amenable dual Banach algebras were systematically introduced by Runde in [Reference Runde9]. The remarkable point is that injectivity and Connes amenability are the same notions [Reference Daws1, Theorem 6.13].

3. On $\varphi $ -injectivity of dual Banach algebras

Let $\mathfrak {A}$ and $\mathfrak {B}$ be Banach algebras and let $ \theta : \mathfrak {A} \longrightarrow \mathfrak {B}$ be a homomorphism. For $\varphi \in \Delta (\mathfrak {A})$ , we define

$$\begin{align*}\theta(\mathfrak{A})^\varphi = \{ b \in \mathfrak{B}: \theta(a) b = \varphi(a) b \ \ (a \in \mathfrak{A}) \}.\end{align*}$$

Obviously, $\theta (\mathfrak {A})^\varphi $ is a (closed) right ideal of $\mathfrak {B}$ . One may see Lemma 5.1 below as a concrete example of such a set.

Definition 3.1. Let $\mathfrak {A}$ and $\mathfrak {B}$ be Banach algebras, let $ \theta : \mathfrak {A} \longrightarrow \mathfrak {B}$ be a homomorphism and let $\varphi \in \Delta (\mathfrak {A})$ . A $ \varphi $ -quasi expectation $ Q : \mathfrak {B} \longrightarrow \theta (\mathfrak {A})^\varphi $ is a projection from $ \mathfrak {B}$ onto $ \theta (\mathfrak {A})^\varphi $ satisfying $ Q ( cbd) = c Q(b) d$ for $ c,d \in \theta (\mathfrak {A})^c$ and $b \in \mathfrak {B}$ .

It is standard that $\mathcal {L}(E) = (E^* \hat {\otimes } E)^* $ is a dual Banach algebra whenever E is a reflexive Banach space [Reference Runde9]. For a dual Banach algebra $\mathfrak {A}$ , we denote by $\Delta _{w^*}(\mathfrak {A})$ the set of all $w^*$ -continuous homomorphisms from $\mathfrak {A}$ onto $\mathbb {C}$ .

Definition 3.2. Let $\mathfrak {A}$ be a dual Banach algebra and let $\varphi \in \Delta _{w^*}(\mathfrak {A})$ . We say that $\mathfrak {A}$ is $ \varphi $ -injective if, whenever $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ is a $w^*$ -continuous representation on a reflexive Banach space E, then there is a $ \varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^\varphi $ .

It should be stressed that Definition 3.2 is in fact a generalisation of the classical definition of injectivity (see Corollary 3.7 below).

Let $\mathfrak {A}$ be a dual Banach algebra. It is known that its unitisation $\mathfrak {A}^\sharp = \mathfrak {A} \oplus \mathbb {C} $ is a dual Banach algebra as well. Let $\varphi \in \Delta _{w^*}(\mathfrak {A})$ and let $\varphi ^\sharp $ be its unique extension to $\mathfrak {A}^\sharp $ . It is obvious that $\varphi ^\sharp \in \Delta _{w^*}(\mathfrak {A}^\sharp ) $ .

Theorem 3.3. Suppose that $\mathfrak {A}$ is a dual Banach algebra and that $\varphi \in \Delta _{w^*}(\mathfrak {A})$ . Then $\mathfrak {A}$ is $ \varphi $ -injective if and only if $\mathfrak {A}^\sharp $ is $ \varphi ^\sharp $ -injective.

Proof. Let $\mathfrak {A}$ be $ \varphi $ -injective and let $ \varrho : \mathfrak {A}^\sharp \longrightarrow \mathcal {L}(E)$ be a $w^*$ -continuous representation where E is a reflexive Banach space. Clearly, $\hat {\varrho } = \varrho |_{\mathfrak {A}}$ is a $w^*$ -continuous representation for $\mathfrak {A}$ . Hence, there is a $ \varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \hat {\varrho }(\mathfrak {A})^\varphi $ . Since $ \varrho (\mathfrak {A}^\sharp )^{\varphi ^\sharp } = \hat {\varrho }(\mathfrak {A})^\varphi $ and $ \varrho (\mathfrak {A}^\sharp )^c = \hat {\varrho }(\mathfrak {A})^c$ , we are done.

Conversely, suppose that $ \mathfrak {A}^\sharp $ is $ \varphi ^\sharp $ -injective and that $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ is a $w^*$ -continuous representation on a reflexive Banach space E. We extend $\varrho $ to $\hat {\varrho }$ from $\mathfrak {A}$ into $\mathfrak {A}^\sharp $ by setting $\hat {\varrho }(a, \lambda ) = \varrho (a) + \lambda I_E$ for $a \in \mathfrak {A}$ and $ \lambda \in \mathbb {C}$ . It is readily seen that $\hat {\varrho }$ is a $w^*$ -continuous representation. By the assumption, there is a $ \varphi ^\sharp $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \hat {\varrho }(\mathfrak {A}^\sharp )^{\varphi ^\sharp }$ . Because $\hat {\varrho } (\mathfrak {A}^\sharp )^c = \varrho (\mathfrak {A})^c$ and $\hat {\varrho } (\mathfrak {A}^\sharp )^{\varphi ^\sharp } = \varrho (\mathfrak {A})^\varphi $ , we conclude that $\mathfrak {A}$ is $ \varphi $ -injective.

Theorem 3.4. Suppose that $\mathfrak {A} = (\mathfrak {A}_*)^* $ and $\mathfrak {B} = (\mathfrak {B}_*)^*$ are dual Banach algebras, $\varphi \in \Delta _{w^*}(\mathfrak {A})$ and that $\theta : \mathfrak {A} \longrightarrow \mathfrak {B} $ is a $w^*$ -continuous homomorphism. If $\mathfrak {A}$ is $\varphi $ -amenable, then there exists a $ \varphi $ -quasi expectation $ Q :\mathfrak {B} \longrightarrow \theta (\mathfrak {A})^\varphi $ .

