ON φ -AMENABILITY OF DUAL BANACH ALGEBRAS

ALIREZA JABERI and AMIN MAHMOODI □

(Received 20 May 2021; accepted 1 June 2021; first published online 9 July 2021)

Abstract

Generalising the concept of injectivity, we study the notion of φ -injectivity for dual Banach algebras. It provides a framework for studying φ -amenability of enveloping dual Banach algebras.

2020 Mathematics subject classification: primary 46H25; secondary 43A07.

Keywords and phrases: φ -amenability, φ -injectivity, dual Banach algebras.

1. Introduction

In his memoir, Johnson [3] introduced the cohomological notion of an amenable Banach algebra. The concept of φ -amenability, which is a modification of Johnson's amenability, was introduced by Kaniuth *et al.* [4] and independently by Monfared [8]. By way of background, φ -amenability is a generalisation of the notion of (left) amenability for *Lau algebras* (or *F*-algebras); these are Banach algebras that are preduals of a von Neumann algebra where the identity element of the von Neumann algebra is a character [5]. The notion of injectivity for dual Banach algebras was introduced by Daws [1]. We recall the definitions in Definitions 2.1 and 2.4 below.

Motivated by these concepts, we define and study φ -injective dual Banach algebras. In Section 2, we recall some background definitions and notation. In Section 3, we introduce and investigate φ -injectivity of a dual Banach algebra $\mathfrak A$. Among other things, we prove that φ -injectivity is equivalent to φ -amenability whenever $\varphi: \mathfrak A \longrightarrow \mathbb C$ is a w^* -continuous homomorphism. In Section 4, using the idea of φ -injectivity, we discuss φ -amenability of the *enveloping dual Banach algebra* WAP($\mathfrak A^*$)* of a Banach algebra $\mathfrak A$. Besides examples, we will characterise φ -amenability of WAP($\mathfrak A^*$)* in terms of continuous representations from $\mathfrak A$ on reflexive Banach spaces. Section 5 is devoted to non- φ -amenability of the algebra WAP($\ell^1(\mathbb N_\wedge)^*$)* where φ is the augmentation character on $\ell^1(\mathbb N_\wedge)$. Finally, in Appendix A, we shall see that every nonzero homomorphism $\varphi: \mathfrak A$ $\longrightarrow \mathbb C$ becomes automatically a w^* -continuous homomorphism $\varphi: \mathbb A$ $\longrightarrow \mathbb C$ becomes automatically a w^* -continuous homomorphism $\varphi: \mathbb A$ $\longrightarrow \mathbb C$.

^{© 2021} Australian Mathematical Publishing Association Inc.

2. Preliminaries

304

For a Banach algebra \mathfrak{A} , the projective tensor product $\mathfrak{A} \otimes \mathfrak{A}$ is a Banach \mathfrak{A} -bimodule in a canonical way. The *diagonal operator* $\pi: \mathfrak{A} \otimes \mathfrak{A} \longrightarrow \mathfrak{A}$ defined by $\pi(a \otimes b) = ab$ is an \mathfrak{A} -bimodule homomorphism. Let E be a Banach \mathfrak{A} -bimodule. A continuous linear operator $D: \mathfrak{A} \longrightarrow E$ is called a *derivation* if it satisfies $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in \mathfrak{A}$. Given $x \in E$, the *inner* derivation $ad_x: \mathfrak{A} \longrightarrow E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$. We write $\Delta(\mathfrak{A})$ for the set of all homomorphisms from \mathfrak{A} onto \mathbb{C} .

DEFINITION 2.1 [4]. Let $\mathfrak A$ be a Banach algebra and let $\varphi \in \Delta(\mathfrak A)$. The algebra $\mathfrak A$ is φ -amenable if there exists a bounded linear functional m on $\mathfrak A^*$ satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in \mathfrak A$ and $f \in \mathfrak A^*$.

PROPOSITION 2.2 [4, Theorem 1.1]. Let $\mathfrak A$ be a Banach algebra and let $\varphi \in \Delta(\mathfrak A)$. Then $\mathfrak A$ is φ -amenable if and only if every derivation $D: \mathfrak A \longrightarrow E^*$ is inner, where E is a Banach $\mathcal A$ -bimodule such that $a \cdot x = \varphi(a)x$ for all $a \in \mathfrak A$ and $x \in E$.

Let $\mathfrak A$ be a Banach algebra. A Banach $\mathfrak A$ -bimodule E is *dual* if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. We call E_* the *predual* of E. A Banach algebra $\mathfrak A$ is *dual* if it is dual as a Banach $\mathfrak A$ -bimodule. We write $\mathfrak A = (\mathfrak A_*)^*$ if we wish to stress that $\mathfrak A$ is a dual Banach algebra with predual $\mathfrak A_*$.

Let $\mathfrak A$ be a dual Banach algebra and let E be a Banach $\mathfrak A$ -bimodule. Then $\sigma wc(E)$ stands for the set of all elements $x \in E$ such that the maps

$$\mathfrak{A} \longrightarrow E, \quad a \longmapsto \begin{cases} a \cdot x \\ x \cdot a \end{cases} \tag{*}$$

are w^* - wk-continuous. It is well known that $\sigma wc(E)$ is a closed submodule of E.

Suppose that $\mathfrak A$ is a Banach algebra and that E is a Banach $\mathfrak A$ -bimodule. An element $x \in E$ is *weakly almost periodic* if the maps in (*) are weakly compact. The set of all weakly almost periodic elements in E is denoted by WAP(E).

Let $\mathfrak A$ be a Banach algebra. For $\varphi \in WAP(\mathfrak A^*)$ and $\Psi \in WAP(\mathfrak A^*)^*$, define $\Psi \cdot \varphi \in WAP(\mathfrak A^*)$ by $\langle a, \Psi \cdot \varphi \rangle = \langle \varphi \cdot a, \Psi \rangle$ for all $a \in \mathfrak A$. This turns $WAP(\mathfrak A^*)^*$ into a Banach algebra by letting

$$\langle \varphi, \Phi \Psi \rangle = \langle \Psi \cdot \varphi, \Phi \rangle \quad (\Phi, \Psi \in WAP(\mathfrak{A}^*)^*, \varphi \in WAP(\mathfrak{A}^*)).$$

More precisely, WAP(\mathfrak{A}^*)* is a dual Banach algebra and there is a (continuous) homomorphism $\iota:\mathfrak{A}\longrightarrow WAP(\mathfrak{A}^*)^*$ whose range is w^* -dense. Indeed, the map ι is obtained by composing the canonical inclusion $\mathfrak{A}\longrightarrow \mathfrak{A}^{**}$ with the adjoint of the inclusion map WAP(\mathfrak{A}^*) $\hookrightarrow \mathfrak{A}^*$ [10].

