Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-06T17:14:29.591Z Has data issue: false hasContentIssue false

ON THE DIVISOR FUNCTION OVER NONHOMOGENEOUS BEATTY SEQUENCES

Published online by Cambridge University Press:  04 March 2022

WEI ZHANG*
Affiliation:
School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, PR China
Rights & Permissions [Opens in a new window]

Abstract

We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that

$$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$

where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$ . Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

We investigate sums involving the divisor function over nonhomogeneous Beatty sequences. The nonhomogeneous Beatty sequences of integers are defined by

$$ \begin{align*} \mathcal{B}_{\alpha,\beta}:=\{[\alpha n+\beta]\}_{n=1}^{\infty}, \end{align*} $$

where $\alpha $ and $\beta $ are fixed real numbers and $\beta \neq 0$ . Here, $[x]$ denotes the greatest integer not larger than x. The distribution properties of such sequences are related to the type of $\alpha .$ For an irrational number $\alpha ,$ we define its type $\tau $ by the relation

$$ \begin{align*} \tau:=\sup\big\{\theta\in\mathbb{R}:\ \lim_{r\rightarrow+\infty} \inf_{r\in\mathbb{Z}^{+}}r^{\theta}\lVert r\alpha \rVert \,=0\big\}, \end{align*} $$

where $\lVert u\rVert $ denotes the distance of u from the nearest integer. Thus, an irrational number $\alpha $ is of type $\tau $ if and only if for every $\epsilon>0$ , there is a constant $c(\tau ,\alpha )$ such that

$$ \begin{align*}r\lVert r\alpha\rVert \,\geq c(\tau,\alpha)r^{-\tau-\varepsilon+1}.\end{align*} $$

For properties and extensions of the type, see [Reference Abercrombie, Banks and Shparlinski2, Reference Banks and Shparlinski3].

Let $\alpha>1$ and $\beta $ be fixed real numbers with $\alpha $ positive, irrational and of finite type $\tau =\tau (\alpha )$ . The classical divisor function $d(n)$ denotes the number of divisors of the integer n. There are precise estimates for sums of the divisor function over homogeneous Beatty sequences. Abercrombie proved in [Reference Abercrombie1] that for almost all $\alpha>1$ with respect to the Lebesgue measure,

$$ \begin{align*} \sum_{n\leq x, \, n\in \mathcal{B}_{\alpha,0}}d(n)=\alpha^{-1}\sum_{n\leq x}d(n)+O(x^{5/7+\varepsilon}), \end{align*} $$

where the implied constant may depend on $\alpha $ and $\varepsilon .$ This result was subsequently improved and extended in various ways (see [Reference Abercrombie, Banks and Shparlinski2, Reference Lü and Zhai9, Reference Technau and Zafeiropoulos11, Reference Zhai14]). Zhai [Reference Zhai14] proved that for almost all $\alpha>1$ with respect to the Lebesgue measure,

$$ \begin{align*} \sum_{n\leq x, \, n\in \mathcal{B}_{\alpha,0}}d(n)=\alpha^{-1}\sum_{n\leq x}d(n)+O(x^{1/2+\varepsilon}), \end{align*} $$

where the implied constant may depend on $\alpha $ and $\varepsilon .$ In fact, this result can be modified to apply to an individual $\alpha .$

The main aim of this paper is to generalise such sums to nonhomogeneous Beatty sequences and an individual number $\alpha $ with an error term as strong as previous results (obtained for almost all numbers). By the method of [Reference Abercrombie, Banks and Shparlinski2] or [Reference Zhai14], it is not easy to obtain such results for nonhomogeneous Beatty sequences and an individual $\alpha $ , and we borrow some ideas from [Reference Banks and Shparlinski3].

Before we focus on sums of the divisor function over Beatty sequences, we investigate a related double exponential sum, analogous to a result of Vaughan [Reference Vaughan12].

