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Abstract

We provide a generalised Laplace expansion for the permanent function and, as a consequence, we re-prove
a multinomial Vandermonde convolution. Some combinatorial identities are derived by applying special
matrices to the expansion.
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1. Introduction

The Vandermonde convolution is a combinatorial identity of the form

)%

for any nonnegative integers r,m,n. There are many ways to prove this identity,
including a proof by a combinatorial double counting principle, a geometrical proof
and an algebraic proof. The identity can be extended in numerous ways. The
g-binomial Vandermonde convolution form was introduced by Bender in [1], with both
a partition proof and a geometric proof. Sulanke [3] extended the result of Bender to a
g-multinomial Vandermonde convolution and offered a graph-theoretical proof. Zeng
[4] studied multinomial convolution for a family of polynomials (including the form
that appears in Corollary 3.4) and showed that multi-convolution polynomials arise as
coefficients of power series in several variables.

In this article, we re-prove a multinomial Vandermonde convolution using the
language of multilinear algebra. In fact, we provide a generalised Laplace expansion
for the permanent function. The convolution is an immediate consequence of that
expansion. An identity for the elementary symmetric functions and a relation for

The author thanks the Faculty of Science, Naresuan University, for financial support on project number
P2562C033.

© 2020 Australian Mathematical Publishing Association Inc.

|98
W
(98]

i
https://doi.org/10.1017/5S000497272000115X Published online by Cambridge University Press @ CrossMark


http://dx.doi.org/10.1017/S000497272000115X
http://orcid.org/0000-0003-2831-256X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S000497272000115X&domain=pdf
https://doi.org/10.1017/S000497272000115X

354 K. Rodtes [2]

derangement numbers are given as examples of applying special matrices to the
expansion.

2. Preliminaries

Let V, W be vector spaces over C, and let m € N. Recall that an m-multilinear map
@: X"V :=Vx--xV — Wis amap satisfying
OO, avi + bV V) = a@(Ve, Vi V) DV, eV V),

fori=1,...,m, v;,V; €V and a,b € C. By the unique factorisation property of the
m-fold tensor space ®"V, any m-multilinear map ¢ will factor through ®”V; that is,
there exists a unique linear map 7 : "V — W such that

oWV, V) =TV ®---®v,,) foranyvy,...,v, €V.

An m-multilinear map ¢ : X"V — W is said to be completely symmetric if

YWo(tys -« os Voum) = Y(V1, .00 Vi),

for all o € S, (the permutation group of degree m) and vy, ..., v, € V. For example,
the multilinear map yg : X"V — W defined, for each vy,...,v, € V, by

1
Xe(Vi,y .oy V) = o} Z Vo) ® *** ® Vo(m)

€S,

is completely symmetric. In particular, when W = ®”V, by the unique factorisation
property of ®"V, there is a unique linear map 7(Sy,, 1) : ®"V — @V such that
XoWiseoos Vi) = T(Sp, D(v1 ® - - - ®vy,) for any vy,...,v, € V. This is a symmetriser
and hence an orthogonal projection (with respect to the induced inner product defined
below) on ®"V (see [2, Theorem 6.3]). The image of ®”V under the map 7(S,,, 1) is
called the m-fold completely symmetric space, denoted by

T(Sy, D@"V) = V"V,

and its elements are linear combinations of vectors of the form

1
ViV vV, =TS, Dvi®---®v,) = — Zv(,(l)®---®v(,(m).

!
m: oesS,,
Of course,
Vo) Vo  VVoimy = VI V-V 2.1
for any vy,...,v,, € V and any o € S,,. Again, the space V"V is equipped with the

following unique factorisation property.

PROPOSITION 2.1 [2, Theorem 6.14]. Let V and W be vector spaces over C, and let
¢ : X"V — W be a completely symmetric multilinear map. Then, there is a unique
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linear transformation Ty : V"V — W such that ¢(vy, ..., vy) = Ti(vi V -+ V vy), for
any vi,...,vy € V.
Let V be an inner product space with inner product (,). Let £ = {ey,...,e,} be an

orthonormal ordered basis for V. It is well known that
E® = {2 = eqy®* ® aqm) | @ € [y}
is an orthonormal ordered (lexicographic order) basis for ®”V under the induced inner

product on ®"V, defined by

WV QVy, U ® - QUy) = (vi,u;) forallv;,u; €V,

m
i=1
where
Tpn ={a:=(a(l),...,a(m) e N" |1 <a() <n, fori=1,...,m}.
Then, V"V is spanned by
EY ={T(S,,, 1)(6?) = eZ =ep) Vot Vegm | @ €yt
Since T(Sy, 1)? = T(Syp, 1) = T(S,, 1)*, for @, 8 € Ty