PROPOSITION 2.3 [10, Theorem 4.10]. Let $\mathfrak A$ be a Banach algebra, let $\mathfrak B$ be a dual Banach algebra and let $\theta : \mathfrak A \longrightarrow \mathfrak B$ be a (continuous) homomorphism. Then there exists a unique w^* -continuous homomorphism $\tilde{\theta} : WAP(\mathfrak A^*)^* \longrightarrow \mathfrak B$ such that $\theta = \tilde{\theta} \circ \iota$. In particular, every w^* -continuous homomorphism from $WAP(\mathfrak A^*)^*$ into $\mathfrak B$ is uniquely determined by its restriction to $\mathfrak A$.

Let S be a subset of an algebra \mathcal{H} . We use S^c to denote the *commutant* of S in \mathcal{H} , that is, $S^c = \{h \in \mathcal{H} : hs = sh, s \in S\}$. It is obvious that S^c is a closed subalgebra of \mathcal{H} . For Banach spaces E and F, we write $\mathcal{L}(E,F)$ for the set of all bounded linear maps from E into F and $\mathcal{L}(E)$ for $\mathcal{L}(E,E)$. We also write I_E for the identity map on E.

Let E be a Banach space and let $S \subseteq \mathcal{L}(E)$ be a subalgebra. A *quasi expectation* for S is a projection $Q: \mathcal{L}(E) \longrightarrow S^c$ such that Q(cTd) = cQ(T)d for $c, d \in S^c$ and $T \in \mathcal{L}(E)$.

DEFINITION 2.4 [1, Definition 6.12]. A dual Banach algebra $\mathfrak A$ is *injective* if, whenever $\varrho: \mathfrak A \longrightarrow \mathcal L(E)$ is a w^* -continuous unital representation, then there is a quasi expectation $Q: \mathcal L(E) \longrightarrow \varrho(\mathfrak A)^c$.

Connes amenable dual Banach algebras were systematically introduced by Runde in [9]. The remarkable point is that injectivity and Connes amenability are the same notions [1, Theorem 6.13].

3. On φ -injectivity of dual Banach algebras

Let $\mathfrak A$ and $\mathfrak B$ be Banach algebras and let $\theta:\mathfrak A\longrightarrow\mathfrak B$ be a homomorphism. For $\varphi\in\Delta(\mathfrak A)$, we define

$$\theta(\mathfrak{A})^{\varphi} = \{b \in \mathfrak{B} : \theta(a)b = \varphi(a)b \ (a \in \mathfrak{A})\}.$$

Obviously, $\theta(\mathfrak{A})^{\varphi}$ is a (closed) right ideal of \mathfrak{B} . One may see Lemma 5.1 below as a concrete example of such a set.

DEFINITION 3.1. Let $\mathfrak A$ and $\mathfrak B$ be Banach algebras, let $\theta: \mathfrak A \longrightarrow \mathfrak B$ be a homomorphism and let $\varphi \in \Delta(\mathfrak A)$. A φ -quasi expectation $Q: \mathfrak B \longrightarrow \theta(\mathfrak A)^{\varphi}$ is a projection from $\mathfrak B$ onto $\theta(\mathfrak A)^{\varphi}$ satisfying Q(cbd) = cQ(b)d for $c, d \in \theta(\mathfrak A)^c$ and $b \in \mathfrak B$.

It is standard that $\mathcal{L}(E) = (E^* \hat{\otimes} E)^*$ is a dual Banach algebra whenever E is a reflexive Banach space [9]. For a dual Banach algebra \mathfrak{A} , we denote by $\Delta_{w^*}(\mathfrak{A})$ the set of all w^* -continuous homomorphisms from \mathfrak{A} onto \mathbb{C} .

DEFINITION 3.2. Let \mathfrak{A} be a dual Banach algebra and let $\varphi \in \Delta_{w^*}(\mathfrak{A})$. We say that \mathfrak{A} is φ -injective if, whenever $\varrho : \mathfrak{A} \longrightarrow \mathcal{L}(E)$ is a w^* -continuous representation on a reflexive Banach space E, then there is a φ -quasi expectation $Q : \mathcal{L}(E) \longrightarrow \varrho(\mathfrak{A})^{\varphi}$.

It should be stressed that Definition 3.2 is in fact a generalisation of the classical definition of injectivity (see Corollary 3.7 below).

Let $\mathfrak A$ be a dual Banach algebra. It is known that its *unitisation* $\mathfrak A^{\sharp} = \mathfrak A \oplus \mathbb C$ is a dual Banach algebra as well. Let $\varphi \in \Delta_{w^*}(\mathfrak A)$ and let φ^{\sharp} be its unique extension to $\mathfrak A^{\sharp}$. It is obvious that $\varphi^{\sharp} \in \Delta_{w^*}(\mathfrak A^{\sharp})$.

THEOREM 3.3. Suppose that $\mathfrak A$ is a dual Banach algebra and that $\varphi \in \Delta_{w^*}(\mathfrak A)$. Then $\mathfrak A$ is φ -injective if and only if $\mathfrak A^{\sharp}$ is φ^{\sharp} -injective.

PROOF. Let \mathfrak{A} be φ -injective and let $\varrho: \mathfrak{A}^{\sharp} \longrightarrow \mathcal{L}(E)$ be a w^* -continuous representation where E is a reflexive Banach space. Clearly, $\hat{\varrho} = \varrho|_{\mathfrak{A}}$ is a w^* -continuous representation for \mathfrak{A} . Hence, there is a φ -quasi expectation $Q: \mathcal{L}(E) \longrightarrow \hat{\varrho}(\mathfrak{A})^{\varphi}$. Since $\varrho(\mathfrak{A}^{\sharp})^{\varphi^{\sharp}} = \hat{\varrho}(\mathfrak{A})^{\varphi}$ and $\varrho(\mathfrak{A}^{\sharp})^{c} = \hat{\varrho}(\mathfrak{A})^{c}$, we are done.

Conversely, suppose that \mathfrak{A}^{\sharp} is φ^{\sharp} -injective and that $\varrho: \mathfrak{A} \longrightarrow \mathcal{L}(E)$ is a w^* -continuous representation on a reflexive Banach space E. We extend ϱ to $\hat{\varrho}$ from \mathfrak{A} into \mathfrak{A}^{\sharp} by setting $\hat{\varrho}(a,\lambda) = \varrho(a) + \lambda I_E$ for $a \in \mathfrak{A}$ and $\lambda \in \mathbb{C}$. It is readily seen that $\hat{\varrho}$ is a w^* -continuous representation. By the assumption, there is a φ^{\sharp} -quasi expectation $Q: \mathcal{L}(E) \longrightarrow \hat{\varrho}(\mathfrak{A}^{\sharp})^{\varphi^{\sharp}}$. Because $\hat{\varrho}(\mathfrak{A}^{\sharp})^c = \varrho(\mathfrak{A})^c$ and $\hat{\varrho}(\mathfrak{A}^{\sharp})^{\varphi^{\sharp}} = \varrho(\mathfrak{A})^{\varphi}$, we conclude that \mathfrak{A} is φ -injective.