Theorem 1.1. Let $\alpha>1$ be a real number. Suppose that $a,q,h\in \mathbb {N}^{+}$ and $H,x\geq 1$ with $H\ll x.$ If

$$ \begin{align*} \vert\alpha-a/q\vert\leq 1/q^{2},\quad (a,q)=1, \end{align*} $$

then

$$ \begin{align*} \sum_{h\leq H}\bigg|\sum_{n\leq x}d(n)e(\alpha hn) \bigg|\ll\big(Hx^{1/2}+q+Hxq^{-1}\big)x^{\varepsilon}. \end{align*} $$

Estimates for exponential functions twisted with divisor functions are classical problems in analytic number theory. For example, Chowla [Reference Chowla4] proved that for almost all irrational $\alpha ,$

$$ \begin{align*} \sum_{1\leq n\leq x}d(n)e(\alpha n)=o(x\log x) \end{align*} $$

as $x\rightarrow \infty .$ Erdös [Reference Erdős5] improved the error term in this result to

$$ \begin{align*} \sum_{1\leq n\leq x}d(n)e(\alpha n)=O(x^{1/2}\log x) \end{align*} $$

for almost all $\alpha .$ However, such estimates give no idea about the numbers $\alpha $ to which the result applies. The estimates we obtain for such sums depend on the type of $\alpha $ and we show that the estimate applies to any individual $\alpha $ whose rational approximations satisfy certain hypotheses. In this way, we can derive estimates for specific values of $\alpha $ (or over interesting classes of $\alpha $ such as the class of algebraic numbers). For example, we give the following consequence of Theorem 1.1.

Corollary 1.2. For all irrational $\alpha>1$ of finite type $\tau <\infty , h\in \mathbb {N}^{+}$ and $H,x\geq 1$ with $H\ll x,$

$$ \begin{align*} \sum_{h\leq H}\bigg|\sum_{n\leq x}d(n)e(\alpha hn)\bigg| \ll Hx^{1/2+\varepsilon}+(Hx)^{1-1/(\tau+1)+\varepsilon}, \end{align*} $$

where the implied constant may depend on $\alpha $ and $\varepsilon .$

Remark 1.3. Taking $\tau =1$ and $H=1$ gives a similar upper bound for the sum

$$ \begin{align*}\sum_{1\leq n\leq x}d(n)e(\alpha n)\end{align*} $$

for individual numbers $\alpha $ of finite type $\tau <\infty $ .

By adapting the method of proving Theorem 1.1, we can obtain the following result for inhomogeneous Beatty sequences.

Theorem 1.4. Let $\alpha>1$ be a fixed irrational number of finite type $\tau <\infty $ and $\beta \in \mathbb {R}$ be fixed. Then there is a constant $\varepsilon>0$ such that

$$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$

where N is a sufficiently large integer and the implied constant depends only on $\alpha , \beta $ and $\varepsilon $ .

Remark 1.5. Previously, such estimates were proved only for almost all $\alpha>1$ (not for an individual $\alpha $ ) and for homogeneous Beatty sequences. Our result also gives almost all results for nonhomogeneous Beatty sequences because, by the theorems of Khinchin [Reference Khinchin7] and of Roth [Reference Roth10], almost all real numbers and all irrational algebraic numbers are of type $\tau =1$ . One can also consider generalised divisor functions, which were studied in [Reference Lü and Zhai9, Reference Zhai14] only for the case of homogeneous Beatty sequences.

2 Proof of Theorem 1.1

To prove the theorem, we need the concept of discrepancy. For a sequence $u_{m}, m=1,2,\ldots\, $ , M, of points of $\mathbb {R}/\mathbb {Z}$ , the discrepancy $D(M)$ of the sequence is

(2.1) $$ \begin{align} D(M)=\sup_{\mathcal{I}\in[0,1)} \bigg|\frac{\mathcal{V}(\mathcal{I},M)}{M} -|\mathcal{I}|\bigg|, \end{align} $$

where the supremum is taken over all subintervals $\mathcal {I}=(c, d)$ of the interval $[0, 1), \mathcal {V} (\mathcal {I}, M)$ is the number of positive integers $m\leq M$ such that $u_{m}\in \mathcal {I}$ , and $|\mathcal {I}| = d-c$ is the length of $|\mathcal {I}|.$

Let $D_{\alpha ,\beta }(M)$ denote the discrepancy of the sequence $\{\alpha m+\beta \}, m=1,2,\ldots , M$ , where $\{x\}=x-[x].$ We introduce several auxiliary lemmas.