(eqsep) = (T(Sm, 1)(e3), T(Sp, 1)(eg)) = (TS, 1)(e3), €5)

1
= % Z €a(o(1)) R ® Ca(a(m))s €B(1) R ® €Bm)

oES),
1 m
- % Z l—[(eof(a(i))’eﬁ(i))-
t oS, i=1
That is,
1
(elg) =~ > burg forany @B el,,. 2.2)

€S,

Define the right action of S,, on I, by @ -0 := (a(c™'(1)),...,a(c"(m))) for
each o € §,, and @ € I, ,. Then, the orbit of « is

I,:={a-o|loceS,)={a-c7' |oceS,) ={ac|oeS,,
and the stabiliser of « is
1

Gy, ={oceS,la-c=a}l={ceS,, |la-c7 =a}={c €S, |ar =al.

Let A be the set comprising the first element (ordered by lexicographic order) in each
orbit I'y of I',,. For each @ € A, S, can be partitioned as S,, = L}_, G,7;, where
S ={ry,...,74} is the set of representatives of the right cosets of G, in S,. So,
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[y ={aty,...,atand |{o € S,, | @0 = a1j}| = |G,| foreachj=1,...,s. Hence,
1
D=3 =) — > flo), 2.3)
veln a€eA yel'y a€eA IGal [oah Y

for any function f : I, — W.
By (2.2),if B ¢ T, then (e, e%) = 0. Also,

1 |Gl
1 e(\z/ ”2: % Z 600’,0 = _Q-

!
& m!

Then, e = 0 if and only if |G,| = 0. Since G, contains at least one element (the
identity element), ey # 0 for all a € [,,,. Let V"(V) := Span{e), | o € G} be the
orbital subspace of V"V associated with @ € A. Then V"'V = @*_, V/(V) (orthogonal
direct sum). By Freese’s theorem [2, Theorem 6.34], dim(Vv7'(V)) = 1 for each @ € A.

Note that
A =Gy = :=(),...,a(m) ely, | a) < - <a(m)}. 2.4)

Thus, EY = {e) | @ € G,,,,} is an orthogonal ordered basis for V"V,

Furthermore, for each @ € G, if @ = (ly,..., 11, by .. by oo Ik ..., [k), where the
multiplicity of /; is m; foreach i = 1,...,k, we write @ as & := (", [, ..., [["*), where
1<li<---<ly<nand m; +---+m; = m. Note also that each element of G, can
only permute an entry of @ among /; entries. Thus, G, = S, X --- X S, and hence

|Gol = my! - -my! = v(@). (2.5)

For any matrix A = (a;) € M,(C) and «a,f €I, ,, denote by A[a|B] the matrix of
size m X m constructed from A using rows and columns of A indexed by a and S,
respectively. This matrix need not be a submatrix of A unless @, 8 € O, ,, where

Qm,n = {(I € 1—‘m,n | (Z(]) <--- < a/(m)} - Gm,n - l—‘m,n-
The permanent of A is defined as per(A) := 3 cs, [1-; Aicq) and thus
per(Ale|B]) = Z nAauww(i))a

€S, i=1

for any @, € Iy .

3. Main results

Let V be an inner product space over C equipped with an orthonormal basis
E:={e,...,e,}. Let ]| <m < n,and let uy,...,u,, €V be arbitrary fixed elements.
Consider a multilinear map ¥ : X"V — V"V defined by

YWi,...,Vp) i=vi VeV, Vu V---Vu,, forvy,...,v,eV.

By (2.1), it turns out that Y(vy(1y, ..., Voem) = P(vi,...,vy) for any vi,...,v, € V.
Thus, ¥ is a completely symmetric multilinear map. By Proposition 2.1, there is a
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unique linear transformation 7} : V"'V — V"V satisfying
Ti(vi V- V) =viV-- VY, Vur V- Vi,

foreachvi V--- Vv, € V'V,
LetA = (a;) € M,(C) and @ € T, ,. Define

=(a(l),...,a(m) ey, and «a,, :=(am+1),...,an) e lpms (Gl
and further define
n n
Vi = Z Aq,,(i)€j (1 <i< m) and Ui 1= Z Ao, (k)j€j (1 <k<n- m)
J=1 J=1

Denote vi V- Vv, Vuy V- Vi, := v’ Vu'. We now calculate:

n

n n
(oo S S

J=1 J=1 J=1

n

v ( Z aa5,<n—m>j€j)

=

n
= Z l—[ aa(i)y(i)e;/ (by the multilinear property of V)