THEOREM 3.4. Suppose that $\mathfrak{A} = (\mathfrak{A}_*)^*$ and $\mathfrak{B} = (\mathfrak{B}_*)^*$ are dual Banach algebras, $\varphi \in \Delta_{w^*}(\mathfrak{A})$ and that $\theta : \mathfrak{A} \longrightarrow \mathfrak{B}$ is a w^* -continuous homomorphism. If \mathfrak{A} is φ -amenable, then there exists a φ -quasi expectation $Q : \mathfrak{B} \longrightarrow \theta(\mathfrak{A})^{\varphi}$.

PROOF. Here we follow the standard argument in [11, Theorem 5.1.24]. Let $E = \mathfrak{B} \hat{\otimes} \mathfrak{B}_*$ be equipped with the \mathfrak{A} -bimodule operation given through

$$a \cdot (b \otimes f) = \varphi(a)(b \otimes f)$$
 and $(b \otimes f) \cdot a = b \otimes f \cdot \theta(a)$

for $a \in \mathfrak{A}$, $f \in \mathfrak{B}_*$ and $b \in \mathfrak{B}$. Identifying E^* with $\mathcal{L}(\mathfrak{B})$ as

$$T(b \otimes f) = \langle f, T(b) \rangle \quad (T \in \mathcal{L}(\mathfrak{B}), \ f \in \mathfrak{B}_*, \ b \in \mathfrak{B}),$$

we obtain as the corresponding dual $\mathfrak A$ -bimodule operation on $\mathcal L(\mathfrak B)$

$$(a \cdot T)(b) = \theta(a)T(b)$$
 and $(T \cdot a)(b) = \varphi(a)T(b)$ $(a \in \mathfrak{A}, b \in \mathfrak{B}, T \in \mathcal{L}(\mathfrak{B})).$

Let F be the subspace of E^* consisting of those $T \in E^*$ such that

$$\langle zb \otimes f - b \otimes f \cdot z, T \rangle = 0$$
, $\langle bz \otimes f - b \otimes z \cdot f, T \rangle = 0$ and $\langle z' \otimes f, T \rangle = 0$

for all $b \in \mathfrak{B}$, $f \in \mathfrak{B}_*$, $z \in \theta(\mathfrak{A})^c$ and $z' \in \theta(\mathfrak{A})^{\varphi}$. It is routine to verify that F is a w^* -closed \mathfrak{A} -submodule of E^* and thus a dual Banach \mathfrak{A} -bimodule in its own right. Considering the derivation $D = ad_{I_{\mathfrak{B}}} : \mathfrak{A} \longrightarrow \mathcal{L}(\mathfrak{B})$, we claim that D attains its values in F. To see this, let $b \in \mathfrak{B}$, $f \in \mathfrak{B}_*$, $z \in \theta(\mathfrak{A})^c$, $z' \in \theta(\mathfrak{A})^{\varphi}$ and $a \in \mathfrak{A}$. Then

$$\langle z' \otimes f, Da \rangle = \langle z' \otimes f \cdot \theta(a), I_{\Re} \rangle - \varphi(a) \langle z' \otimes f, I_{\Re} \rangle = \langle f, \theta(a)z' \rangle - \langle f, \varphi(a)z' \rangle = 0$$

and

$$\begin{split} \langle zb\otimes f-b\otimes f\cdot z,Da\rangle &= \langle zb\otimes f-b\otimes f\cdot z,a\cdot I_{\mathfrak{B}}-I_{\mathfrak{B}}\cdot a\rangle \\ &= \langle (zb\otimes f)\cdot a-(b\otimes f\cdot z)\cdot a-a\cdot (zb\otimes f)+a\cdot (b\otimes f\cdot z),I_{\mathfrak{B}}\rangle \\ &= \langle zb\otimes f\cdot \theta(a)-b\otimes f\cdot z\theta(a)-\varphi(a)zb\otimes f+\varphi(a)b\otimes f\cdot z,I_{\mathfrak{B}}\rangle \\ &= \langle zb,f\cdot \theta(a)\rangle - \langle b,f\cdot z\theta(a)\rangle - \varphi(a)\langle zb,f\rangle + \varphi(a)\langle b,f\cdot z\rangle \\ &= \langle \theta(a)zb,f\rangle - \langle z\theta(a)b,f\rangle - \varphi(a)\langle zb,f\rangle + \varphi(a)\langle zb,f\rangle = 0, \end{split}$$

because $z \in \theta(\mathfrak{A})^c$. Also,

$$\langle bz \otimes f - b \otimes z \cdot f, Da \rangle = \langle bz \otimes f - b \otimes z \cdot f, a \cdot I_{\mathfrak{B}} - I_{\mathfrak{B}} \cdot a \rangle$$

$$= \langle (bz \otimes f) \cdot a - (b \otimes z \cdot f) \cdot a - a \cdot (bz \otimes f) + a \cdot (b \otimes z \cdot f), I_{\mathfrak{B}} \rangle$$

$$= \langle bz \otimes f \cdot \theta(a) - b \otimes z \cdot f \cdot \theta(a) - \varphi(a)bz \otimes f + \varphi(a)b \otimes z \cdot f, I_{\mathfrak{B}} \rangle$$

$$= \langle bz, f \cdot \theta(a) \rangle - \langle b, z \cdot f \cdot \theta(a) \rangle - \varphi(a)\langle bz, f \rangle + \varphi(a)\langle b, z \cdot f \rangle$$

$$= \langle \theta(a)bz, f \rangle - \langle \theta(a)bz, f \rangle - \varphi(a)\langle bz, f \rangle + \varphi(a)\langle bz, f \rangle = 0.$$

Then, by Proposition 2.2, there exists $\rho \in F$ such that $D = ad_{\rho}$. Setting $Q = I_{\mathfrak{B}} - \rho$, we see that $a \cdot Q = Q \cdot a$ for all $a \in \mathfrak{A}$. Hence, $\theta(a)Q(b) = \varphi(a)Q(b)$ for $b \in \mathfrak{B}$ and so Q takes values in $\theta(\mathfrak{A})^{\varphi}$.

Because $\rho \in F$, we have $0 = \langle z' \otimes f, \rho \rangle = \langle \rho(z'), f \rangle$ for $f \in \mathfrak{B}_*, z' \in \theta(\mathfrak{A})^{\varphi}$. That is, $\rho(z') = 0$ and thus Q(z') = z' for each $z' \in \theta(\mathfrak{A})^{\varphi}$. Therefore, Q is the identity on $\theta(\mathfrak{A})^{\varphi}$ and thus a projection onto $\theta(\mathfrak{A})^{\varphi}$.

