Hostname: page-component-6bf8c574d5-gr6zb Total loading time: 0 Render date: 2025-02-21T19:59:14.407Z Has data issue: false hasContentIssue false

ON $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-UNFAVOURABLE SPACES

Published online by Cambridge University Press:  16 March 2020

HANFENG WANG*
Affiliation:
Department of Mathematics, Shandong Agricultural University, Taian 271018, China email whfeng@sdau.edu.cn
WEI HE
Affiliation:
Institute of Mathematics, Nanjing Normal University, Nanjing 210046, China email weihe@njnu.edu.cn
JING ZHANG
Affiliation:
School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China email zhangjing86@126.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To study when a paratopological group becomes a topological group, Arhangel’skii et al. [‘Topological games and topologies on groups’, Math. Maced. 8 (2010), 1–19] introduced the class of $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable spaces. We show that every $\unicode[STIX]{x1D707}$-complete (or normal) $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable semitopological group is a topological group. We prove that the product of a $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable space and a strongly Fréchet $(\unicode[STIX]{x1D6FC},G_{\unicode[STIX]{x1D6F1}})$-favourable space is $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable. We also show that continuous closed irreducible mappings preserve the $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourableness in both directions.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Footnotes

Project supported by SDNSF (No. ZR2018MA013) and NSFC (Nos. 11571175, 11801254).

References

Arhangelskii, A. V., ‘Two types of remainders of topological groups’, Comment. Math. Univ. Carolin. 49(4) (2008), 119126.Google Scholar
Arhangel’skii, A. V., Choban, M. M. and Kenderov, P. S., ‘Topological games and topologies on groups’, Math. Maced. 8 (2010), 119.Google Scholar
Arhangel’skii, A. V., Choban, M. M. and Kenderov, P. S., ‘Topological games and continuity of group operations’, Topology Appl. 157 (2010), 25422552.10.1016/j.topol.2010.08.001CrossRefGoogle Scholar
Arhangel’skii, A. V. and Reznichenko, E. A., ‘Paratopological and semitopological groups versus topological groups’, Topology Appl. 151 (2005), 107119.CrossRefGoogle Scholar
Arhangelskii, A. V. and Tkachenko, M. G., Topological Groups and Related Structures (Atlantis Press, Amsterdam, 2008).CrossRefGoogle Scholar
Bouziad, A., ‘Every C̆ech-analytic Baire semitopological group is a topological group’, Proc. Amer. Math. Soc. 124(3) (1996), 953959.10.1090/S0002-9939-96-03384-9CrossRefGoogle Scholar
Ellis, R., ‘A note on the continuity of the inverse’, Proc. Amer. Math. Soc. 8 (1957), 119125.10.1090/S0002-9939-1957-0083681-9CrossRefGoogle Scholar
Engelking, R., General Topology, revised and completed edition (Heldermann, Berlin, 1989).Google Scholar
Kenderov, P., Kortezov, I. S. and Moors, W. B., ‘Topological games and topological groups’, Topology Appl. 109 (2001), 157165.CrossRefGoogle Scholar