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Abstract

Generalising the concept of injectivity, we study the notion of ϕ-injectivity for dual Banach algebras. It
provides a framework for studying ϕ-amenability of enveloping dual Banach algebras.
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1. Introduction

In his memoir, Johnson [3] introduced the cohomological notion of an amenable
Banach algebra. The concept of ϕ-amenability, which is a modification of Johnson’s
amenability, was introduced by Kaniuth et al. [4] and independently by Monfared
[8]. By way of background, ϕ-amenability is a generalisation of the notion of
(left) amenability for Lau algebras (or F-algebras); these are Banach algebras that
are preduals of a von Neumann algebra where the identity element of the von
Neumann algebra is a character [5]. The notion of injectivity for dual Banach algebras
was introduced by Daws [1]. We recall the definitions in Definitions 2.1 and 2.4
below.

Motivated by these concepts, we define and study ϕ-injective dual Banach algebras.
In Section 2, we recall some background definitions and notation. In Section 3, we
introduce and investigate ϕ-injectivity of a dual Banach algebra A. Among other
things, we prove that ϕ-injectivity is equivalent to ϕ-amenability whenever ϕ : A −→ C
is a w∗-continuous homomorphism. In Section 4, using the idea of ϕ-injectivity, we
discuss ϕ-amenability of the enveloping dual Banach algebra WAP(A∗)∗ of a Banach
algebraA. Besides examples, we will characterise ϕ-amenability of WAP(A∗)∗ in terms
of continuous representations from A on reflexive Banach spaces. Section 5 is devoted
to non-ϕ̃-amenability of the algebra WAP(�1(N∧)∗)∗ where ϕ is the augmentation
character on �1(N∧). Finally, in Appendix A, we shall see that every nonzero
homomorphism ϕ : A −→ C becomes automatically a w∗-continuous homomorphism
ϕ : WAP(A∗)∗ −→ C.
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2. Preliminaries

For a Banach algebra A, the projective tensor product A⊗̂A is a Banach A-bimodule
in a canonical way. The diagonal operator π : A⊗̂A −→ A defined by π(a ⊗ b) = ab is
an A-bimodule homomorphism. Let E be a Banach A-bimodule. A continuous linear
operator D : A −→ E is called a derivation if it satisfies D(ab) = D(a) · b + a · D(b)
for all a, b ∈ A. Given x ∈ E, the inner derivation adx : A −→ E is defined by adx(a) =
a · x − x · a. We write Δ(A) for the set of all homomorphisms from A onto C.

DEFINITION 2.1 [4]. Let A be a Banach algebra and let ϕ ∈ Δ(A). The algebra A is
ϕ-amenable if there exists a bounded linear functional m on A∗ satisfying m(ϕ) = 1
and m( f · a) = ϕ(a)m( f ) for all a ∈ A and f ∈ A∗.

PROPOSITION 2.2 [4, Theorem 1.1]. Let A be a Banach algebra and let ϕ ∈ Δ(A).
Then A is ϕ-amenable if and only if every derivation D : A −→ E∗ is inner, where E is
a BanachA-bimodule such that a · x = ϕ(a)x for all a ∈ A and x ∈ E.

Let A be a Banach algebra. A Banach A-bimodule E is dual if there is a closed
submodule E∗ of E∗ such that E = (E∗)∗. We call E∗ the predual of E. A Banach algebra
A is dual if it is dual as a Banach A-bimodule. We write A = (A∗)∗ if we wish to stress
that A is a dual Banach algebra with predual A∗.

Let A be a dual Banach algebra and let E be a Banach A-bimodule. Then σwc(E)
stands for the set of all elements x ∈ E such that the maps

A −→ E, a �−→
{

a · x
x · a (∗)

are w∗- wk-continuous. It is well known that σwc(E) is a closed submodule of E.
Suppose that A is a Banach algebra and that E is a Banach A-bimodule. An element

x ∈ E is weakly almost periodic if the maps in (∗) are weakly compact. The set of all
weakly almost periodic elements in E is denoted by WAP(E).

Let A be a Banach algebra. For ϕ ∈WAP(A∗) and Ψ ∈WAP(A∗)∗, define Ψ · ϕ ∈
WAP(A∗) by 〈a,Ψ · ϕ〉 = 〈ϕ · a,Ψ〉 for all a ∈ A. This turns WAP(A∗)∗ into a Banach
algebra by letting

〈ϕ,ΦΨ〉 = 〈Ψ · ϕ,Φ〉 (Φ,Ψ ∈WAP(A∗)∗, ϕ ∈WAP(A∗)).