Next, for each $b \in \mathfrak{B}$, $f \in \mathfrak{B}_*$ and $z \in \theta(\mathfrak{A})^c$,

$$0 = \langle zb \otimes f - b \otimes f \cdot z, \rho \rangle = \langle \rho(zb), f \rangle - \langle \rho(b), f \cdot z \rangle = \langle \rho(zb) - z\rho(b), f \rangle$$

and so $\rho(zb) = z\rho(b)$. Similarly,

$$0 = \langle bz \otimes f - b \otimes z \cdot f, \rho \rangle = \langle \rho(bz), f \rangle - \langle \rho(b), z \cdot f \rangle = \langle \rho(bz) - \rho(b)z, f \rangle,$$

so that $\rho(bz) = \rho(b)z$. Thus,

$$Q(zb) = zb - \rho(zb) = zb - z\rho(b) = zQ(b), \quad Q(bz) = bz - \rho(bz) = bz - \rho(b)z = Q(b)z.$$

We then have $Q(z_1bz_2) = z_1Q(bz_2) = z_1Q(b)z_2$ for $z_1, z_2 \in \theta(\mathfrak{A})^c, b \in \mathfrak{B}$. Therefore, Q is a φ -quasi expectation.

To establish Theorem 3.6 below, we need some preliminaries from [1, pages 253–255]. Let $\mathfrak A$ be a Banach algebra. First, recall that $(\mathfrak A \otimes \mathfrak A)^* = \mathcal L(\mathfrak A, \mathfrak A^*)$, where we choose the convention that $\langle a \otimes b, T \rangle = \langle a, T(b) \rangle$ for $a, b \in \mathfrak A$, $T \in \mathcal L(\mathfrak A, \mathfrak A^*)$. Next, let $\varrho : \mathfrak A \longrightarrow \mathcal L(E)$ be a (continuous) representation on a reflexive Banach space E. Then $\mathcal L(E)$ becomes a Banach $\mathfrak A$ -bimodule with actions $a \cdot T = \varrho(a)T$ and $T \cdot a = T\varrho(a)$ for $a \in \mathfrak A$, $T \in \mathcal L(E)$. Also, $\mathcal L(E)$ is a Banach $\varrho(\mathfrak A)^c$ -bimodule in the obvious way. We write $\mathcal L_{\mathfrak A}(\mathcal L(E))$ for the collection of all $\varrho(\mathfrak A)^c$ -bimodule homomorphisms, that is, maps $Q \in \mathcal L(\mathcal L(E))$ such that Q(ST) = SQ(T) and Q(TS) = Q(T)S for all $S \in \varrho(\mathfrak A)^c$ and $T \in \mathcal L(E)$. We turn $\mathcal L_{\mathfrak A}(\mathcal L(E))$ into a Banach $\mathfrak A$ -bimodule by setting

$$(a \cdot Q)(T) = \varrho(a)Q(T)$$
 and $(Q \cdot a)T = Q(T)\varrho(a)$

for $a \in \mathfrak{A}$, $T \in \mathcal{L}(E)$ and $Q \in \mathcal{L}_{\mathfrak{A}}(\mathcal{L}(E))$. We notice that $\mathcal{L}(\mathcal{L}(E))$ is a dual Banach algebra with predual $\mathcal{L}(E)\widehat{\otimes}(E\widehat{\otimes}E^*)$. Let $X \subseteq \mathcal{L}(E)\widehat{\otimes}(E\widehat{\otimes}E^*)$ be the closure of the linear span of the set consisting of all elements of the form $ST \otimes x \otimes \mu - T \otimes x \otimes S^*(\mu)$ and $TS \otimes x \otimes \mu - T \otimes S(x) \otimes \mu$ for all $S \in \mathcal{Q}(\mathfrak{A})^c$, $T \in \mathcal{L}(E)$, $x \in E$, $\mu \in E^*$. Because $X^{\perp} = \mathcal{L}_{\mathfrak{A}}(\mathcal{L}(E))$, we see that $\mathcal{L}_{\mathfrak{A}}(\mathcal{L}(E))$ is a dual Banach algebra with the predual

 $Y = \mathcal{L}(E)\widehat{\otimes}E\widehat{\otimes}E^*/X$. Now define $\psi: Y \longrightarrow \mathcal{L}(\mathfrak{A}, \mathfrak{A}^*)$ via

$$\langle a \otimes b, \psi(T \otimes x \otimes \mu + X) \rangle = \langle \varrho(a)T\varrho(b)(x), \mu \rangle \quad (a, b \in \mathfrak{A}, \ x \in E, \ \mu \in E^*, \ T \in \mathcal{L}(E)).$$

We turn $\mathcal{L}(E)\widehat{\otimes}E\widehat{\otimes}E^*$ into a Banach \mathfrak{A} -bimodule through

$$a \cdot (T \otimes x \otimes \mu) = T \otimes \varrho(a)(x) \otimes \mu$$
 and $(T \otimes x \otimes \mu) \cdot a = T \otimes x \otimes \varrho(a)^*(\mu)$

for $a \in \mathfrak{A}, x \in E, \mu \in E^*, T \in \mathcal{L}(E)$. Observe that ψ is an \mathfrak{A} -bimodule homomorphism. The next proposition shows that it is possible to choose E to make ψ a bijection onto $\sigma wc(\mathcal{L}(\mathfrak{A}, \mathfrak{A}^*))$.

PROPOSITION 3.5 [1, Theorem 6.11]. Let $\mathfrak{A} = (\mathfrak{A}_*)^*$ be a unital dual Banach algebra. There exist a reflexive normal Banach left \mathfrak{A} -module E and an isometric w^* -continuous representation $\varrho : \mathfrak{A} \longrightarrow \mathcal{L}(E)$ such that ψ (associated with ϱ as above) maps into $\sigma wc(\mathcal{L}(\mathfrak{A}, \mathfrak{A}^*))$ and is a bijection. In particular, $\psi^* : \sigma wc(\mathcal{L}(\mathfrak{A}, \mathfrak{A}^*))^* \longrightarrow \mathcal{L}_{\mathfrak{A}}(\mathcal{L}(E))$ is an isomorphism.

Let $\mathfrak A$ be a dual Banach algebra and let $\varphi \in \Delta_{w^*}(\mathfrak A)$. From [6], $\mathfrak A$ is φ -Connes amenable if there exists a bounded linear functional m on $\sigma wc(\mathfrak A^*)$ satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in \mathfrak A$ and $f \in \sigma wc(\mathfrak A^*)$.

The following result could be compared with [1, Theorem 6.13].

THEOREM 3.6. Suppose that \mathfrak{A} is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathfrak{A})$. Then the following are equivalent:

- (i) \mathfrak{A} is φ -amenable;
- (ii) \mathfrak{A} is φ -contractible (in the sense of [2]);
- (iii) \mathfrak{A} is φ -Connes amenable;
- (iv) \mathfrak{A} is φ -injective.