Lemma 2.1 [Reference Banks and Shparlinski3].

Let $\alpha>1.$ An integer m has the form $m=[\alpha n+\beta ]$ for some integer n if and only if

$$ \begin{align*} 0<\{\alpha^{-1}(m-\beta+1)\}\leq \alpha^{-1}. \end{align*} $$

The value of n is determined uniquely by $m.$

Lemma 2.2 [Reference Kuipers and Niederreiter8, Ch. 2, Theorem 3.2].

Let $\alpha $ be a fixed irrational number of finite type $\tau <\infty .$ Then, for all $\beta \in \mathbb {R},$ we have

$$ \begin{align*} D_{\alpha,\beta}(M)\leq M^{-1/\tau+o(1)}, \end{align*} $$

as $M\rightarrow \infty $ , where the function implied by $o(1)$ depends only on $\alpha .$

Lemma 2.3 [Reference Vinogradov13, page 32].

For any $\Delta \in \mathbb {R}$ such that $0<\Delta <1/8$ and $\Delta \leq 1/2\min \{\gamma ,1-\gamma \},$ there exists a periodic function $\Psi _{\Delta }(x)$ of period 1 such that:

  1. (1) $0\leq \Psi _{\Delta }(x) \leq 1 \mbox { for all } x\in \mathbb {R};$

  2. (2) $\Psi _{\Delta }(x)=\Psi (x) \mbox { if } \Delta \leq x\leq \gamma -\Delta \mbox { or } \gamma +\Delta \leq x\leq 1-\Delta $ where

    $$ \begin{align*} \Psi(x)= \begin{cases} 1\ \ &\mbox{if}\ \,0<x\leq \gamma,\\ 0\ \ &\mbox{if}\ \,\gamma<x\leq 1; \end{cases} \end{align*} $$
  3. (3) $\Psi _{\Delta }(x)$ can be represented as a Fourier series

    (2.2) $$ \begin{align} \Psi_{\Delta}(x)=\gamma+\sum_{j=1}^{\infty} g_{j}e({\kern1.5pt}jx)+h_{j}e(-jx), \end{align} $$
    where the coefficients $g_{j}$ and $h_{j}$ satisfy $\max \{|g_{j}|, |h_{j}|\}\ll \min \{{\kern1.5pt}j^{-1},j^{-2}\Delta ^{-1}\}$ for $j\geq 1$ .

Lemma 2.4. Let $\alpha $ be of finite type $\tau <\infty $ and let K be sufficiently large. For an integer $w\geq 1,$ there exist $a,q\in \mathbb {Z}, a/q\in \mathbb {Q}$ with $(a,q)=1$ and $K^{1/\tau -\varepsilon }w^{-1}<q\leq K$ such that

$$ \begin{align*} \bigg|\alpha w-\frac{a}{q}\bigg|\leq \frac{1}{qK}. \end{align*} $$

Proof. By the Dirichlet approximation theorem, there is a rational number $a/q$ with $(a,q)=1$ and $q\leq K$ such that

$$ \begin{align*} \bigg|\alpha w-\frac{a}{q}\bigg|<\frac{1}{qK}, \end{align*} $$

that is, $ \lVert qw\alpha \rVert \,\leq 1/K. $ Since $\alpha $ is of type $\tau <\infty ,$ for sufficiently large $K,$ we have

$$ \begin{align*} \lVert qw\alpha\rVert \,\geq (qw)^{-\tau-\varepsilon}. \end{align*} $$

Thus

$$ \begin{align*} 1/K\geq \,\lVert qw\alpha\rVert \,\geq (qw)^{-\tau-\varepsilon}, \end{align*} $$

which gives

$$ \begin{align*} q\geq K^{1/\tau-\varepsilon}w^{-1}.\\[-34pt] \end{align*} $$

Lemma 2.5 [Reference Iwaniec and Kowalski6, Section 13.5].