More precisely, WAP(A∗)∗ is a dual Banach algebra and there is a (continuous)
homomorphism ı : A −→WAP(A∗)∗ whose range is w∗-dense. Indeed, the map ı is
obtained by composing the canonical inclusion A −→ A∗∗ with the adjoint of the
inclusion map WAP(A∗) ↪→ A∗ [10].

PROPOSITION 2.3 [10, Theorem 4.10]. Let A be a Banach algebra, let B be a dual
Banach algebra and let θ : A −→ B be a (continuous) homomorphism. Then there
exists a unique w∗-continuous homomorphism θ̃ : WAP(A∗)∗ −→ B such that θ = θ̃ ◦ ı.
In particular, every w∗-continuous homomorphism from WAP(A∗)∗ into B is uniquely
determined by its restriction to A.
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Let S be a subset of an algebra H . We use Sc to denote the commutant of S inH ,
that is, Sc = {h ∈ H : hs = sh, s ∈ S}. It is obvious that Sc is a closed subalgebra of
H . For Banach spaces E and F, we writeL(E, F) for the set of all bounded linear maps
from E into F and L(E) for L(E, E). We also write IE for the identity map on E.

Let E be a Banach space and let S ⊆ L(E) be a subalgebra. A quasi expectation
for S is a projection Q : L(E) −→ Sc such that Q(cTd) = cQ(T)d for c, d ∈ Sc and
T ∈ L(E).

DEFINITION 2.4 [1, Definition 6.12]. A dual Banach algebra A is injective if,
whenever � : A −→ L(E) is a w∗-continuous unital representation, then there is a quasi
expectation Q : L(E) −→ �(A)c.

Connes amenable dual Banach algebras were systematically introduced by Runde
in [9]. The remarkable point is that injectivity and Connes amenability are the same
notions [1, Theorem 6.13].

3. On ϕ-injectivity of dual Banach algebras

Let A and B be Banach algebras and let θ : A −→ B be a homomorphism. For
ϕ ∈ Δ(A), we define

θ(A)ϕ = {b ∈ B : θ(a)b = ϕ(a)b (a ∈ A)}.

Obviously, θ(A)ϕ is a (closed) right ideal of B. One may see Lemma 5.1 below as a
concrete example of such a set.

DEFINITION 3.1. Let A and B be Banach algebras, let θ : A −→ B be a homomor-
phism and let ϕ ∈ Δ(A). A ϕ-quasi expectation Q : B −→ θ(A)ϕ is a projection from
B onto θ(A)ϕ satisfying Q(cbd) = cQ(b)d for c, d ∈ θ(A)c and b ∈ B.

It is standard that L(E) = (E∗⊗̂E)∗ is a dual Banach algebra whenever E is a
reflexive Banach space [9]. For a dual Banach algebra A, we denote by Δw∗(A) the
set of all w∗-continuous homomorphisms from A onto C.

DEFINITION 3.2. Let A be a dual Banach algebra and let ϕ ∈ Δw∗(A). We say that
A is ϕ-injective if, whenever � : A −→ L(E) is a w∗-continuous representation on a
reflexive Banach space E, then there is a ϕ-quasi expectation Q : L(E) −→ �(A)ϕ.

It should be stressed that Definition 3.2 is in fact a generalisation of the classical
definition of injectivity (see Corollary 3.7 below).

Let A be a dual Banach algebra. It is known that its unitisation A	 = A ⊕ C is a dual
Banach algebra as well. Let ϕ ∈ Δw∗(A) and let ϕ	 be its unique extension to A	. It is
obvious that ϕ	 ∈ Δw∗(A	).

THEOREM 3.3. Suppose that A is a dual Banach algebra and that ϕ ∈ Δw∗(A). Then A
is ϕ-injective if and only if A	 is ϕ	-injective.
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PROOF. Let A be ϕ-injective and let � : A	 −→ L(E) be a w∗-continuous represen-
tation where E is a reflexive Banach space. Clearly, �̂ = �|A is a w∗-continuous
representation for A. Hence, there is a ϕ-quasi expectation Q : L(E) −→ �̂(A)ϕ. Since
�(A	)ϕ

	

= �̂(A)ϕ and �(A	)c = �̂(A)c, we are done.
Conversely, suppose that A	 is ϕ	-injective and that � : A −→ L(E) is a

w∗-continuous representation on a reflexive Banach space E. We extend � to �̂ from
A into A	 by setting �̂(a, λ) = �(a) + λIE for a ∈ A and λ ∈ C. It is readily seen that �̂
is a w∗-continuous representation. By the assumption, there is a ϕ	-quasi expectation
Q : L(E) −→ �̂(A	)ϕ

	

. Because �̂(A	)c = �(A)c and �̂(A	)ϕ
	

= �(A)ϕ, we conclude that
A is ϕ-injective. �

THEOREM 3.4. Suppose that A = (A∗)∗ and B = (B∗)∗ are dual Banach algebras, ϕ ∈
Δw∗(A) and that θ : A −→ B is a w∗-continuous homomorphism. If A is ϕ-amenable,
then there exists a ϕ-quasi expectation Q : B −→ θ(A)ϕ.