Y€l i=1
i Z Z l_[“““)ﬁf’(’)% (by (2.3), (2.4) and (2.5))
BEG,,,, oes, i=
Z (ﬁ)( Z 1_[ “a(wﬂa(l))eﬁ (by (2.1)).
ﬁEGnn o€s, i=1

By the definition of the permanent function on the matrix A[«|8], we conclude that
vWvuY Z per(A[aIﬁ])eﬂ (3.2)
BEGun
On the other hand, by an analogous calculation to the one given above,
W=y VeV, = per(Ala,,|0])e,
9; v(6) o

Applying T; to both sides,

wWvuY = HE;M e per(Ala|0DTi(ey)

— per(Alanl0)(ey Vur V-V ity_y)
9; v(6) 0
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1 1
= @per(A[a'mW])(eg v o), V—y)PeﬂA[“fn'ﬂ)e;)'
0eG, Y€Gnmn

m.n

Lets = (B(1),...,B8n)) € Gy, 0 € Gy and y € G,_pyy. By (2.1), any permutation on
the subscripts of e, V e} = g1y V =+ V egum) V ey(1) V *++ V €y(s—m) does not give a new
element in V"V. Then, eg =e, V e¥ if and only if Iz = Iy U I, as multisets, where I :=
BQ),....pm)}, Iy :=1{6(1),...,0(m)} and I, := {y(1),...,y(n — m)}. Define

G(B) :=1{(0,7) € Gun X Gor—mny | Iy UL, = Iz as multisets}. 3.3)
Then,
vvu' = Z : per(A[a;,|6]) per(A[aﬁlly])) ey (3.4)
v(O)v(y)

BEGuu  (0.7)6G(B)

Since EY = {eﬁv | B € G,,lis a basis for V'V, comparing (3.2) and (3.4), yields a
generalised Laplace expansion for the permanent function.

THEOREM 3.1. Let A € M,,(C) and m € N such that m < n. Then, for each ., € G, 5,

v(B)
per(Afa|B]) =
(W;@ v(O)v(y)

where G(B) is defined as in (3.3) and ay,, o, are defined as in (3.1).

per(A[ay|6]) per(Alas,lyD),

In fact, this theorem also holds when G,,, ¢ I',, is replaced by I',,,, because per is
invariant under permuting rows or columns.

In particular, if 8 = (1,. .., n), then 6 and y must have union {1, ..., n}. Only one of
60,y can be chosen freely, say 6 € G,,,. But then 6 € Q,,, (because the entries of 6 are
parts of S with no multiplicities) and thus y = 6. That is,

G(:B) = {(97 96) | 0¢€ Qm,n}‘

Moreover, v(8) = v(€) = v(6°) =1 and if a,, € Oy, then Al 6] = A(a,|0) is a
submatrix of A obtained by deleting rows and columns indexed by a, and 6,
respectively. Thus, by Theorem 3.1, we obtain the standard form of the Laplace
expansion for the permanent function.

COROLLARY 3.2. Let A € M,,(C) and p € Qn, where 1 < m < n. Then,

perA= > per(Alpld]) per(A(ol6).

GEQm,n
As another point of view, we consider each 5 € G, , in the form
B=0....[") € Gy,

where [} <--- <, n; €N, for 1 <i<k and n; +---+ n; = n. Then, each 6 € G(B)
must be in the form Bz = (1", ..., "), where 0 < m; < min{n;,m} € Z for 1 <i <k
and m; + - - - + my = m. The corresponding y € G,,_,, . (since (6,y) € G(8)) must have
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the form y = (l'l”_"”, e, l:"_m") := Bae. Thus,

G\p) = {m = (my,...,m) € ZF |0 < m; <min{n;,m} fori=1,...,k

k
and Z m; = m} (3.5)
im1

is in one-to-one correspondence with G(8). Now, v(8) = ny!---m!, v(0) = my! - - - my!
and v(y) = (ny —my)!- - (n — my)!. This information leads to the following alternative
version of Theorem 3.1.

THEOREM 3.3. Let A € M,(C) and « € G,,,. Then, for each g = (I}',...,)*) € G,
and1 <m<n,

PGY(A [alﬂ]) Z per(A[am LBm]) )(Per (Alar, LB,;,C]))

k b
/ 11 weG(B) / 1 m Hj:l(nj —mj)!

where B := (1", ..., I["), Bae = (177, .., L™ and G(B) is as in (3.5).

In particular, if A :=J, € M,(C) is the n X n matrix all of whose entries are
1, then per(A[e|B]) = n!, per(Ala,|Bn]) = m! and per(Alay, |Bmc]) = (n — m)!, for any
in € G(B). Using the notation

n ) n!
Ny i) npleeomg!

and Theorem 3.3, we reach a multinomial Vandermonde convolution.