If $\vert \alpha -a/q\vert \leq q^{-2}, a,q\in \mathbb {N}$ and $(a,q)=1,$ then

$$ \begin{align*} \sum_{1\leq n \leq M}\min\bigg\{\frac{x}{n},\frac{1}{2\lVert n\alpha\rVert}\bigg\}\ll (M+q+xq^{-1})\log 2qx. \end{align*} $$

Proof of Theorem 1.1.

By the Dirichlet hyperbolic method,

(2.3) $$ \begin{align} \sum_{h\leq H}\bigg|\sum_{1\leq n\leq x}d(n) e(\alpha h n)\bigg|=\sum_{h\leq H} \bigg|\sum_{n_{1}n_{2}\leq x}e(\alpha hn_{1}n_{2}) \bigg| \leq \sum_{h\leq H} 2\bigg|\sum_{\substack{n_{1}n_{2}\leq x \\ n_{1}\leq n_{2}}}e(\alpha hn_{1}n_{2})\bigg|. \end{align} $$

However,

$$ \begin{align*} \bigg|\sum_{\substack{n_{1}n_{2}\leq x \\ n_{1}\leq n_{2}}}e(\alpha hn_{1}n_{2})\bigg|\ll \sum_{n_{1}\leq x^{1/2}}\bigg|\sum_{n_{2}\leq x/n_{1}}e(\alpha hn_{1}n_{2})\bigg|. \end{align*} $$

By the well-known estimate

$$ \begin{align*} \sum_{1\leq n\leq x}e(\alpha n)\leq \min\bigg(x,\frac{1}{2\lVert\alpha\rVert} \bigg) ,\end{align*} $$

we have

$$ \begin{align*} \bigg|\sum_{n_{2}\leq x/n_{1}}e(\alpha hn_{1}n_{2})\bigg| \leq \min\bigg(\frac{x}{n_{1}},\frac{1}{2\lVert\alpha hn_{1}\rVert} \bigg). \end{align*} $$

Hence by Lemma 2.5,

(2.4) $$ \begin{align} \sum_{h\leq H}\bigg|\sum_{\substack{n_{1}n_{2}\leq x \\ n_{1}\leq n_{2}}}e(\alpha hn_{1}n_{2})\bigg|&\ll \sum_{h\leq H}\sum_{n_{1}\leq x^{1/2}} \min\bigg(\frac{x}{n_{1}},\frac{1}{2\lVert\alpha hn_{1}\rVert} \bigg) \nonumber\\[3pt] &\ll x^{\varepsilon}\sum_{n\leq Hx^{1/2}} \min\bigg(\frac{Hx}{n},\frac{1}{2\lVert\alpha n\rVert} \bigg) \nonumber\\[3pt] &\ll x^{\varepsilon}(Hx^{1/2}+q+Hxq^{-1})\log 2qx. \end{align} $$

Hence, by Lemma 2.4, (2.3) and (2.4), for all irrational $\alpha $ of finite type $\tau <\infty $ ,

$$ \begin{align*} \sum_{h\leq H}\sum_{n\leq x}d(n)e(\alpha n)\ll Hx^{1/2+\varepsilon}+(Hx)^{1-1/(\tau+1)+\varepsilon}. \end{align*} $$

This completes the proof of Theorem 1.1 and Corollary 1.2.