PROOF. Here we follow the standard argument in [11, Theorem 5.1.24]. Let E = B⊗̂B∗
be equipped with the A-bimodule operation given through

a · (b ⊗ f ) = ϕ(a)(b ⊗ f ) and (b ⊗ f ) · a = b ⊗ f · θ(a)

for a ∈ A, f ∈ B∗ and b ∈ B. Identifying E∗ with L(B) as

T(b ⊗ f ) = 〈 f , T(b)〉 (T ∈ L(B), f ∈ B∗, b ∈ B),

we obtain as the corresponding dual A-bimodule operation on L(B)

(a · T)(b) = θ(a)T(b) and (T · a)(b) = ϕ(a)T(b) (a ∈ A, b ∈ B, T ∈ L(B)).

Let F be the subspace of E∗ consisting of those T ∈ E∗ such that

〈zb ⊗ f − b ⊗ f · z, T〉 = 0, 〈bz ⊗ f − b ⊗ z · f , T〉 = 0 and 〈z′ ⊗ f , T〉 = 0

for all b ∈ B, f ∈ B∗, z ∈ θ(A)c and z′ ∈ θ(A)ϕ. It is routine to verify that F is a
w∗-closed A-submodule of E∗ and thus a dual Banach A-bimodule in its own right.
Considering the derivation D = adIB : A −→ L(B), we claim that D attains its values
in F. To see this, let b ∈ B, f ∈ B∗, z ∈ θ(A)c, z′ ∈ θ(A)ϕ and a ∈ A. Then

〈z′ ⊗ f , Da〉 = 〈z′ ⊗ f · θ(a), IB〉 − ϕ(a)〈z′ ⊗ f , IB〉 = 〈 f , θ(a)z′〉 − 〈 f ,ϕ(a)z′〉 = 0

and

〈zb ⊗ f − b ⊗ f · z, Da〉 = 〈zb ⊗ f − b ⊗ f · z, a · IB − IB · a〉
= 〈(zb ⊗ f ) · a − (b ⊗ f · z) · a − a · (zb ⊗ f ) + a · (b ⊗ f · z), IB〉
= 〈zb ⊗ f · θ(a) − b ⊗ f · zθ(a) − ϕ(a)zb ⊗ f + ϕ(a)b ⊗ f · z, IB〉
= 〈zb, f · θ(a)〉 − 〈b, f · zθ(a)〉 − ϕ(a)〈zb, f 〉 + ϕ(a)〈b, f · z〉
= 〈θ(a)zb, f 〉 − 〈zθ(a)b, f 〉 − ϕ(a)〈zb, f 〉 + ϕ(a)〈zb, f 〉 = 0,
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because z ∈ θ(A)c. Also,

〈bz ⊗ f − b ⊗ z · f , Da〉 = 〈bz ⊗ f − b ⊗ z · f , a · IB − IB · a〉
= 〈(bz ⊗ f ) · a − (b ⊗ z · f ) · a − a · (bz ⊗ f ) + a · (b ⊗ z · f ), IB〉
= 〈bz ⊗ f · θ(a) − b ⊗ z · f · θ(a) − ϕ(a)bz ⊗ f + ϕ(a)b ⊗ z · f , IB〉
= 〈bz, f · θ(a)〉 − 〈b, z · f · θ(a)〉 − ϕ(a)〈bz, f 〉 + ϕ(a)〈b, z · f 〉
= 〈θ(a)bz, f 〉 − 〈θ(a)bz, f 〉 − ϕ(a)〈bz, f 〉 + ϕ(a)〈bz, f 〉 = 0.

Then, by Proposition 2.2, there exists ρ ∈ F such that D = adρ. Setting Q = IB − ρ, we
see that a · Q = Q · a for all a ∈ A. Hence, θ(a)Q(b) = ϕ(a)Q(b) for b ∈ B and so Q
takes values in θ(A)ϕ.