Proof. Here we follow the standard argument in [Reference Runde11, Theorem 5.1.24]. Let $ E= \mathfrak {B} \hat {\otimes } \mathfrak {B}_*$ be equipped with the $\mathfrak {A}$ -bimodule operation given through

$$\begin{align*}a \cdot (b \otimes f) = \varphi(a) (b \otimes f) \quad \text{and} \quad \ (b \otimes f) \cdot a = b \otimes f \cdot \theta(a)\end{align*}$$

for $a \in \mathfrak {A}$ , $f \in \mathfrak {B}_*$ and $b \in \mathfrak {B}$ . Identifying $E^*$ with $\mathcal {L}(\mathfrak {B})$ as

$$\begin{align*}T (b \otimes f) = \langle f , T(b) \rangle \quad(T \in \mathcal{L}(\mathfrak{B}), \ f \in \mathfrak{B}_*, \ b \in \mathfrak{B}),\end{align*}$$

we obtain as the corresponding dual $\mathfrak {A}$ -bimodule operation on $\mathcal {L}(\mathfrak {B})$

$$\begin{align*}(a \cdot T)(b) = \theta(a) T(b) \quad \text{and} \quad (T \cdot a)(b) = \varphi(a) T(b) \quad (a \in \mathfrak{A}, \ b \in \mathfrak{B}, \ T \in \mathcal{L}(\mathfrak{B})). \end{align*}$$

Let F be the subspace of $E^*$ consisting of those $T \in E^*$ such that

$$\begin{align*}\langle zb \otimes f - b \otimes f \cdot z , T \rangle =0, \quad \langle bz\otimes f - b \otimes z \cdot f , T \rangle =0 \quad\mbox{and}\quad \langle {z}^\prime \otimes f , T \rangle =0 \end{align*}$$

for all $ b \in \mathfrak {B}$ , $f \in \mathfrak {B}_*$ , $ z \in \theta (\mathfrak {A})^c$ and ${z}^\prime \in \theta (\mathfrak {A})^\varphi $ . It is routine to verify that F is a $w^*$ -closed $\mathfrak {A}$ -submodule of $E^*$ and thus a dual Banach $\mathfrak {A}$ -bimodule in its own right. Considering the derivation $ D = ad_{I_{\mathfrak {B}}} : \mathfrak {A} \longrightarrow \mathcal {L}(\mathfrak {B})$ , we claim that D attains its values in F. To see this, let $ b \in \mathfrak {B}$ , $f \in \mathfrak {B}_*$ , $z \in \theta (\mathfrak {A})^c$ , $ {z}^\prime \in \theta (\mathfrak {A})^\varphi $ and $a \in \mathfrak {A}$ . Then

$$ \begin{align*} \langle {z}^\prime \otimes f, Da \rangle = \langle {z}^\prime \otimes f \cdot \theta(a) , I_{\mathfrak{B}} \rangle - \varphi(a) \langle {z}^\prime \otimes f , I_{\mathfrak{B}} \rangle = \langle f , \theta(a) {z}^\prime \rangle - \langle f , \varphi(a) {z}^\prime \rangle = 0 \end{align*} $$

and

$$ \begin{align*} \langle zb \otimes f &- b \otimes f \cdot z , Da \rangle = \langle zb \otimes f - b \otimes f \cdot z , a \cdot I_{\mathfrak{B}} - I_{\mathfrak{B}} \cdot a \rangle \\&= \langle (zb \otimes f ) \cdot a - (b \otimes f \cdot z ) \ \cdot \ a - a \cdot ( zb \otimes f ) + a \cdot (b \otimes f \cdot z) , I_{\mathfrak{B}} \rangle \\& =\langle zb \otimes f \cdot \theta(a) - b \otimes f \cdot z \theta(a) - \varphi(a) z b \otimes f + \varphi(a) b \otimes f \cdot z , I_{\mathfrak{B}} \rangle \\&= \langle zb , f \cdot \theta(a) \rangle - \langle b , f \cdot z \theta(a) \rangle - \varphi(a) \langle z b , f \rangle + \varphi(a) \langle b , f \cdot z \rangle \\&= \langle \theta(a) zb , f \rangle - \langle z \theta(a) b , f \rangle - \varphi(a) \langle z b , f \rangle + \varphi(a) \langle z b , f \rangle = 0, \end{align*} $$

because $ z \in \theta (\mathfrak {A})^c$ . Also,

$$ \begin{align*} \langle bz\otimes f &- b \otimes z \cdot f , Da \rangle = \langle b z \otimes f - b \otimes z \cdot f , a \cdot I_{\mathfrak{B}} - I_{\mathfrak{B}} \cdot a \rangle \\&= \langle (b z \otimes f ) \cdot a - (b \otimes z \cdot f ) \cdot a - a \cdot ( bz \otimes f ) + a \cdot (b \otimes z \cdot f ) , I_{\mathfrak{B}} \rangle \\& =\langle b z \otimes f \cdot \theta(a) - b \otimes z \cdot f \cdot \theta(a) - \varphi(a) b z \otimes f + \varphi(a) b \otimes z \cdot f , I_{\mathfrak{B}} \rangle \\ &= \langle b z , f \cdot \theta(a) \rangle - \langle b , z \cdot f \cdot \theta(a) \rangle - \varphi(a) \langle b z , f \rangle + \varphi(a) \langle b , z \cdot f \rangle \\ &= \langle \theta(a) b z , f \rangle - \langle \theta(a) b z , f \rangle - \varphi(a) \langle b z , f \rangle + \varphi(a) \langle b z , f \rangle = 0. \end{align*} $$

Then, by Proposition 2.2, there exists $\rho \in F$ such that $ D= ad_\rho $ . Setting $Q =I_{\mathfrak {B}} - \rho $ , we see that $ a \cdot Q = Q \cdot a$ for all $a \in \mathfrak {A}$ . Hence, $ \theta (a) Q(b) = \varphi (a) Q(b)$ for $b \in \mathfrak {B}$ and so Q takes values in $\theta (\mathfrak {A})^\varphi $ .

Because $\rho \in F $ , we have $ 0 = \langle {z}^\prime \otimes f , \rho \rangle = \langle \rho ({z}^\prime ) , f \rangle $ for $ f \in \mathfrak {B}_*$ , $ {z}^\prime \in \theta (\mathfrak {A})^\varphi $ . That is, $\rho ({z}^\prime ) = 0 $ and thus $ Q ({z}^\prime ) = {z}^\prime $ for each $ {z}^\prime \in \theta (\mathfrak {A})^\varphi $ . Therefore, Q is the identity on $\theta (\mathfrak {A})^\varphi $ and thus a projection onto $\theta (\mathfrak {A})^\varphi $ .

