Published online by Cambridge University Press: 10 July 2019
Let ${\mathcal{P}}_{{\mathcal{H}}}^{0}(M)$ denote the class of normalised harmonic mappings
$f=h+\overline{g}$ in the unit disk
$\mathbb{D}$ satisfying
$\text{Re}\,(zh^{\prime \prime }(z))>-M+|zg^{\prime \prime }(z)|$, where
$h^{\prime }(0)-1=0=g^{\prime }(0)$ and
$M>0$. Let
${\mathcal{B}}_{{\mathcal{H}}}^{0}(M)$ denote the class of sense-preserving harmonic mappings
$f=h+\overline{g}$ in the unit disk
$\mathbb{D}$ satisfying
$|zh^{\prime \prime }(z)|\leq M-|zg^{\prime \prime }(z)|$, where
$M>0$. We discuss the coefficient bound problem, the growth theorem for functions in the class
${\mathcal{P}}_{{\mathcal{H}}}^{0}(M)$ and a two-point distortion property for functions in the class
${\mathcal{B}}_{{\mathcal{H}}}^{0}(M)$.