Because ρ ∈ F, we have 0 = 〈z′ ⊗ f , ρ〉 = 〈ρ(z′), f 〉 for f ∈ B∗, z′ ∈ θ(A)ϕ. That is,
ρ(z′) = 0 and thus Q(z′) = z′ for each z′ ∈ θ(A)ϕ. Therefore, Q is the identity on θ(A)ϕ

and thus a projection onto θ(A)ϕ.
Next, for each b ∈ B, f ∈ B∗ and z ∈ θ(A)c,

0 = 〈zb ⊗ f − b ⊗ f · z, ρ〉 = 〈ρ(zb), f 〉 − 〈ρ(b), f · z〉 = 〈ρ(zb) − zρ(b), f 〉

and so ρ(zb) = zρ(b). Similarly,

0 = 〈bz ⊗ f − b ⊗ z · f , ρ〉 = 〈ρ(bz), f 〉 − 〈ρ(b), z · f 〉 = 〈ρ(bz) − ρ(b)z, f 〉,

so that ρ(bz) = ρ(b)z. Thus,

Q(zb) = zb − ρ(zb) = zb − zρ(b) = zQ(b), Q(bz) = bz − ρ(bz) = bz − ρ(b)z = Q(b)z.

We then have Q(z1bz2) = z1Q(bz2) = z1Q(b)z2 for z1, z2 ∈ θ(A)c, b ∈ B. Therefore, Q
is a ϕ-quasi expectation. �

To establish Theorem 3.6 below, we need some preliminaries from [1, pages
253–255]. Let A be a Banach algebra. First, recall that (A⊗̂A)∗ = L(A,A∗), where we
choose the convention that 〈a ⊗ b, T〉 = 〈a, T(b)〉 for a, b ∈ A, T ∈ L(A,A∗). Next, let
� : A −→ L(E) be a (continuous) representation on a reflexive Banach space E. Then
L(E) becomes a Banach A-bimodule with actions a · T = �(a)T and T · a = T�(a)
for a ∈ A, T ∈ L(E). Also, L(E) is a Banach �(A)c-bimodule in the obvious way.
We write LA(L(E)) for the collection of all �(A)c-bimodule homomorphisms, that
is, maps Q ∈ L(L(E)) such that Q(ST) = SQ(T) and Q(TS) = Q(T)S for all S ∈ �(A)c

and T ∈ L(E). We turn LA(L(E)) into a Banach A-bimodule by setting

(a . Q)(T) = �(a)Q(T) and (Q . a)T = Q(T)�(a)

for a ∈ A, T ∈ L(E) and Q ∈ LA(L(E)). We notice that L(L(E)) is a dual Banach
algebra with predualL(E)⊗̂(E⊗̂E∗). Let X ⊆ L(E)⊗̂(E⊗̂E∗) be the closure of the linear
span of the set consisting of all elements of the form ST ⊗ x ⊗ μ − T ⊗ x ⊗ S∗(μ)
and TS ⊗ x ⊗ μ − T ⊗ S(x) ⊗ μ for all S ∈ �(A)c, T ∈ L(E), x ∈ E, μ ∈ E∗. Because
X⊥ = LA(L(E)), we see that LA(L(E)) is a dual Banach algebra with the predual
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Y = L(E)⊗̂E⊗̂E∗/X. Now define ψ : Y −→ L(A,A∗) via

〈a ⊗ b,ψ(T ⊗ x ⊗ μ + X)〉 = 〈�(a)T�(b)(x), μ〉 (a, b ∈ A, x ∈ E, μ ∈ E∗, T ∈ L(E)).

We turn L(E)⊗̂E⊗̂E∗ into a Banach A-bimodule through

a · (T ⊗ x ⊗ μ) = T ⊗ �(a)(x) ⊗ μ and (T ⊗ x ⊗ μ) · a = T ⊗ x ⊗ �(a)∗(μ)

for a ∈ A, x ∈ E, μ ∈ E∗, T ∈ L(E). Observe that ψ is an A-bimodule homomorphism.
The next proposition shows that it is possible to choose E to make ψ a bijection onto

σwc(L(A,A∗)).

PROPOSITION 3.5 [1, Theorem 6.11]. Let A = (A∗)∗ be a unital dual Banach algebra.
There exist a reflexive normal Banach left A-module E and an isometric w∗-continuous
representation � : A −→ L(E) such that ψ (associated with � as above) maps into
σwc(L(A,A∗)) and is a bijection. In particular, ψ∗ : σwc(L(A,A∗))∗ −→ LA(L(E))
is an isomorphism.

Let A be a dual Banach algebra and let ϕ ∈ Δw∗(A). From [6], A is ϕ-Connes
amenable if there exists a bounded linear functional m on σwc(A∗) satisfying m(ϕ) = 1
and m( f . a) = ϕ(a)m( f ) for all a ∈ A and f ∈ σwc(A∗).