Next, for each $b \in \mathfrak {B}$ , $f \in \mathfrak {B}_*$ and $ z \in \theta (\mathfrak {A})^c$ ,

$$\begin{align*}0 = \langle z b \otimes f - b \otimes f \cdot z , \rho \rangle = \langle \rho( z b) , f \rangle - \langle \rho( b) , f \cdot z \rangle = \langle \rho( z b) - z \rho( b) , f \rangle\end{align*}$$

and so $\rho ( z b) = z \rho ( b) $ . Similarly,

$$\begin{align*}0 = \langle b z \otimes f - b \otimes z \cdot f , \rho \rangle = \langle \rho(b z) , f \rangle - \langle \rho( b) , z \cdot f \rangle = \langle \rho(b z) - \rho( b) z , f \rangle,\end{align*}$$

so that $\rho ( b z) = \rho ( b) z $ . Thus,

$$\begin{align*}Q(z b )= z b - \rho (z b ) = z b - z \rho ( b ) = z Q(b), \quad Q(b z )= b z - \rho (b z ) = b z - \rho ( b ) z = Q(b) z .\end{align*}$$

We then have $Q( z_1 b z_2) = z_1 Q( b z_2) = z_1 Q( b ) z_2$ for $z_1 , z_2 \in \theta (\mathfrak {A})^c , b \in \mathfrak {B}$ . Therefore, Q is a $\varphi $ -quasi expectation.

To establish Theorem 3.6 below, we need some preliminaries from [Reference Daws1, pages 253–255]. Let $ \mathfrak {A} $ be a Banach algebra. First, recall that $ ( \mathfrak {A} \widehat {\otimes } \mathfrak {A} )^* = \mathcal {L}(\mathfrak {A}, \mathfrak {A}^*)$ , where we choose the convention that $ \langle a \otimes b , T \rangle = \langle a , T(b) \rangle $ for $a, b \in \mathfrak {A}$ , $T \in \mathcal {L}(\mathfrak {A}, \mathfrak {A}^*)$ . Next, let $\varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ be a (continuous) representation on a reflexive Banach space E. Then $\mathcal {L}(E)$ becomes a Banach $ \mathfrak {A}$ -bimodule with actions $ a \cdot T =\varrho (a) T $ and $ T \cdot a = T \varrho (a) $ for $a \in \mathfrak {A} $ , $T \in \mathcal {L}(E)$ . Also, $\mathcal {L}(E)$ is a Banach $\varrho (\mathfrak {A})^c$ -bimodule in the obvious way. We write $\mathcal {L}_{\mathfrak {A}}(\mathcal {L}(E))$ for the collection of all $\varrho (\mathfrak {A})^c$ -bimodule homomorphisms, that is, maps $Q \in \mathcal {L}(\mathcal {L}(E)) $ such that $ Q( S T) = S Q(T)$ and $Q(T S) = Q(T) S $ for all $S \in \varrho (\mathfrak {A})^c$ and $ T \in \mathcal {L}(E)$ . We turn $ \mathcal {L}_{\mathfrak {A}}(\mathcal {L}(E))$ into a Banach $\mathfrak {A}$ -bimodule by setting

$$\begin{align*}(a \,. \,Q) (T) = \varrho(a) Q(T) \quad \text{and} \quad (Q \,. \,a)T = Q(T) \varrho(a) \end{align*}$$

for $ a \in \mathfrak {A}$ , $ T \in \mathcal {L}(E)$ and $ Q \in \mathcal {L}_{\mathfrak {A}}(\mathcal {L}(E))$ . We notice that $ \mathcal {L}(\mathcal {L}(E)) $ is a dual Banach algebra with predual $ \mathcal {L}(E) \widehat {\otimes } ( E \widehat {\otimes } E^*)$ . Let $X \subseteq \mathcal {L}(E) \widehat {\otimes } ( E \widehat {\otimes } E^*)$ be the closure of the linear span of the set consisting of all elements of the form $ ST \otimes x \otimes \mu - T \otimes x \otimes S^*(\mu )$ and $ T S \otimes x \otimes \mu - T \otimes S(x) \otimes \mu $ for all $ S \in \varrho (\mathfrak {A})^c$ , $T \in \mathcal {L}(E)$ , $x \in E$ , $\mu \in E^*$ . Because $ X ^\perp = \mathcal {L}_{\mathfrak {A}}(\mathcal {L}(E))$ , we see that $\mathcal {L}_{\mathfrak {A}}(\mathcal {L}(E))$ is a dual Banach algebra with the predual $ Y= { \mathcal {L}(E) \widehat {\otimes } E \widehat {\otimes } E^*}/{X}$ . Now define $ \psi : Y \longrightarrow \mathcal {L}(\mathfrak {A}, \mathfrak {A}^*)$ via

$$ \begin{align*} & \langle a \otimes b , \psi(T \otimes x \otimes \mu + X) \rangle = \langle \varrho (a) T \varrho (b) (x) , \mu \rangle \quad (a,b \in \mathfrak{A},\ x \in E,\ \mu \in E^*,\ T \in \mathcal{L}(E) ). \end{align*} $$

We turn $ \mathcal {L}(E) \widehat {\otimes } E \widehat {\otimes } E^*$ into a Banach $\mathfrak {A}$ -bimodule through

$$\begin{align*}a \cdot (T \otimes x \otimes \mu ) = T \otimes \varrho (a) (x) \otimes \mu \quad \text{and} \quad (T \otimes x \otimes \mu ) \cdot a =T \otimes x \otimes \varrho (a)^* (\mu) \end{align*}$$

for $ a \in \mathfrak {A}, x \in E, \mu \in E^*, T \in \mathcal {L}(E)$ . Observe that $\psi $ is an $\mathfrak {A}$ -bimodule homomorphism.

The next proposition shows that it is possible to choose E to make $\psi $ a bijection onto $ \sigma wc ( \mathcal {L}(\mathfrak {A}, \mathfrak {A}^*))$ .

Proposition 3.5 [Reference Daws1, Theorem 6.11].