PROOF. The equivalence (i) \iff (ii) \iff (iii) is [7, Theorem 2.4].

- (i) \Longrightarrow (iv) Suppose that $\mathfrak A$ is φ -amenable and $\varrho : \mathfrak A \longrightarrow \mathcal L(E)$ is a w^* -continuous representation on some reflexive Banach space E. By Theorem 3.4, there is a φ -quasi expectation $Q : \mathcal L(E) \longrightarrow \varrho(\mathfrak A)^{\varphi}$, that is, $\mathfrak A$ is φ -injective.
- (iv) \Longrightarrow (iii) Suppose that $\mathfrak A$ is φ -injective. By Theorem 3.3 and [4, Lemma 3.2], without loss of generality, we may suppose that $\mathfrak A$ is unital. Take the w^* -continuous representation $\varrho: \mathfrak A \longrightarrow \mathcal L(E)$ and the map ψ as in Proposition 3.5. By the assumption, there exists a φ -quasi expectation $Q: \mathcal L(E) \longrightarrow \varrho(\mathfrak A)^{\varphi}$. Notice that $Q \in \mathcal L_{\mathfrak A}(\mathcal L(E))$. Define $M:=(\psi^*)^{-1}(Q) \in \sigma wc((\mathfrak A \otimes \mathfrak A)^*)^*$. As Q maps into $\varrho(\mathfrak A)^{\varphi}$, it follows that $a:Q=\varphi(a)Q$ for $a\in \mathfrak A$, so that $a:M=\varphi(a)M$. Next, for some $\alpha\in \mathbb C$, we have $\langle \varphi\otimes \varphi,M\rangle=\alpha$. Hence, putting $N=(1/\alpha)M$, it is readily seen that $\langle \varphi\otimes \varphi,N\rangle=1$ and $a:N=\varphi(a)N$ for $a\in \mathfrak A$. On the other hand, from [10], $\pi^*(\sigma wc(\mathfrak A^*))\subseteq \sigma wc((\mathfrak A \otimes \mathfrak A)^*)$. We then set $m:=(\pi^*|_{\sigma wc(\mathfrak A^*)})^*(N)\in \sigma wc(\mathfrak A^*)^*$. One may check that $m(\varphi)=1$ and $m(f:a)=\varphi(a)m(f)$ for all $a\in \mathfrak A$ and $f\in \sigma wc(\mathfrak A^*)$. Thus, $\mathfrak A$ is φ -Connes amenable.

COROLLARY 3.7. An injective dual Banach algebra \mathfrak{A} is φ -injective for all $\varphi \in \Delta_{w^*}(\mathfrak{A})$.

PROOF. Since $\mathfrak A$ is injective, it is Connes amenable [1, Theorem 6.13]. It then follows from [6, Theorem 2.2] that $\mathfrak A$ is φ -Connes amenable for each $\varphi \in \Delta_{w^*}(\mathfrak A)$. The result is now immediate by Theorem 3.6.

4. Application to WAP(\mathfrak{A}^*)* and examples

The following result is analogous to [4, Proposition 3.5].

THEOREM 4.1. Suppose that $\mathfrak A$ is a Banach algebra, $\mathfrak B = (\mathfrak B_*)^*$ is a dual Banach algebra, $\theta : \mathfrak A \longrightarrow \mathfrak B$ is a continuous homomorphism with w^* -dense range and $\varphi \in \Delta_{w^*}(\mathfrak B)$. If $\mathfrak A$ is $\varphi \circ \theta$ -amenable, then $\mathfrak B$ is φ -amenable.

PROOF. Take $m \in \mathfrak{A}^{**}$ with $m(\varphi \circ \theta) = 1$ and $m(f \cdot a) = (\varphi \circ \theta)(a)m(f)$ for all $a \in \mathfrak{A}$ and $f \in \mathfrak{A}^{*}$. Define $n \in \sigma wc(\mathfrak{B}^{*})^{*}$ by $n(g) = m(g \circ \theta)$ for $g \in \sigma wc(\mathfrak{B}^{*})$. Note that $\varphi \in \sigma wc(\mathfrak{B}^{*})$ as $\varphi \in \mathfrak{B}_{*}$ (see also [7, Lemma 2.3]). Then $n(\varphi) = m(\varphi \circ \theta) = 1$. For $a, a' \in \mathfrak{A}$ and $g \in \sigma wc(\mathfrak{B}^{*})$,

$$n(g \cdot \theta(a)) = m((g \cdot \theta(a)) \circ \theta) = m((g \circ \theta) \cdot a) = (\varphi \circ \theta)(a)m(g \circ \theta) = (\varphi \circ \theta)(a)n(g),$$

because

$$\langle (g \cdot \theta(a)) \circ \theta, a' \rangle = \langle g, \theta(a)\theta(a') \rangle = \langle (g \circ \theta) \cdot a, a' \rangle.$$

Next, for an arbitrary element $b \in \mathfrak{B}$, there is a net $(a_i)_i \subseteq \mathfrak{A}$ such that $\theta(a_i) \xrightarrow{w^*} b$. For each $g \in \sigma wc(\mathfrak{B}^*)$, we then have $g \cdot \theta(a_i) \xrightarrow{wk} g \cdot b$. Hence,

$$n(g \cdot b) = \lim_{i} n(g \cdot \theta(a_i)) = \lim_{i} \varphi(\theta(a_i)) n(g) = \varphi(b) n(g).$$

Thus, \mathfrak{B} is φ -amenable, by Theorem 3.6(iii).

REMARK 4.2. Let $\mathfrak A$ be a Banach algebra and let $\varphi \in \Delta(\mathfrak A)$. By Proposition 2.3, there exists a unique element $\tilde{\varphi} \in \Delta_{w^*}(WAP(\mathfrak A^*)^*)$ extending φ . We shall henceforth keep the notation $\tilde{\varphi}$.

COROLLARY 4.3. Let $\mathfrak A$ be a Banach algebra and let $\varphi \in \Delta(\mathfrak A)$. If $\mathfrak A$ is φ -amenable, then WAP($\mathfrak A^*$)* is $\tilde \varphi$ -amenable.

PROOF. As $\varphi = \tilde{\varphi} \circ \iota$, this is a consequence of Remark 4.2 and Theorem 4.1.

EXAMPLE 4.4. Let G be a locally compact group and let A(G) and $VN(G) = A(G)^*$ be the Fourier algebra and the von Neumann algebra of G, respectively. From [4, Example 2.6], A(G) is φ_t -amenable for every $t \in G$, where φ_t is the point evaluation at $t \in G$, that is, $\varphi_t(f) = f(t)$, $f \in A(G)$. So, by Corollary 4.3, WAP(VN(G))* is $\tilde{\varphi}_t$ -amenable for every $t \in G$.

The converse of Corollary 4.3 holds for dual Banach algebras as follows.