The following result could be compared with [1, Theorem 6.13].

THEOREM 3.6. Suppose that A is a dual Banach algebra and ϕ ∈ Δw∗(A). Then the
following are equivalent:

(i) A is ϕ-amenable;
(ii) A is ϕ-contractible (in the sense of [2]);
(iii) A is ϕ-Connes amenable;
(iv) A is ϕ-injective.

PROOF. The equivalence (i)⇐⇒ (ii)⇐⇒ (iii) is [7, Theorem 2.4].
(i) =⇒ (iv) Suppose that A is ϕ-amenable and � : A −→ L(E) is a w∗-continuous

representation on some reflexive Banach space E. By Theorem 3.4, there is a ϕ-quasi
expectation Q : L(E) −→ �(A)ϕ, that is, A is ϕ-injective.

(iv) =⇒ (iii) Suppose that A is ϕ-injective. By Theorem 3.3 and [4, Lemma 3.2],
without loss of generality, we may suppose that A is unital. Take the w∗-continuous
representation � : A −→ L(E) and the map ψ as in Proposition 3.5. By the assumption,
there exists a ϕ-quasi expectation Q : L(E) −→ �(A)ϕ. Notice that Q ∈ LA(L(E)).
Define M := (ψ∗)−1(Q) ∈ σwc((A⊗̂A)∗)∗. As Q maps into �(A)ϕ, it follows that a . Q =
ϕ(a)Q for a ∈ A, so that a . M = ϕ(a)M. Next, for some α ∈ C, we have 〈ϕ ⊗ ϕ, M〉 = α.
Hence, putting N = (1/α)M, it is readily seen that 〈ϕ ⊗ ϕ, N〉 = 1 and a . N = ϕ(a)N for
a ∈ A. On the other hand, from [10], π∗(σwc(A∗)) ⊆ σwc((A⊗̂A)∗). We then set m :=
(π∗|σwc(A∗))∗(N) ∈ σwc(A∗)∗. One may check that m(ϕ) = 1 and m( f . a) = ϕ(a)m( f ) for
all a ∈ A and f ∈ σwc(A∗). Thus, A is ϕ-Connes amenable. �

COROLLARY 3.7. An injective dual Banach algebra A is ϕ-injective for all ϕ ∈ Δw∗(A).
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PROOF. Since A is injective, it is Connes amenable [1, Theorem 6.13]. It then follows
from [6, Theorem 2.2] that A is ϕ-Connes amenable for each ϕ ∈ Δw∗(A). The result is
now immediate by Theorem 3.6. �

4. Application to WAP(A∗)∗ and examples

The following result is analogous to [4, Proposition 3.5].

THEOREM 4.1. Suppose that A is a Banach algebra, B = (B∗)∗ is a dual Banach
algebra, θ : A −→ B is a continuous homomorphism with w∗-dense range and ϕ ∈
Δw∗(B). If A is ϕ ◦ θ-amenable, then B is ϕ-amenable.

PROOF. Take m ∈ A∗∗ with m(ϕ ◦ θ) = 1 and m( f · a) = (ϕ ◦ θ)(a)m( f ) for all a ∈ A
and f ∈ A∗. Define n ∈ σwc(B∗)∗ by n(g) = m(g ◦ θ) for g ∈ σwc(B∗). Note that ϕ ∈
σwc(B∗) as ϕ ∈ B∗ (see also [7, Lemma 2.3]). Then n(ϕ) = m(ϕ ◦ θ) = 1. For a, a′ ∈ A
and g ∈ σwc(B∗),

n(g · θ(a)) = m((g · θ(a)) ◦ θ) = m((g ◦ θ) · a) = (ϕ ◦ θ)(a)m(g ◦ θ) = (ϕ ◦ θ)(a)n(g),

because

〈(g · θ(a)) ◦ θ, a′〉 = 〈g, θ(a)θ(a′)〉 = 〈(g ◦ θ) · a, a′〉.

Next, for an arbitrary element b ∈ B, there is a net (ai)i ⊆ A such that θ(ai)
w∗−→ b.

For each g ∈ σwc(B∗), we then have g · θ(ai)
wk−→ g · b. Hence,

n(g · b) = lim
i

n(g · θ(ai)) = lim
i
ϕ(θ(ai))n(g) = ϕ(b)n(g).

Thus, B is ϕ-amenable, by Theorem 3.6(iii). �

REMARK 4.2. Let A be a Banach algebra and let ϕ ∈ Δ(A). By Proposition 2.3, there
exists a unique element ϕ̃ ∈ Δw∗(WAP(A∗)∗) extending ϕ. We shall henceforth keep the
notation ϕ̃.