Let $ \mathfrak {A} = ( \mathfrak {A}_*)^*$ be a unital dual Banach algebra. There exist a reflexive normal Banach left $\mathfrak {A}$ -module E and an isometric $w^*$ -continuous representation $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ such that $\psi $ (associated with $\varrho $ as above) maps into $ \sigma wc ( \mathcal {L}(\mathfrak {A}, \mathfrak {A}^*))$ and is a bijection. In particular, $\psi ^* : \sigma wc ( \mathcal {L}(\mathfrak {A}, \mathfrak {A}^*))^* \longrightarrow \mathcal {L}_{\mathfrak {A}}(\mathcal {L}(E)) $ is an isomorphism.

Let $\mathfrak {A}$ be a dual Banach algebra and let $\varphi \in \Delta _{w^*}(\mathfrak {A})$ . From [Reference Mahmoodi6], $\mathfrak {A}$ is $\varphi $ -Connes amenable if there exists a bounded linear functional m on $ \sigma wc (\mathfrak {A}^*)$ satisfying $ m(\varphi ) = 1$ and $ m ( f \,. \,a) = \varphi (a) m(f)$ for all $a \in \mathfrak {A}$ and $ f \in \sigma wc (\mathfrak {A}^*)$ .

The following result could be compared with [Reference Daws1, Theorem 6.13].

Theorem 3.6. Suppose that $\mathfrak {A}$ is a dual Banach algebra and $\varphi \in \Delta _{w^*}(\mathfrak {A})$ . Then the following are equivalent:

  1. (i) $\mathfrak {A}$ is $\varphi $ -amenable;

  2. (ii) $\mathfrak {A}$ is $\varphi $ -contractible (in the sense of [Reference Hu, Monfared and Traynor2]);

  3. (iii) $\mathfrak {A}$ is $\varphi $ -Connes amenable;

  4. (iv) $\mathfrak {A}$ is $\varphi $ -injective.

Proof. The equivalence (i) $\Longleftrightarrow $ (ii) $\Longleftrightarrow $ (iii) is [Reference Mahmoodi7, Theorem 2.4].

(i) $\Longrightarrow $ (iv) Suppose that $\mathfrak {A}$ is $\varphi $ -amenable and $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ is a $w^*$ -continuous representation on some reflexive Banach space E. By Theorem 3.4, there is a $\varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^\varphi $ , that is, $\mathfrak {A}$ is $ \varphi $ -injective.

(iv) $\Longrightarrow $ (iii) Suppose that $\mathfrak {A}$ is $\varphi $ -injective. By Theorem 3.3 and [Reference Kaniuth, Lau and Pym4, Lemma 3.2], without loss of generality, we may suppose that $\mathfrak {A}$ is unital. Take the $w^*$ -continuous representation $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ and the map $ \psi $ as in Proposition 3.5. By the assumption, there exists a $\varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^\varphi $ . Notice that $ Q \in \mathcal {L}_{\mathfrak {A}}(\mathcal {L}(E))$ . Define $ M:= (\psi ^*)^{-1}(Q) \in \sigma wc ((\mathfrak {A} \hat {\otimes } \mathfrak {A})^*)^*$ . As Q maps into $\varrho (\mathfrak {A})^\varphi $ , it follows that $ a \,. \,Q = \varphi (a) Q$ for $a \in \mathfrak {A}$ , so that $ a \,. \,M = \varphi (a) M$ . Next, for some $\alpha \in \mathbb {C}$ , we have $ \langle \varphi \otimes \varphi , M \rangle = \alpha $ . Hence, putting $ N= ({1}/{\alpha }) M$ , it is readily seen that $ \langle \varphi \otimes \varphi , N \rangle = 1 $ and $ a \,. \,N = \varphi (a) N$ for $ a \in \mathfrak {A}$ . On the other hand, from [Reference Runde10], $ \pi ^*(\sigma wc (\mathfrak {A}^*)) \subseteq \sigma wc (( \mathfrak {A} \hat {\otimes } \mathfrak {A})^*).$ We then set $ m:=(\pi ^*|_{\sigma wc (\mathfrak {A}^*)})^*(N) \in \sigma wc (\mathfrak {A}^*)^*$ . One may check that $ m(\varphi ) = 1$ and $ m ( f \,. \,a) = \varphi (a) m(f)$ for all $a \in \mathfrak {A}$ and $ f \in \sigma wc (\mathfrak {A}^*)$ . Thus, $\mathfrak {A}$ is $\varphi $ -Connes amenable.

Corollary 3.7. An injective dual Banach algebra $\mathfrak {A}$ is $\varphi $ -injective for all $\varphi \in \Delta _{w^*}(\mathfrak {A})$ .

Proof. Since $\mathfrak {A}$ is injective, it is Connes amenable [Reference Daws1, Theorem 6.13]. It then follows from [Reference Mahmoodi6, Theorem 2.2] that $\mathfrak {A}$ is $\varphi $ -Connes amenable for each $\varphi \in \Delta _{w^*}(\mathfrak {A})$ . The result is now immediate by Theorem 3.6.

4. Application to ${\textrm {WAP}}(\mathfrak {A}^*)^*$ and examples

The following result is analogous to [Reference Kaniuth, Lau and Pym4, Proposition 3.5].

Theorem 4.1. Suppose that $\mathfrak {A}$ is a Banach algebra, $\mathfrak {B} = (\mathfrak {B}_* )^*$ is a dual Banach algebra, $\theta : \mathfrak {A} \longrightarrow \mathfrak {B} $ is a continuous homomorphism with $w^*$ -dense range and $\varphi \in \Delta _{w^*}(\mathfrak {B})$ . If $\mathfrak {A}$ is $\varphi \circ \theta $ -amenable, then $\mathfrak {B}$ is $\varphi $ -amenable.