THEOREM 4.5. Let $\mathfrak{A} = (\mathfrak{A}_*)^*$ be a dual Banach algebra and let $\varphi \in \Delta_{w^*}(\mathfrak{A})$. Then \mathfrak{A} is φ -amenable if and only if $WAP(\mathfrak{A}^*)^*$ is $\tilde{\varphi}$ -amenable.

PROOF. Since $\mathfrak{A}_* \subseteq \sigma wc(\mathfrak{A}^*) \subseteq WAP(\mathfrak{A}^*)$ from [10], there exists an inclusion map ε : $\mathfrak{A}_* \longrightarrow WAP(\mathfrak{A}^*)$. Then ε^* is an \mathfrak{A} -bimodule homomorphism from $WAP(\mathfrak{A}^*)^*$ onto \mathfrak{A} .

Suppose that WAP(\mathfrak{A}^*)* is $\tilde{\varphi}$ -amenable. Let E be a Banach \mathfrak{A} -bimodule for which $a.x = \varphi(a)x$ for all $a \in \mathfrak{A}$ and $x \in E$ and let $D: \mathfrak{A} \longrightarrow E^*$ be a derivation. We turn E into a Banach WAP(\mathfrak{A}^*)*-bimodule through

$$\Lambda . x := \tilde{\varphi}(\Lambda) x$$
 and $x . \Lambda := \varepsilon^*(\Lambda) . x$ $(x \in E, \Lambda \in WAP(\mathfrak{A}^*)^*)$.

Now, by Proposition 2.2, the derivation $D\varepsilon^*$: WAP(\mathfrak{A}^*)* $\longrightarrow E^*$ is inner. Thus, there exists $x \in E$ such that $(D\varepsilon^*)(\Lambda) = \Lambda . x - x . \Lambda$ for all $\Lambda \in WAP(\mathfrak{A}^*)^*$. Consequently, Da = a . x - x . a, $a \in \mathfrak{A}$. Again by Proposition 2.2, \mathfrak{A} is φ -amenable.

We write $\mathbb D$ for the open unit disk. For the discrete convolution algebra $\ell^1(\mathbb Z^+)$, it is known that $\Delta(\ell^1(\mathbb Z^+)) \equiv \bar{\mathbb D}$ under the bijective map $z \longmapsto \varphi_z$, where φ_z is the point evaluation at z, that is, $\varphi_z(\sum_{n=0}^\infty c_n\delta_n) = \sum_{n=0}^\infty c_nz^n$. It is not hard to see that $\Delta_{w^+}(\ell^1(\mathbb Z^+)) = \mathbb D$. It was shown in [4, Example 2.5] that $\ell^1(\mathbb Z^+)$ is φ_z -amenable when |z|=1 and it is not φ_z -amenable if $z\in \mathbb D$. Hence, by Corollary 4.3, WAP $(\ell^\infty(\mathbb Z^+))^*$ is $\tilde{\varphi}_z$ -amenable when |z|=1. As $\ell^1(\mathbb Z^+)$ is a dual Banach algebra, we conclude from Theorem 4.5 that WAP $(\ell^\infty(\mathbb Z^+))^*$ is not $\tilde{\varphi}_z$ -amenable for each $z\in \mathbb D$. Notice that WAP $(\ell^\infty(\mathbb Z^+))^*$ is not amenable. To see this, we first observe that there exists a continuous homomorphism from WAP $(\ell^\infty(\mathbb Z^+))^*$ onto $\ell^1(\mathbb Z^+)$ by the universal property (with $\ell^1(\mathbb Z^+)$ and the identity map in place of $\mathfrak B$ and θ , respectively). Therefore, amenability of WAP $(\ell^\infty(\mathbb Z^+))^*$ forces $\ell^1(\mathbb Z^+)$ to be amenable, which is not the case.

Putting all these results together gives the following example.

EXAMPLE 4.6. (i) WAP $(\ell^{\infty}(\mathbb{Z}^+))^*$ is not amenable;

- (ii) WAP $(\ell^{\infty}(\mathbb{Z}^+))^*$ is not $\tilde{\varphi}_z$ -amenable for each $z \in \mathbb{D}$;
- (iii) WAP $(\ell^{\infty}(\mathbb{Z}^+))^*$ is $\tilde{\varphi}_z$ -amenable when |z|=1.

Let $\mathfrak A$ be a Banach algebra and let $\varrho : \mathfrak A \longrightarrow \mathcal L(E)$ be a continuous representation on a Banach space E. We use $\tilde{\varrho} : \mathrm{WAP}(\mathfrak A^*)^* \longrightarrow \mathcal L(E)$ for the unique w^* -continuous representation obtained by Proposition 2.3.

LEMMA 4.7. Let $\mathfrak A$ be a Banach algebra, let $\varrho: \mathfrak A \longrightarrow \mathcal L(E)$ be a continuous representation and $\varphi \in \Delta(\mathfrak A)$. Then every φ -quasi expectation $Q: \mathcal L(E) \longrightarrow \varrho(\mathfrak A)^{\varphi}$ is exactly a $\tilde \varphi$ -quasi expectation $Q: \mathcal L(E) \longrightarrow \tilde \varrho(WAP(\mathfrak A^*)^*)^{\tilde \varphi}$ and vice versa.

PROOF. The same argument as that in the proof of [1, Proposition 6.15] shows that $\varrho(\mathfrak{A})^c = \tilde{\varrho}(WAP(\mathfrak{A}^*)^*)^c$. To complete the proof, we show that $\tilde{\varrho}(WAP(\mathfrak{A}^*)^*)^{\tilde{\varphi}} = \varrho(\mathfrak{A})^{\varphi}$. It is obvious that $\tilde{\varrho}(WAP(\mathfrak{A}^*)^*)^{\tilde{\varphi}} \subseteq \varrho(\mathfrak{A})^{\varphi}$. For the converse, suppose that $T \in \varrho(\mathfrak{A})^{\varphi}$. Thus, $\langle \varrho(a)T, \eta \rangle = \varphi(a)\langle T, \eta \rangle$ for each $a \in \mathfrak{A}$ and $\eta \in E^*\hat{\otimes}E$. Take $\Psi \in WAP(\mathfrak{A}^*)^*$ and take a bounded net $(a_i) \subseteq \mathfrak{A}$ which converges to Ψ in the w^* -topology on $WAP(\mathfrak{A}^*)^*$. Then, for $x \in E$, $\mu \in E^*$ and $T \in \varrho(\mathfrak{A})^{\varphi}$,

$$\begin{split} \langle \mu, \tilde{\varrho}(\Psi) T(x) \rangle &= \langle \mu \otimes T(x), \tilde{\varrho}(\Psi) \rangle = \langle \Psi, \varrho_*(\mu \otimes T(x)) \rangle = \lim_i \langle \varrho_*(\mu \otimes T(x)), a_i \rangle \\ &= \lim_i \langle \mu, \varrho(a_i) T(x) \rangle = \lim_i \varphi(a_i) \langle \mu, T(x) \rangle = \langle \mu, \tilde{\varphi}(\Psi) T(x) \rangle, \end{split}$$

so that $T \in \tilde{\varrho}(WAP(\mathfrak{A}^*)^*)^{\tilde{\varphi}}$, as required.