COROLLARY 4.3. Let A be a Banach algebra and let ϕ ∈ Δ(A). If A is ϕ-amenable,
then WAP(A∗)∗ is ϕ̃-amenable.

PROOF. As ϕ = ϕ̃ ◦ ı, this is a consequence of Remark 4.2 and Theorem 4.1. �

EXAMPLE 4.4. Let G be a locally compact group and let A(G) and VN(G) = A(G)∗ be
the Fourier algebra and the von Neumann algebra of G, respectively. From [4, Example
2.6], A(G) is ϕt-amenable for every t ∈ G, where ϕt is the point evaluation at t ∈ G,
that is, ϕt( f ) = f (t), f ∈ A(G). So, by Corollary 4.3, WAP(VN(G))∗ is ϕ̃t-amenable for
every t ∈ G.

The converse of Corollary 4.3 holds for dual Banach algebras as follows.

THEOREM 4.5. Let A = (A∗)∗ be a dual Banach algebra and let ϕ ∈ Δw∗(A). Then A is
ϕ-amenable if and only if WAP(A∗)∗ is ϕ̃-amenable.
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PROOF. Since A∗ ⊆ σwc(A∗) ⊆WAP(A∗) from [10], there exists an inclusion map ε :
A∗ −→WAP(A∗). Then ε∗ is an A-bimodule homomorphism from WAP(A∗)∗ onto A.

Suppose that WAP(A∗)∗ is ϕ̃-amenable. Let E be a Banach A-bimodule for which
a . x = ϕ(a)x for all a ∈ A and x ∈ E and let D : A −→ E∗ be a derivation. We turn E
into a Banach WAP(A∗)∗-bimodule through

Λ . x := ϕ̃(Λ)x and x .Λ := ε∗(Λ) . x (x ∈ E, Λ ∈WAP(A∗)∗) .

Now, by Proposition 2.2, the derivation Dε∗ : WAP(A∗)∗ −→ E∗ is inner. Thus, there
exists x ∈ E such that (Dε∗)(Λ) = Λ . x − x .Λ for all Λ ∈WAP(A∗)∗. Consequently,
Da = a . x − x . a, a ∈ A. Again by Proposition 2.2, A is ϕ-amenable. �

We write D for the open unit disk. For the discrete convolution algebra �1(Z+),
it is known that Δ(�1(Z+)) ≡ D̄ under the bijective map z �−→ ϕz, where ϕz is the
point evaluation at z, that is, ϕz(

∑∞
n=0 cnδn) =

∑∞
n=0 cnzn. It is not hard to see that

Δw∗(�1(Z+)) = D. It was shown in [4, Example 2.5] that �1(Z+) is ϕz-amenable when
|z| = 1 and it is not ϕz-amenable if z ∈ D. Hence, by Corollary 4.3, WAP(�∞(Z+))∗

is ϕ̃z-amenable when |z| = 1. As �1(Z+) is a dual Banach algebra, we conclude from
Theorem 4.5 that WAP(�∞(Z+))∗ is not ϕ̃z-amenable for each z ∈ D. Notice that
WAP(�∞(Z+))∗ is not amenable. To see this, we first observe that there exists a
continuous homomorphism from WAP(�∞(Z+))∗ onto �1(Z+) by the universal property
(with �1(Z+) and the identity map in place of B and θ, respectively). Therefore,
amenability of WAP(�∞(Z+))∗ forces �1(Z+) to be amenable, which is not the case.

Putting all these results together gives the following example.

EXAMPLE 4.6. (i) WAP(�∞(Z+))∗ is not amenable;
(ii) WAP(�∞(Z+))∗ is not ϕ̃z-amenable for each z ∈ D;
(iii) WAP(�∞(Z+))∗ is ϕ̃z-amenable when |z| = 1.

Let A be a Banach algebra and let � : A −→ L(E) be a continuous representation
on a Banach space E. We use �̃ : WAP(A∗)∗ −→ L(E) for the unique w∗-continuous
representation obtained by Proposition 2.3.

LEMMA 4.7. Let A be a Banach algebra, let � : A −→ L(E) be a continuous represen-
tation and ϕ ∈ Δ(A). Then every ϕ-quasi expectation Q : L(E) −→ �(A)ϕ is exactly a
ϕ̃-quasi expectation Q : L(E) −→ �̃(WAP(A∗)∗)ϕ̃ and vice versa.