Proof. Take $ m \in \mathfrak {A}^{**}$ with $ m(\varphi \circ \theta ) = 1$ and $ m ( f \cdot a) = (\varphi \circ \theta )(a) m(f)$ for all $a \in \mathfrak {A}$ and $ f \in \mathfrak {A}^*$ . Define $ n \in \sigma wc ( \mathfrak {B}^*)^*$ by $ n(g) = m(g \circ \theta )$ for $ g \in \sigma wc ( \mathfrak {B}^*)$ . Note that $ \varphi \in \sigma wc ( \mathfrak {B}^*)$ as $ \varphi \in \mathfrak {B}_*$ (see also [Reference Mahmoodi7, Lemma 2.3]). Then $n(\varphi ) = m(\varphi \circ \theta ) = 1 $ . For $a , {a}^\prime \in \mathfrak {A}$ and $ g \in \sigma wc ( \mathfrak {B}^*)$ ,

$$\begin{align*}n( g \cdot \theta(a) ) = m ( ( g \cdot \theta(a)) \circ \theta ) = m( ( g \circ \theta) \cdot a) = ( \varphi \circ \theta ) (a) m(g \circ \theta )= (\varphi \circ \theta) (a) n(g) , \end{align*}$$

because

$$\begin{align*}\langle ( g \cdot \theta(a) ) \circ \theta , {a}^\prime \rangle = \langle g , \theta(a) \theta({a}^\prime) \rangle = \langle ( g \circ \theta) \cdot a , {a}^\prime \rangle .\end{align*}$$

Next, for an arbitrary element $b \in \mathfrak {B} $ , there is a net $(a_i)_i \subseteq \mathfrak {A}$ such that $ \theta (a_i) \stackrel {w^*} \longrightarrow b$ . For each $ g \in \sigma wc ( \mathfrak {B}^*)$ , we then have $g \cdot \theta (a_i) \stackrel {wk} \longrightarrow g \cdot b$ . Hence,

$$\begin{align*}n ( g \cdot b )= \lim_i n(g \cdot \theta(a_i) ) = \lim_i \varphi ( \theta(a_i)) n(g) = \varphi(b) n(g).\end{align*}$$

Thus, $\mathfrak {B}$ is $\varphi $ -amenable, by Theorem 3.6(iii).

Remark 4.2. Let $\mathfrak {A}$ be a Banach algebra and let $\varphi \in \Delta (\mathfrak {A})$ . By Proposition 2.3, there exists a unique element $\tilde {\varphi } \in \Delta _{w^*}({\textrm {WAP}}(\mathfrak {A}^*)^* )$ extending $\varphi $ . We shall henceforth keep the notation $\tilde {\varphi }$ .

Corollary 4.3. Let $\mathfrak {A}$ be a Banach algebra and let $ \varphi \in \Delta (\mathfrak {A})$ . If $\mathfrak {A}$ is $\varphi $ -amenable, then ${\textrm {WAP}}(\mathfrak {A}^*)^*$ is $\tilde {\varphi }$ -amenable.

Proof. As $\varphi =\tilde {\varphi } \circ \imath $ , this is a consequence of Remark 4.2 and Theorem 4.1.

Example 4.4. Let G be a locally compact group and let $A(G)$ and $VN(G)=A(G)^*$ be the Fourier algebra and the von Neumann algebra of G, respectively. From [Reference Kaniuth, Lau and Pym4, Example 2.6], $A(G)$ is $\varphi _t$ -amenable for every $t \in G$ , where $\varphi _t$ is the point evaluation at $t \in G$ , that is, $\varphi _t(f) = f(t) $ , $f \in A(G)$ . So, by Corollary 4.3, ${\textrm {WAP}}(VN(G))^*$ is $\tilde {\varphi }_t$ -amenable for every $t \in G$ .

The converse of Corollary 4.3 holds for dual Banach algebras as follows.

Theorem 4.5. Let $\mathfrak {A} = (\mathfrak {A}_*)^*$ be a dual Banach algebra and let $ \varphi \in \Delta _{w^*}(\mathfrak {A})$ . Then $\mathfrak {A}$ is $\varphi $ -amenable if and only if ${\textrm {WAP}}(\mathfrak {A}^*)^*$ is $\tilde {\varphi }$ -amenable.

Proof. Since $ \mathfrak {A}_* \subseteq \sigma wc(\mathfrak {A}^*) \subseteq {\textrm {WAP}}(\mathfrak {A}^*)$ from [Reference Runde10], there exists an inclusion map $ \varepsilon : \mathfrak {A}_* \longrightarrow {\textrm {WAP}}(\mathfrak {A}^*)$ . Then $\varepsilon ^*$ is an $ \mathfrak {A}$ -bimodule homomorphism from ${\textrm {WAP}}(\mathfrak {A}^*)^*$ onto $ \mathfrak {A}$ .

Suppose that ${\textrm {WAP}}(\mathfrak {A}^*)^*$ is $\tilde {\varphi }$ -amenable. Let E be a Banach $ \mathfrak {A}$ -bimodule for which $ a \,. \,x = \varphi (a) x$ for all $a \in \mathfrak {A}$ and $x \in E$ and let $D : \mathfrak {A} \longrightarrow E^*$ be a derivation. We turn E into a Banach ${\textrm {WAP}}(\mathfrak {A}^*)^*$ -bimodule through

$$\begin{align*}\Lambda \,. \, x := \tilde{\varphi}(\Lambda) x \quad \text{and} \quad x \,. \, \Lambda :=\varepsilon^* (\Lambda) \,. \,x \quad ( x \in E,\ \Lambda \in {\textrm{WAP}}(\mathfrak{A}^*)^*) \ .\end{align*}$$

Now, by Proposition 2.2, the derivation $ D \varepsilon ^* : {\textrm {WAP}}(\mathfrak {A}^*)^* \longrightarrow E^*$ is inner. Thus, there exists $x \in E$ such that $ (D \varepsilon ^*) (\Lambda ) = \Lambda \, .\, x - x \,. \, \Lambda $ for all $\Lambda \in {\textrm {WAP}}(\mathfrak {A}^*)^* $ . Consequently, $D a = a \,. \, x - x \,. \, a$ , $a \in \mathfrak {A}$ . Again by Proposition 2.2, $\mathfrak {A}$ is $\varphi $ -amenable.