3 Proof of Theorem 1.4

It is easy to see that

$$ \begin{align*} \sum_{n\leq x,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) = \sum_{n\leq (x-\beta)/\alpha} d([\alpha n+\beta]). \end{align*} $$

Hence, we can focus on the right-hand sum. The proof is similar to the argument of Theorem 1.1. Let $\delta =\alpha ^{-1}(1-\beta )$ and $M=[\alpha N+\beta ].$ Then by Lemma 2.1,

(3.1) $$ \begin{align} \sum_{n\leq N}d([\alpha n+\beta])=\sum_{\substack{m\leq M \\[3pt] 0<\{\gamma m+\delta\}\leq \gamma}}d(m)+O(1) =\sum_{m\leq M}d(m)\Psi(\gamma m+\delta)+O(1), \end{align} $$

where $\Psi (x)$ is the periodic function with period one for which

$$ \begin{align*} \Psi(x)= \begin{cases} 1\ \ &\textup{if}\ 0<x\leq \gamma,\\ 0\ \ &\textup{if}\ \gamma<x\leq 1. \end{cases} \end{align*} $$

Let $\Delta $ and $\Psi _{\Delta }(x)$ satisfy the conditions of Lemma 2.3 with

$$ \begin{align*} 0<\Delta<1/8\quad \textup{and} \quad \Delta\leq \min\{\gamma,1-\gamma\}/2 .\end{align*} $$

From (3.1),

(3.2) $$ \begin{align} \sum_{n\leq N}d([\alpha n+\beta]) &=\sum_{m\leq M}d(m)\Psi(\gamma m+\delta)+O(1)\nonumber\\[3pt] &=\sum_{m\leq M}d(m)\Psi_{\Delta}(\gamma m+\delta) +O(1+\mathcal{V}(I,M)\log N), \end{align} $$

where $\mathcal {V}(I,M)$ denotes the number of positive integers $m\leq M$ such that

$$ \begin{align*} \{\gamma m+\delta\}\in I=[0,\Delta)\cup (\gamma-\Delta,\gamma+\Delta) \cup(1-\Delta,1). \end{align*} $$

Since $|I|\ll \Delta ,$ it follows from the definition (2.1) and Lemma 2.2 that

(3.3) $$ \begin{align} \mathcal{V}(I,M)\ll \Delta N+N^{(1-1)/\tau+\varepsilon}, \end{align} $$

where the implied constant depends only on $\alpha .$ By (2.2),

(3.4) $$ \begin{align} \sum_{m\leq M} & d(m) \Psi_{\Delta}(\gamma m+\delta) \nonumber \\[3pt] &=\gamma\sum_{m\leq M}d(m)+\sum_{k=1}^{\infty}g_{k}e(\delta k)\sum_{m\leq M}d(m)e(\gamma km) +\sum_{k=1}^{\infty}h_{k}e(-\delta k) \sum_{m\leq M}d(m)e(-\gamma km). \end{align} $$

By Lemma 2.3, for

(3.5) $$ \begin{align} \vert\gamma -a/q\vert\leq 1/qK, \end{align} $$

we have

(3.6) $$ \begin{align} K^{1/\tau}\leq q \leq K. \end{align} $$

Then by Theorem 1.1, (3.5) and (3.6),

(3.7) $$ \begin{align} \sum_{k\leq N^{2/(\tau+1)}}g_{k}e(\delta k)\sum_{m\leq M}d(m)e(\gamma km) &\ll N^{\varepsilon}\sum_{k \sim H}g_{k}e(\delta k)\sum_{m\leq M}d(m)e(\gamma km) \nonumber \\[3pt] &\ll N^{\varepsilon}(N^{1/2} +q+ N/q) \nonumber \\[3pt] &\ll N^{1-1/(\tau+1)+\varepsilon}, \end{align} $$

where $1\leq H\leq N^{2/(\tau +1)}$ and q is determined by (3.5) and (3.6) with $K=N^{\tau /(\tau +1)}$ . Similarly,

(3.8) $$ \begin{align} \begin{split} \sum_{k\leq N^{2/(\tau+1)}}g_{k}e(-\delta k)\sum_{m\leq M}d(dm+c)e(-\gamma km) &\ll N^{1-1/(\tau+1)+\varepsilon}. \end{split} \end{align} $$