PROOF. The same argument as that in the proof of [1, Proposition 6.15] shows that
�(A)c = �̃(WAP(A∗)∗)c. To complete the proof, we show that �̃(WAP(A∗)∗)ϕ̃ = �(A)ϕ.
It is obvious that �̃(WAP(A∗)∗)ϕ̃ ⊆ �(A)ϕ. For the converse, suppose that T ∈ �(A)ϕ.
Thus, 〈�(a)T , η〉 = ϕ(a)〈T , η〉 for each a ∈ A and η ∈ E∗⊗̂E. Take Ψ ∈WAP(A∗)∗ and
take a bounded net (ai) ⊆ A which converges to Ψ in the w∗-topology on WAP(A∗)∗.
Then, for x ∈ E, μ ∈ E∗ and T ∈ �(A)ϕ,

〈μ, �̃(Ψ)T(x)〉 = 〈μ ⊗ T(x), �̃(Ψ)〉 = 〈Ψ, �∗(μ ⊗ T(x))〉 = lim
i
〈�∗(μ ⊗ T(x)), ai〉

= lim
i
〈μ, �(ai)T(x)〉 = lim

i
ϕ(ai)〈μ, T(x)〉 = 〈μ, ϕ̃(Ψ)T(x)〉,
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so that T ∈ �̃(WAP(A∗)∗)ϕ̃, as required. �

The next step is a useful characterisation.

THEOREM 4.8. Let A be a Banach algebra and let ϕ ∈ Δ(A). Then the following are
equivalent:

(i) WAP(A∗)∗ is ϕ̃-amenable;
(ii) whenever � : A −→ L(E) is a continuous representation on a reflexive Banach

space E, there exists a ϕ-quasi expectation Q : L(E) −→ �(A)ϕ.

PROOF. (i) =⇒ (ii) Let � : A −→ L(E) be a continuous representation on a reflex-
ive Banach space E and let �̃ : WAP(A∗)∗ −→ L(E) be its unique extension to a
w∗-continuous representation. By Theorem 3.6, WAP(A∗)∗ is ϕ̃-injective and there
exists a ϕ̃-quasi expectation Q : L(E) −→ �̃(WAP(A∗)∗)ϕ̃ by Definition 3.2. Now, by
Lemma 4.7, Q : L(E) −→ �(A)ϕ is indeed a ϕ-quasi expectation.

(ii) =⇒ (i) Suppose that � : WAP(A∗)∗ −→ L(E) is a w∗-continuous representation
on a reflexive Banach space E. Thus, �|A : A −→ L(E) is a continuous representation.
By the assumption, there exists a ϕ-quasi expectation Q : L(E) −→ �(A)ϕ. Again by
Lemma 4.7, Q : L(E) −→ �̃(WAP(A∗)∗)ϕ̃ is a ϕ̃-quasi expectation, as required. �

5. For WAP(�1(N∧)∗)∗

Let N∧ be the semigroup N with the product m ∧ n = min{m, n} for m, n ∈ N. In
this section, we write ϕ for the augmentation character on �1(N∧), which is given by
ϕ(
∑∞

n=1 αiδi) =
∑∞

n=1 αi. In the light of Theorem 4.8, we will show that WAP(�1(N∧)∗)∗

is not ϕ̃-amenable. To this end, some preliminaries are needed.
Let E be a Banach space with a normalised basis (en)n. For each n ∈ N, we

consider the linear functional fn ∈ E∗, n ∈ N, given by 〈 fn,
∑
αiei〉 = αn. Throughout

the section, we use the notation � for the representation � : �1(N∧) −→ L(E) given by

�(δn)(em) =

{
em for m ≤ n
0 for m > n (m, n ∈ N)

and linearity. In fact, �(δn) is the projection onto the linear span of {e1, . . . , en}. It is
standard that each element of L(E) can be considered as a matrix with respect to the
basis (en)n. We denote by Ei,j the matrix with 1 in the (i, j)th place and 0 elsewhere.

The next result shows that the set �(�1(N∧))ϕ consists of all matrices in L(E) with
zero entries from the second row on.

LEMMA 5.1. �(�1(N∧))ϕ = {T = (ai,j)i,j ∈ L(E) : ai,j = 0 for i ≥ 2}.

PROOF. Set R = {T = (ai,j)i,j ∈ L(E) : ai,j = 0 for i ≥ 2} and notice that �(�1(N∧))ϕ =
{T ∈ L(E) : �(δn)T = ϕ(δn)T = T}. It is easily checked that R ⊆ �(�1(N∧))ϕ.