We write $\mathbb {D}$ for the open unit disk. For the discrete convolution algebra $\ell ^1(\mathbb {Z}^+)$ , it is known that $ \Delta (\ell ^1(\mathbb {Z}^+)) \equiv \bar {\mathbb {D}}$ under the bijective map $ z \longmapsto \varphi _z$ , where $\varphi _z$ is the point evaluation at z, that is, $ \varphi _z ( \sum _{n=0}^\infty c_n \delta _n)= \sum _{n=0}^\infty c_n z^n$ . It is not hard to see that $ \Delta _{w^*}(\ell ^1(\mathbb {Z}^+)) = \mathbb {D}$ . It was shown in [Reference Kaniuth, Lau and Pym4, Example 2.5] that $\ell ^1(\mathbb {Z}^+)$ is $\varphi _z$ -amenable when $|z| = 1$ and it is not $\varphi _z$ -amenable if $ z \in \mathbb {D}$ . Hence, by Corollary 4.3, ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ is $\tilde {\varphi }_z$ -amenable when $|z| = 1$ . As $\ell ^1(\mathbb {Z}^+)$ is a dual Banach algebra, we conclude from Theorem 4.5 that ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ is not $\tilde {\varphi }_z$ -amenable for each $ z \in \mathbb {D}$ . Notice that ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ is not amenable. To see this, we first observe that there exists a continuous homomorphism from ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ onto $\ell ^1(\mathbb {Z}^+)$ by the universal property (with $\ell ^1(\mathbb {Z}^+)$ and the identity map in place of $\mathfrak {B}$ and $\theta $ , respectively). Therefore, amenability of ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ forces $\ell ^1(\mathbb {Z}^+)$ to be amenable, which is not the case.

Putting all these results together gives the following example.

Example 4.6.

  1. (i) ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ is not amenable;

  2. (ii) ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ is not $\tilde {\varphi }_z$ -amenable for each $ z \in \mathbb {D}$ ;

  3. (iii) ${\textrm {WAP}}(\ell ^\infty (\mathbb {Z}^+))^*$ is $\tilde {\varphi }_z$ -amenable when $|z| = 1$ .

Let $\mathfrak {A}$ be a Banach algebra and let $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ be a continuous representation on a Banach space E. We use $ \tilde {\varrho } : {\textrm {WAP}}(\mathfrak {A}^*)^* \longrightarrow \mathcal {L}(E) $ for the unique $w^*$ -continuous representation obtained by Proposition 2.3.

Lemma 4.7. Let $\mathfrak {A}$ be a Banach algebra, let $ \varrho : \mathfrak {A} \longrightarrow \mathcal {L}(E)$ be a continuous representation and $ \varphi \in \Delta (\mathfrak {A})$ . Then every $\varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^\varphi $ is exactly a $\tilde {\varphi } $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \tilde {\varrho } ( {\textrm {WAP}}(\mathfrak {A}^*)^*)^{\tilde {\varphi }}$ and vice versa.

Proof. The same argument as that in the proof of [Reference Daws1, Proposition 6.15] shows that $\varrho (\mathfrak {A})^c = \tilde {\varrho } ( {\textrm {WAP}}(\mathfrak {A}^*)^*)^c$ . To complete the proof, we show that $ \tilde {\varrho } ( {\textrm {WAP}}(\mathfrak {A}^*)^*)^{\tilde {\varphi }} = \varrho (\mathfrak {A})^\varphi $ . It is obvious that $ \tilde {\varrho } ( {\textrm {WAP}}(\mathfrak {A}^*)^*)^{\tilde {\varphi }} \subseteq \varrho (\mathfrak {A})^\varphi $ . For the converse, suppose that $T \in \varrho (\mathfrak {A})^\varphi $ . Thus, $ \langle \varrho (a) T , \eta \rangle =\varphi (a) \langle T , \eta \rangle $ for each $a \in \mathfrak {A}$ and $ \eta \in E^*\hat {\otimes } E$ . Take $ \Psi \in {\textrm {WAP}}(\mathfrak {A}^*)^*$ and take a bounded net $ (a_i) \subseteq \mathfrak {A}$ which converges to $\Psi $ in the $w^*$ -topology on ${\textrm {WAP}}(\mathfrak {A}^*)^*$ . Then, for $x \in E$ , $\mu \in E^*$ and $ T \in \varrho (\mathfrak {A})^\varphi $ ,

$$ \begin{align*} \langle \mu, \tilde{\varrho}(\Psi) T(x) \rangle &= \langle \mu \otimes T(x) , \tilde{\varrho}(\Psi) \rangle = \langle \Psi , \varrho_* (\mu \otimes T(x)) \rangle = \lim_i \langle \varrho_* (\mu \otimes T(x)) , a_i \rangle \\&= \lim_i \langle \mu , \varrho(a_i) T(x) \rangle = \lim_i \varphi(a_i) \langle \mu , T(x) \rangle = \langle \mu , \tilde{\varphi}(\Psi) T(x) \rangle, \end{align*} $$

so that $ T \in \tilde {\varrho } ( {\textrm {WAP}}(\mathfrak {A}^*)^*)^{\tilde {\varphi }}$ , as required.

The next step is a useful characterisation.

Theorem 4.8. Let $\mathfrak {A}$ be a Banach algebra and let $ \varphi \in \Delta (\mathfrak {A})$ . Then the following are equivalent:

  1. (i) ${\textrm {WAP}}(\mathfrak {A}^*)^*$ is $\tilde {\varphi }$ -amenable;

  2. (ii) whenever $ \varrho : \mathfrak {A}\longrightarrow \mathcal {L}(E)$ is a continuous representation on a reflexive Banach space E, there exists a $\varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^\varphi $ .

Proof. (i) $\Longrightarrow $ (ii) Let $ \varrho : \mathfrak {A}\longrightarrow \mathcal {L}(E)$ be a continuous representation on a reflexive Banach space E and let $ \tilde {\varrho } : {\textrm {WAP}}(\mathfrak {A}^*)^* \longrightarrow \mathcal {L}(E) $ be its unique extension to a $w^*$ -continuous representation. By Theorem 3.6, ${\textrm {WAP}}(\mathfrak {A}^*)^*$ is $\tilde {\varphi }$ -injective and there exists a $\tilde {\varphi } $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \tilde {\varrho } ( {\textrm {WAP}}(\mathfrak {A}^*)^*)^{\tilde {\varphi }}$ by Definition 3.2. Now, by Lemma 4.7, $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^\varphi $ is indeed a $\varphi $ -quasi expectation.