The next step is a useful characterisation.

THEOREM 4.8. Let $\mathfrak A$ be a Banach algebra and let $\varphi \in \Delta(\mathfrak A)$. Then the following are equivalent:

- (i) $WAP(\mathfrak{A}^*)^*$ is $\tilde{\varphi}$ -amenable;
- (ii) whenever $\varrho : \mathfrak{A} \longrightarrow \mathcal{L}(E)$ is a continuous representation on a reflexive Banach space E, there exists a φ -quasi expectation $Q : \mathcal{L}(E) \longrightarrow \varrho(\mathfrak{A})^{\varphi}$.

PROOF. (i) \Longrightarrow (ii) Let $\varrho: \mathfrak{A} \longrightarrow \mathcal{L}(E)$ be a continuous representation on a reflexive Banach space E and let $\tilde{\varrho}: WAP(\mathfrak{A}^*)^* \longrightarrow \mathcal{L}(E)$ be its unique extension to a w^* -continuous representation. By Theorem 3.6, $WAP(\mathfrak{A}^*)^*$ is $\tilde{\varphi}$ -injective and there exists a $\tilde{\varphi}$ -quasi expectation $Q: \mathcal{L}(E) \longrightarrow \tilde{\varrho}(WAP(\mathfrak{A}^*)^*)^{\tilde{\varphi}}$ by Definition 3.2. Now, by Lemma 4.7, $Q: \mathcal{L}(E) \longrightarrow \varrho(\mathfrak{A})^{\varphi}$ is indeed a φ -quasi expectation.

(ii) \Longrightarrow (i) Suppose that $\varrho: \operatorname{WAP}(\mathfrak{A}^*)^* \longrightarrow \mathcal{L}(E)$ is a w^* -continuous representation on a reflexive Banach space E. Thus, $\varrho|_{\mathfrak{A}}: \mathfrak{A} \longrightarrow \mathcal{L}(E)$ is a continuous representation. By the assumption, there exists a φ -quasi expectation $Q: \mathcal{L}(E) \longrightarrow \varrho(\mathfrak{A})^{\varphi}$. Again by Lemma 4.7, $Q: \mathcal{L}(E) \longrightarrow \tilde{\varrho}(\operatorname{WAP}(\mathfrak{A}^*)^*)^{\tilde{\varphi}}$ is a $\tilde{\varphi}$ -quasi expectation, as required. \square

5. For WAP($\ell^1(\mathbb{N}_{\wedge})^*$)*

Let \mathbb{N}_{\wedge} be the semigroup \mathbb{N} with the product $m \wedge n = \min\{m, n\}$ for $m, n \in \mathbb{N}$. In this section, we write φ for the *augmentation character* on $\ell^1(\mathbb{N}_{\wedge})$, which is given by $\varphi(\sum_{n=1}^{\infty} \alpha_i \delta_i) = \sum_{n=1}^{\infty} \alpha_i$. In the light of Theorem 4.8, we will show that WAP $(\ell^1(\mathbb{N}_{\wedge})^*)^*$ is not $\tilde{\varphi}$ -amenable. To this end, some preliminaries are needed.

Let E be a Banach space with a normalised basis $(e_n)_n$. For each $n \in \mathbb{N}$, we consider the linear functional $f_n \in E^*$, $n \in \mathbb{N}$, given by $\langle f_n, \sum \alpha_i e_i \rangle = \alpha_n$. Throughout the section, we use the notation ϱ for the representation $\varrho : \ell^1(\mathbb{N}_{\wedge}) \longrightarrow \mathcal{L}(E)$ given by

$$\varrho(\delta_n)(e_m) = \begin{cases} e_m & \text{for } m \le n \\ 0 & \text{for } m > n \end{cases} \quad (m, n \in \mathbb{N})$$

and linearity. In fact, $\varrho(\delta_n)$ is the projection onto the linear span of $\{e_1, \ldots, e_n\}$. It is standard that each element of $\mathcal{L}(E)$ can be considered as a matrix with respect to the basis $(e_n)_n$. We denote by $\mathcal{E}_{i,j}$ the matrix with 1 in the (i,j)th place and 0 elsewhere.

The next result shows that the set $\varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$ consists of all matrices in $\mathcal{L}(E)$ with zero entries from the second row on.

LEMMA 5.1.
$$\varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi} = \{T = (a_{i,j})_{i,j} \in \mathcal{L}(E) : a_{i,j} = 0 \text{ for } i \geq 2\}.$$

PROOF. Set $\mathcal{R} = \{T = (a_{i,j})_{i,j} \in \mathcal{L}(E) : a_{i,j} = 0 \text{ for } i \geq 2\}$ and notice that $\varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi} = \{T \in \mathcal{L}(E) : \varrho(\delta_n)T = \varphi(\delta_n)T = T\}$. It is easily checked that $\mathcal{R} \subseteq \varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$. Conversely, for $T \in \varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$,

$$\mathcal{E}_{n,n}T = (\varrho(\delta_n) - \varrho(\delta_{n-1}))T = \varrho(\delta_n)T - \varrho(\delta_{n-1})T = T - T = 0 \quad (n \geq 2).$$

A simple verification then shows that

$$0 = \mathcal{E}_{n,n}T(e_m) = \langle f_n, T(e_m) \rangle e_n \quad (m \ge 1, n \ge 2)$$

and therefore $\langle f_n, T(e_m) \rangle = 0$ for $m \ge 1, n \ge 2$. So, $T(e_m) \in \mathbb{C}e_1$ for each $m \ge 1$, which proves that $T \in \mathcal{R}$.

REMARK 5.2. Compared to Lemma 5.1, $\varrho(\ell^1(\mathbb{N}_{\wedge}))^c$ is exactly the set of all diagonal matrices in $\mathcal{L}(E)$ [1].

We write $P_{\varphi}: \mathcal{L}(E) \longrightarrow \varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$ for the *canonical projection onto* $\varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$ defined by $T = (a_{i,j})_{i,j} \longmapsto P_{\varphi}(T) = (b_{i,j})_{i,j}$, where $b_{1,j} = a_{1,j}$ and $b_{i,j} = 0$ for $i \geq 2$ and all j. Next, we show that every φ -quasi expectation $Q: \mathcal{L}(E) \longrightarrow \varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$ must be the canonical projection onto $\varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$.

LEMMA 5.3. Let $Q: \mathcal{L}(E) \longrightarrow \varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$ be a φ -quasi expectation. Then $Q = P_{\varphi}$.