COROLLARY 3.4. Let m,n,ny,...,n; € N be such that m <n and ny +---+ng = n.

Then
ny,...,Ng OSm,SmZin{n,-,m}eZ, My, ..., M J\ny —my, ..., — Mg

my+-+ny=m

Some combinatorial identities similar to the Vandermonde convolution can also be
derived by applying a matrix A € M,,(C) and sequences «, 5 € G, , to Theorem 3.3.

EXAMPLE 3.5. Let A € M,(C) be the matrix constructed from J,, by changing the first
column of J, to the vector (xy,...,x,), where xi,...,x, are indeterminates. Let a,f
be in G,,, with the form « :=(1,2,...,n) and 8 := (1",2,3,...,n —m+ 1), where
1 <m<n is an integer. Let my := (1m‘k,m1,...,mk) € G(,B), where my,...,my €
{2,3,...,n—m+ 1} foreach k = 0,. .., min{m,n — m}. Then,

X o oxp 1o 1

per(A[amlﬁﬁ’lk]) = per E T . E E T . E = (m - k)! Em—k(-x17 e 7xm)9
Xy o Xy 1o 1
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where E, (X1, ..., Xn) = Xi<ij<<ip_p<m Xi, * * * Xi,, 1 the elementary symmetric poly-
nomial of degree m — k in the variables xi, ..., x,,, and
Xm+1 ce. Xm+1 1 “ee 1
per(A[alL“nWﬁli]) = per = k!Ek(xm+l$'--,xn)’
xn CEEEY xn 1 DRI 1
where Ep(x,+1,...,%,) is the elementary symmetric polynomial of degree k in

the variables x,41,...,X,. Also, per(Ala|B]) = m! E,(xy,...,x,). For each k, the

matrix A[@,|87,] does not depend on the (”;’")-choices of the columns indexed by

my,...,m in {2,3,...,n —m+ 1}, because they are all the columns containing only
1. Substituting into Theorem 3.3, we obtain an elementary symmetric polynomial
identity:
min{m,n—m}
En(rcon) = > Enk e ) Bk 30). (3.6)

k=0

EXAMPLE 3.6. Let A € M,(C) be the matrix constructed from J, by changing the
diagonal of J, to the vector (1,0,...,0). Suppose that @,5 in G,, have the form

a:=(1,2,....,n)and B :=(1",2,3,...,n—m+ 1), where 1 <m < nisan integer. Let
my € C_}ﬁ have the form (1"7%,m;, ..., my), where my, ... ,my € {2,3,...,n —m + 1} for
each k =0, ..., min{m, n — m}. After permuting suitable rows or columns,
0 1 -+ 1 1 «-- 17
1 0 - 1 1 --- 1
per(Ala@n|Bsn D) =perf[ 1 1 --- 0 1 --- 1 ||:=S80),
1 1 - 1 1 --- 1
11 - 11 - 1]

where §}"(0) denotes the permanent of the m X m matrix J(m, k), all of whose entries
are 1 except for the first k& diagonal entries which are 0. Using similar notation, it
turns out that per(Alag,|Bx]) = Si—_ (0) and per(A[e|]) = S;_,,(0). Note that the
number of zeros in the matrix A[a,|B7,] (and hence A[afnlﬁmz]) does not depend
on the ("zm)—choices of the columns indexed by my,...,m; € {2,3,...,n—m+ 1},
because each column contains exactly one zero. Substituting into Theorem 3.3 gives

the combinatorial identity:

min{m,n—m}

Sia®= ), fﬂﬂh@%&@ (37)
k=0

In fact, the value of S;"(0) in the above example can be calculated explicitly in terms
of the rencontres numbers. The rencontres number D,, , is the number of permutations
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of [n] :={1,2,...,n} with exactly r fixed points. It is well known that
n! = (-1y n
Dn,r = ] Z T and Dn,r = ( )Dn—r,O-
r! = J! r

Since there are ('r’) sets of r points {ij,...,i,} from [n] and each permutation is

one-to-one, there are exactly D,/ ('r') permutations that have {i\, ..., i,} as their fixed
points. Note also that for the matrix J(m, k) = (J;), the permutations o € S,, for
which [], Jiri) # O are those with no fixed points or fixed points that are subsets

of {tk+1,...,m}. Thus,
(ml—k) (mz—k) N (:Z:i)

S;(n(o) = Dm,() + _Dm,l + _Dm,2 + + TDm,m—k
() (3) ()
or, equally, for each m, k € N such that k < m,
m—k m—k
HOESY ( ,- )Dm_i,o. (3.8)

i=0
By (3.8), the identity (3.7) becomes a relation of derangement numbers.
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