(ii) $\Longrightarrow $ (i) Suppose that $ \varrho : {\textrm {WAP}}(\mathfrak {A}^*)^*\longrightarrow \mathcal {L}(E)$ is a $w^*$ -continuous representation on a reflexive Banach space E. Thus, $ \varrho |_{\mathfrak {A}} : \mathfrak {A}\longrightarrow \mathcal {L}(E)$ is a continuous representation. By the assumption, there exists a $\varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\mathfrak {A})^\varphi $ . Again by Lemma 4.7, $ Q : \mathcal {L}(E) \longrightarrow \tilde {\varrho } ( {\textrm {WAP}}(\mathfrak {A}^*)^*)^{\tilde {\varphi }}$ is a $\tilde {\varphi } $ -quasi expectation, as required.

5. For $ {\textrm {WAP}}(\ell ^1(\mathbb {N}_\wedge )^*)^*$

Let $\mathbb {N}_\wedge $ be the semigroup $\mathbb {N}$ with the product $ m \wedge n = \min \{ m , n \}$ for $ m , n \in \mathbb {N}$ . In this section, we write $\varphi $ for the augmentation character on $\ell ^1(\mathbb {N}_\wedge )$ , which is given by $ \varphi ( \sum _{n=1}^\infty \alpha _i \delta _i)= \sum _{n=1}^\infty \alpha _i$ . In the light of Theorem 4.8, we will show that $ {\textrm {WAP}}(\ell ^1(\mathbb {N}_\wedge )^*)^*$ is not $\tilde {\varphi }$ -amenable. To this end, some preliminaries are needed.

Let E be a Banach space with a normalised basis $(e_n)_n$ . For each $n \in \mathbb {N}$ , we consider the linear functional $f_n \in E^*$ , $n \in \mathbb {N}$ , given by $ \langle f_n , \sum \alpha _i e_i \rangle = \alpha _n $ . Throughout the section, we use the notation $\varrho $ for the representation $\varrho : \ell ^1(\mathbb {N}_\wedge ) \longrightarrow \mathcal {L}(E)$ given by

$$\begin{align*}\varrho(\delta_n)(e_m) = \left \{ \begin{array}{@{}lc} e_m & \mbox{for } m \leq n \\ 0 & \mbox{for }m> n \end{array} \right. \quad(m ,n \in \mathbb{N})\end{align*}$$

and linearity. In fact, $ \varrho (\delta _n)$ is the projection onto the linear span of $ \{ e_1, \ldots , e_n \}$ . It is standard that each element of $\mathcal {L}(E)$ can be considered as a matrix with respect to the basis $(e_n)_n$ . We denote by $ \mathcal {E}_{i,j}$ the matrix with $1$ in the $(i,j)$ th place and $0$ elsewhere.

The next result shows that the set $\varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ consists of all matrices in $\mathcal {L}(E)$ with zero entries from the second row on.

Lemma 5.1. $\varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi = \{ T= (a_{i,j})_{i,j} \in \mathcal {L}(E) : a_{i,j} = 0 \ \text {for} \ i \geq 2 \} .$

Proof. Set $ \mathcal {R}= \{ T= (a_{i,j})_{i,j} \in \mathcal {L}(E) : a_{i,j} = 0 \ \text {for} \ i \geq 2 \} $ and notice that $\varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi = \{ T \in \mathcal {L}(E) : \varrho (\delta _n) T = \varphi (\delta _n) T = T \} .$ It is easily checked that $\mathcal {R} \subseteq \varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ .

Conversely, for $ T \in \varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ ,

$$\begin{align*}\mathcal{E}_{n,n} T = (\varrho(\delta_n) - \varrho(\delta_{n-1}) ) T = \varrho(\delta_n) T - \varrho(\delta_{n-1}) T = T - T = 0 \quad ( n \geq 2) .\end{align*}$$

A simple verification then shows that

$$\begin{align*}0 = \mathcal{E}_{n,n} T (e_m) = \langle f_n , T(e_m) \rangle e_n \quad (m \geq 1,\ n \geq 2) \end{align*}$$

and therefore $ \langle f_n , T(e_m) \rangle = 0$ for $m \geq 1,n \geq 2 $ . So, $ T(e_m) \in \mathbb {C}e_1$ for each $m \geq 1$ , which proves that $ T \in \mathcal {R}$ .

Remark 5.2. Compared to Lemma 5.1, $\varrho (\ell ^1(\mathbb {N}_\wedge ))^c$ is exactly the set of all diagonal matrices in $\mathcal {L}(E)$ [Reference Daws1].

We write $ P_{\varphi } : \mathcal {L}(E) \longrightarrow \varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ for the canonical projection onto $\varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ defined by $ T= (a_{i,j})_{i,j} \longmapsto P_{\varphi }(T)= (b_{i,j})_{i,j}$ , where $ b_{1,j} = a_{1,j}$ and $ b_{i,j} = 0$ for $i \geq 2$ and all j. Next, we show that every $\varphi $ -quasi expectation $ Q : \mathcal {L}(E) \longrightarrow \varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ must be the canonical projection onto $\varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ .

Lemma 5.3. Let $ Q : \mathcal {L}(E) \longrightarrow \varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ be a $\varphi $ -quasi expectation. Then $Q = P_{\varphi }$ .

Proof. Let $m ,n \in \mathbb {N}$ and $T \in \mathcal {L}(E)$ . From Remark 5.2, $\mathcal {E}_{n,n} , \mathcal {E}_{m,m} \in \varrho (\ell ^1(\mathbb {N}_\wedge ))^c$ . Then

$$\begin{align*}\langle f_m , T(e_n) \rangle Q(\mathcal{E}_{m,n}) = Q(\mathcal{E}_{m,m} T \mathcal{E}_{n,n}) =\mathcal{E}_{m,m} Q(T) \mathcal{E}_{n,n} = \langle f_m , Q(T)(e_n) \rangle \mathcal{E}_{m,n}.\end{align*}$$

As $ \mathcal {E}_{m,n}$ is not in $\varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ for $ m> 1$ by Lemma 5.1, it follows that $ \langle f_m , Q(T)(e_n) \rangle = 0$ for $ m> 1$ . Thus, $Q(T)(e_n) \in \mathbb {C}e_1 $ for each n. Next, since $\mathcal {E}_{1,n} \in \varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ ,

$$ \begin{align*} \langle f_1 , T(e_n) \rangle \mathcal{E}_{1,n} = \langle f_1 , T(e_n) \rangle Q(\mathcal{E}_{1,n}) & = Q(\mathcal{E}_{1,1} T \mathcal{E}_{n,n}) \\ & = \mathcal{E}_{1,1} Q(T) \mathcal{E}_{n,n} = \langle f_1 , Q(T)(e_n) \rangle \mathcal{E}_{1,n} \end{align*} $$

and hence $Q(T)(e_n) = \langle f_1 , T(e_n) \rangle e_1$ for each $n \in \mathbb {N}$ , as required.