PROOF. Let $m, n \in \mathbb{N}$ and $T \in \mathcal{L}(E)$. From Remark 5.2, $\mathcal{E}_{n,n}$, $\mathcal{E}_{m,m} \in \varrho(\ell^1(\mathbb{N}_{\wedge}))^c$. Then

$$\langle f_m, T(e_n) \rangle Q(\mathcal{E}_{m,n}) = Q(\mathcal{E}_{m,m} T \mathcal{E}_{n,n}) = \mathcal{E}_{m,m} Q(T) \mathcal{E}_{n,n} = \langle f_m, Q(T)(e_n) \rangle \mathcal{E}_{m,n}.$$

As $\mathcal{E}_{m,n}$ is not in $\varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$ for m > 1 by Lemma 5.1, it follows that $\langle f_m, Q(T)(e_n) \rangle = 0$ for m > 1. Thus, $Q(T)(e_n) \in \mathbb{C}e_1$ for each n. Next, since $\mathcal{E}_{1,n} \in \varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$,

$$\langle f_1, T(e_n) \rangle \mathcal{E}_{1,n} = \langle f_1, T(e_n) \rangle Q(\mathcal{E}_{1,n}) = Q(\mathcal{E}_{1,1} T \mathcal{E}_{n,n})$$
$$= \mathcal{E}_{1,1} Q(T) \mathcal{E}_{n,n} = \langle f_1, Q(T)(e_n) \rangle \mathcal{E}_{1,n}$$

and hence $Q(T)(e_n) = \langle f_1, T(e_n) \rangle e_1$ for each $n \in \mathbb{N}$, as required.

THEOREM 5.4. The algebra $WAP(\ell^1(\mathbb{N}_{\wedge})^*)^*$ is not $\tilde{\varphi}$ -amenable.

PROOF. By Theorem 4.8 and Lemma 5.3, it suffices to find a reflexive Banach space E such that P_{φ} is not bounded. It is clear that there is an isometric isomorphism Θ from $\varrho(\ell^1(\mathbb{N}_{\wedge}))^c$ onto $\varrho(\ell^1(\mathbb{N}_{\wedge}))^{\varphi}$. From [1, Theorem 7.6], there is a reflexive Banach space E for which the canonical projection $P_c: \mathcal{L}(E) \longrightarrow \varrho(\ell^1(\mathbb{N}_{\wedge}))^c$ is not bounded. Thus, $P_{\varphi} = \Theta \circ P_c$ is not bounded, as required.

A combination of Corollary 4.3 and Theorem 5.4 yields the following result.

COROLLARY 5.5. The algebra $\ell^1(\mathbb{N}_{\wedge})$ is not φ -amenable.

Appendix A

In this section, we show that $\Delta_{w^*}(WAP(\mathfrak{A}^*)^*)$ contains $\Delta(\mathfrak{A})$ as a subset, as pointed out by an anonymous referee in response to a previous version of this work.

PROPOSITION A.1. Let \mathfrak{A} be a Banach algebra. Then $\Delta(\mathfrak{A}) \subseteq \Delta_{w^*}(WAP(\mathfrak{A}^*)^*)$.

PROOF. Take $\varphi \in \Delta(\mathfrak{A})$, so that $\varphi \in \mathfrak{A}^*$. Then $\langle b, a \cdot \varphi \rangle = \varphi(a)\varphi(b)$ for every $a, b \in \mathfrak{A}$, so that $a \cdot \varphi = \varphi(a)\varphi$. Similarly, $\varphi \cdot a = \varphi(a)\varphi$. So, obviously, $\varphi \in WAP(\mathfrak{A}^*)$. Hence, we may treat φ as a bounded linear map on $WAP(\mathfrak{A}^*)^*$. As a consequence, φ is

 w^* -continuous. Next, for $\Psi \in WAP(\mathfrak{A}^*)^*$ and $a \in \mathfrak{A}$, it follows that $\langle a, \Psi \cdot \varphi \rangle = \langle \varphi \cdot a, \Psi \rangle = \varphi(a) \langle \varphi, \Psi \rangle$, so that $\Psi \cdot \varphi = \langle \varphi, \Psi \rangle \varphi$. Then, for each $\Phi, \Psi \in WAP(\mathfrak{A}^*)^*$,

$$\langle \varphi, \Phi \Psi \rangle = \langle \Psi \cdot \varphi, \Phi \rangle = \langle \langle \varphi, \Psi \rangle \varphi, \Phi \rangle = \langle \varphi, \Psi \rangle \langle \varphi, \Phi \rangle.$$

Thus, $\varphi \in \Delta_{w^*}(WAP(\mathfrak{A}^*)^*)$.

The following consequence should be compared with Corollary 4.3.

COROLLARY A.2. Let $\mathfrak A$ be a Banach algebra and let $\varphi \in \Delta(\mathfrak A)$. If $\mathfrak A$ is $\varphi \circ \iota$ -amenable, then $WAP(\mathfrak A^*)^*$ is φ -amenable.

PROOF. This is immediate by Proposition A.1 and Theorem 4.1.

References

- [1] M. Daws, 'Dual Banach algebras: representations and injectivity', *Studia Math.* **178** (2007), 231–275.
- [2] Z. Hu, M. S. Monfared and T. Traynor, 'On character amenable Banach algebras', Studia Math. 193 (2009), 53–78.
- [3] B. E. Johnson, *Cohomology in Banach Algebras*, Memoirs of the American Mathematical Society, 127 (American Mathematical Society, Providence, RI, 1972).
- [4] E. Kaniuth, A. T. Lau and J. Pym, 'On φ -amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* **144** (2008), 85–96.
- [5] A. T. Lau, 'Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups', Fund. Math. 118 (1983), 161–175.
- [6] A. Mahmoodi, 'On φ-Connes amenability of dual Banach algebras', J. Linear Topol. Algebra 3 (2014), 211–217.
- [7] A. Mahmoodi, ' φ -contractibility and φ -Connes amenability coincide with some older notions', *Bull. Aust. Math. Soc.* **97** (2018), 274–278.
- [8] M. S. Monfared, 'Character amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* 144 (2008), 697–706.
- [9] V. Runde, 'Amenability for dual Banach algebras', Studia Math. 148 (2001), 47–66.
- [10] V. Runde, 'Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule', *Math. Scand.* 95 (2004), 124–144.
- [11] V. Runde, Amenable Banach Algebras: A Panorama, Springer Monographs in Mathematics (Springer, New York, 2020).

ALIREZA JABERI, Department of Mathematics, Central Tehran Branch,

Islamic Azad University, Tehran, Iran

e-mail: alirezajaberii1350@gmail.com

AMIN MAHMOODI, Department of Mathematics, Central Tehran Branch,

Islamic Azad University, Tehran, Iran

e-mail: a mahmoodi@iauctb.ac.ir