Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-06T05:10:32.197Z Has data issue: false hasContentIssue false

MULTINOMIAL VANDERMONDE CONVOLUTION VIA PERMANENT

Published online by Cambridge University Press:  06 November 2020

KIJTI RODTES*
Affiliation:
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a generalised Laplace expansion for the permanent function and, as a consequence, we re-prove a multinomial Vandermonde convolution. Some combinatorial identities are derived by applying special matrices to the expansion.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Footnotes

The author thanks the Faculty of Science, Naresuan University, for financial support on project number P2562C033.

References

Bender, E., ‘A generalized $q$ -binomial Vandermonde convolution’, Discrete Math. 1 (1971), 115119.CrossRefGoogle Scholar
Merris, R., Multilinear Algebra (Gordon and Breach Science Publishers, Amsterdam, 1997).CrossRefGoogle Scholar
Sulanke, R. A., ‘A generalized $q$ -multinomial Vandermonde convolution’, J. Combin. Theory Ser. A 31 (1981), 3342.CrossRefGoogle Scholar
Zeng, J., ‘Multinomial convolution polynomial’, Discrete Math. 160 (1996), 219228.CrossRefGoogle Scholar