Theorem 5.4. The algebra $ {\textrm {WAP}}(\ell ^1(\mathbb {N}_\wedge )^*)^*$ is not $\tilde {\varphi }$ -amenable.

Proof. By Theorem 4.8 and Lemma 5.3, it suffices to find a reflexive Banach space E such that $P_{\varphi }$ is not bounded. It is clear that there is an isometric isomorphism $\Theta $ from $\varrho (\ell ^1(\mathbb {N}_\wedge ))^c$ onto $\varrho (\ell ^1(\mathbb {N}_\wedge ))^\varphi $ . From [Reference Daws1, Theorem 7.6], there is a reflexive Banach space E for which the canonical projection $P_c : \mathcal {L}(E) \longrightarrow \varrho (\ell ^1(\mathbb {N}_\wedge ))^c$ is not bounded. Thus, $P_{\varphi } = \Theta \circ P_c$ is not bounded, as required.

A combination of Corollary 4.3 and Theorem 5.4 yields the following result.

Corollary 5.5. The algebra $\ell ^1(\mathbb {N}_\wedge )$ is not $\varphi $ -amenable.

Appendix A

In this section, we show that $\Delta _{w^*}({\textrm {WAP}}(\mathfrak {A}^*)^* )$ contains $ \Delta (\mathfrak {A})$ as a subset, as pointed out by an anonymous referee in response to a previous version of this work.

Proposition A.1. Let $\mathfrak {A}$ be a Banach algebra. Then $ \Delta (\mathfrak {A}) \subseteq \Delta _{w^*}({\textrm {WAP}}(\mathfrak {A}^*)^* )$ .

Proof. Take $\varphi \in \Delta (\mathfrak {A})$ , so that $\varphi \in \mathfrak {A}^*$ . Then $ \langle b , a \cdot \varphi \rangle = \varphi (a ) \varphi (b)$ for every $a , b \in \mathfrak {A}$ , so that $a \cdot \varphi =\varphi (a ) \varphi $ . Similarly, $\varphi \cdot a = \varphi (a ) \varphi $ . So, obviously, $ \varphi \in {\textrm {WAP}}(\mathfrak {A}^*)$ . Hence, we may treat $\varphi $ as a bounded linear map on ${\textrm {WAP}}(\mathfrak {A}^*)^* $ . As a consequence, $\varphi $ is $w^*$ -continuous. Next, for $ \Psi \in {\textrm {WAP}}(\mathfrak {A}^*)^* $ and $ a \in \mathfrak {A}$ , it follows that $ \langle a , \Psi \cdot \varphi \rangle = \langle \varphi \cdot a , \Psi \rangle = \varphi (a) \langle \varphi , \Psi \rangle $ , so that $ \Psi \cdot \varphi = \langle \varphi , \Psi \rangle \varphi $ . Then, for each $ \Phi , \Psi \in {\textrm {WAP}}(\mathfrak {A}^*)^* $ ,

$$\begin{align*}\langle \varphi , \Phi \Psi \rangle = \langle \Psi \cdot \varphi , \Phi \rangle = \langle \langle \varphi , \Psi \rangle \varphi , \Phi \rangle = \langle \varphi , \Psi \rangle \langle \varphi , \Phi \rangle .\end{align*}$$

Thus, $ \varphi \in \Delta _{w^*}({\textrm {WAP}}(\mathfrak {A}^*)^* )$ .

The following consequence should be compared with Corollary 4.3.

Corollary A.2. Let $\mathfrak {A}$ be a Banach algebra and let $ \varphi \in \Delta (\mathfrak {A})$ . If $\mathfrak {A}$ is $\varphi \circ \imath $ -amenable, then ${\textrm {WAP}}(\mathfrak {A}^*)^*$ is $\varphi $ -amenable.

Proof. This is immediate by Proposition A.1 and Theorem 4.1.

References

Daws, M., ‘Dual Banach algebras: representations and injectivity’, Studia Math. 178 (2007), 231275.10.4064/sm178-3-3CrossRefGoogle Scholar
Hu, Z., Monfared, M. S. and Traynor, T., ‘On character amenable Banach algebras’, Studia Math. 193 (2009), 5378.10.4064/sm193-1-3CrossRefGoogle Scholar
Johnson, B. E., Cohomology in Banach Algebras , Memoirs of the American Mathematical Society, 127 (American Mathematical Society, Providence, RI, 1972).10.1090/memo/0127CrossRefGoogle Scholar
Kaniuth, E., Lau, A. T. and Pym, J., ‘On $\varphi$ -amenability of Banach algebras’, Math. Proc. Cambridge Philos. Soc. 144 (2008), 8596.10.1017/S0305004107000874CrossRefGoogle Scholar
Lau, A. T., ‘Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups’, Fund. Math. 118 (1983), 161175.Google Scholar
Mahmoodi, A., ‘On $\varphi$ -Connes amenability of dual Banach algebras’, J. Linear Topol. Algebra 3 (2014), 211217.Google Scholar
Mahmoodi, A., ‘ $\varphi$ -contractibility and $\varphi$ -Connes amenability coincide with some older notions’, Bull. Aust. Math. Soc. 97 (2018), 274278.CrossRefGoogle Scholar
Monfared, M. S., ‘Character amenability of Banach algebras’, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697706.10.1017/S0305004108001126CrossRefGoogle Scholar
Runde, V., ‘Amenability for dual Banach algebras’, Studia Math. 148 (2001), 4766.10.4064/sm148-1-5CrossRefGoogle Scholar
Runde, V., ‘Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule’, Math. Scand. 95 (2004), 124144.10.7146/math.scand.a-14452CrossRefGoogle Scholar
Runde, V., Amenable Banach Algebras: A Panorama , Springer Monographs in Mathematics (Springer, New York, 2020).10.1007/978-1-0716-0351-2CrossRefGoogle Scholar