Conversely, for T ∈ �(�1(N∧))ϕ,

En,nT = (�(δn) − �(δn−1))T = �(δn)T − �(δn−1)T = T − T = 0 (n ≥ 2).
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A simple verification then shows that

0 = En,nT(em) = 〈 fn, T(em)〉en (m ≥ 1, n ≥ 2)

and therefore 〈 fn, T(em)〉 = 0 for m ≥ 1, n ≥ 2. So, T(em) ∈ Ce1 for each m ≥ 1, which
proves that T ∈ R. �

REMARK 5.2. Compared to Lemma 5.1, �(�1(N∧))c is exactly the set of all diagonal
matrices in L(E) [1].

We write Pϕ : L(E) −→ �(�1(N∧))ϕ for the canonical projection onto �(�1(N∧))ϕ

defined by T = (ai,j)i,j �−→ Pϕ(T) = (bi,j)i,j, where b1,j = a1,j and bi,j = 0 for i ≥ 2 and
all j. Next, we show that every ϕ-quasi expectation Q : L(E) −→ �(�1(N∧))ϕ must be
the canonical projection onto �(�1(N∧))ϕ.

LEMMA 5.3. Let Q : L(E) −→ �(�1(N∧))ϕ be a ϕ-quasi expectation. Then Q = Pϕ.

PROOF. Let m, n ∈ N and T ∈ L(E). From Remark 5.2, En,n,Em,m ∈ �(�1(N∧))c. Then

〈 fm, T(en)〉Q(Em,n) = Q(Em,mTEn,n) = Em,mQ(T)En,n = 〈 fm, Q(T)(en)〉Em,n.

As Em,n is not in �(�1(N∧))ϕ for m > 1 by Lemma 5.1, it follows that 〈 fm, Q(T)(en)〉 = 0
for m > 1. Thus, Q(T)(en) ∈ Ce1 for each n. Next, since E1,n ∈ �(�1(N∧))ϕ,

〈 f1, T(en)〉E1,n = 〈 f1, T(en)〉Q(E1,n) = Q(E1,1TEn,n)

= E1,1Q(T)En,n = 〈 f1, Q(T)(en)〉E1,n

and hence Q(T)(en) = 〈 f1, T(en)〉e1 for each n ∈ N, as required. �

THEOREM 5.4. The algebra WAP(�1(N∧)∗)∗ is not ϕ̃-amenable.

PROOF. By Theorem 4.8 and Lemma 5.3, it suffices to find a reflexive Banach space E
such that Pϕ is not bounded. It is clear that there is an isometric isomorphism Θ from
�(�1(N∧))c onto �(�1(N∧))ϕ. From [1, Theorem 7.6], there is a reflexive Banach space
E for which the canonical projection Pc : L(E) −→ �(�1(N∧))c is not bounded. Thus,
Pϕ = Θ ◦ Pc is not bounded, as required. �

A combination of Corollary 4.3 and Theorem 5.4 yields the following result.

COROLLARY 5.5. The algebra �1(N∧) is not ϕ-amenable.

Appendix A

In this section, we show that Δw∗(WAP(A∗)∗) contains Δ(A) as a subset, as pointed
out by an anonymous referee in response to a previous version of this work.

PROPOSITION A.1. Let A be a Banach algebra. Then Δ(A) ⊆ Δw∗(WAP(A∗)∗).

PROOF. Take ϕ ∈ Δ(A), so that ϕ ∈ A∗. Then 〈b, a · ϕ〉 = ϕ(a)ϕ(b) for every a, b ∈ A,
so that a · ϕ = ϕ(a)ϕ. Similarly, ϕ · a = ϕ(a)ϕ. So, obviously, ϕ ∈WAP(A∗). Hence,
we may treat ϕ as a bounded linear map on WAP(A∗)∗. As a consequence, ϕ is
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w∗-continuous. Next, for Ψ ∈WAP(A∗)∗ and a ∈ A, it follows that 〈a,Ψ · ϕ〉 = 〈ϕ ·
a,Ψ〉 = ϕ(a)〈ϕ,Ψ〉, so that Ψ · ϕ = 〈ϕ,Ψ〉ϕ. Then, for each Φ,Ψ ∈WAP(A∗)∗,

〈ϕ,ΦΨ〉 = 〈Ψ · ϕ,Φ〉 = 〈〈ϕ,Ψ〉ϕ,Φ〉 = 〈ϕ,Ψ〉〈ϕ,Φ〉.
Thus, ϕ ∈ Δw∗(WAP(A∗)∗). �

The following consequence should be compared with Corollary 4.3.

COROLLARY A.2. Let A be a Banach algebra and let ϕ ∈ Δ(A). If A is ϕ ◦ ı-amenable,
then WAP(A∗)∗ is ϕ-amenable.

PROOF. This is immediate by Proposition A.1 and Theorem 4.1. �
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