However, the well-known bound

$$ \begin{align*} \sum_{m\leq M}d(m)e(\gamma km)\ll N (\log N)^{2} \end{align*} $$

implies that

(3.9) $$ \begin{align} \sum_{k\geq N^{2/(\tau+1)}}g_{k}e(\delta k)\sum_{m\leq M}d(dm+c)e(\gamma km)\ll N^{1+\varepsilon}\sum_{k\geq N^{2/(\tau+1)}}k^{-2}\Delta^{-1} \ll N^{1-1/(\tau+1)+\varepsilon} \end{align} $$

and

(3.10) $$ \begin{align} \sum_{k\geq N^{2/(\tau+1)}}g_{k}e(-\delta k)\sum_{m\leq M}d(m)e(-\gamma km)\ll N^{1+\varepsilon}\sum_{k\geq N^{2/(\tau+1)}}k^{-2}\Delta^{-1} \ll N^{1-1/(\tau+1)+\varepsilon}, \end{align} $$

where $\Delta =N^{-1/(\tau +1)}.$ Inserting the bounds (3.7)–(3.10) into (3.4),

$$ \begin{align*} \sum_{m\leq M}d(m)\Psi_{\Delta}(\gamma m+\delta) =\gamma\sum_{m\leq M}d(m)+O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$

where the implied constant depends on $\alpha , \beta $ and $\varepsilon .$ Substituting this bound and (3.3) into (3.2) and recalling the choice of $\Delta =N^{-1/(\tau +1)}$ completes the proof of Theorem 1.4.

Acknowledgement

I am deeply grateful to the referee(s) for carefully reading the manuscript and making useful suggestions.

References

Abercrombie, A. G., ‘Beatty sequences and multiplicative number theory’, Acta Arith. 70 (1995), 195207.CrossRefGoogle Scholar
Abercrombie, A. G., Banks, W. D. and Shparlinski, I. E., ‘Arithmetic functions on Beatty sequences’, Acta Arith. 136 (2009), 8189.CrossRefGoogle Scholar
Banks, W. D. and Shparlinski, I. E., ‘Short character sums with Beatty sequences’, Math. Res. Lett. 13 (2006), 539547.CrossRefGoogle Scholar
Chowla, S., ‘Some problems of Diophantine approximation I’, Math. Z. 33 (1931), 544563.CrossRefGoogle Scholar
Erdős, P., ‘Some remarks on Diophantine approximations’, J. Indian Math. Soc. (N.S.) 12 (1948), 6774.Google Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory, AMS Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Khinchin, A. Y., ‘Zur metrischen Theorie der diophantischen Approximationen’, Math. Z. 24 (1926), 706714.CrossRefGoogle Scholar
Kuipers, L. and Niederreiter, H., Uniform Distribution of Sequences (Wiley-Interscience, New York–London–Sydney, 1974).Google Scholar
, G. S. and Zhai, W. G., ‘The divisor problem for the Beatty sequences’, Acta Math. Sinica (Chin. Ser.) 47 (2004), 12131216.Google Scholar
Roth, K. F., ‘Rational approximations to algebraic numbers’, Mathematika 2 (1955), 120.CrossRefGoogle Scholar
Technau, M. and Zafeiropoulos, A., ‘Metric results on summatory arithmetic functions on Beatty sets’, Acta Arith. 197 (2021), 93104.CrossRefGoogle Scholar
Vaughan, R. C., ‘On the distribution of $\mathrm{\alpha} {p}$ modulo 1’, Mathematika 24 (1977), 135141.CrossRefGoogle Scholar
Vinogradov, I. M., The Method of Trigonometrical Sums in the Theory of Numbers (Dover, New York, 2004).Google Scholar
Zhai, W. G., ‘Note on a result of Abercrombie’, Chinese Sci. Bull. 42 (1997), 804806.Google Scholar