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Abstract

We provide a generalised Laplace expansion for the permanent function and, as a consequence, we re-prove

a multinomial Vandermonde convolution. Some combinatorial identities are derived by applying special

matrices to the expansion.
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1. Introduction

The Vandermonde convolution is a combinatorial identity of the form

(

m + n

r

)

=

min{r,m}
∑

k=0

(

m

k

)(

n

r − k

)

,

for any nonnegative integers r, m, n. There are many ways to prove this identity,

including a proof by a combinatorial double counting principle, a geometrical proof

and an algebraic proof. The identity can be extended in numerous ways. The

q-binomial Vandermonde convolution form was introduced by Bender in [1], with both

a partition proof and a geometric proof. Sulanke [3] extended the result of Bender to a

q-multinomial Vandermonde convolution and offered a graph-theoretical proof. Zeng

[4] studied multinomial convolution for a family of polynomials (including the form

that appears in Corollary 3.4) and showed that multi-convolution polynomials arise as

coefficients of power series in several variables.

In this article, we re-prove a multinomial Vandermonde convolution using the

language of multilinear algebra. In fact, we provide a generalised Laplace expansion

for the permanent function. The convolution is an immediate consequence of that

expansion. An identity for the elementary symmetric functions and a relation for
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derangement numbers are given as examples of applying special matrices to the

expansion.

2. Preliminaries

Let V , W be vector spaces over C, and let m ∈ N. Recall that an m-multilinear map

ϕ : ×mV := V × · · · × V −→ W is a map satisfying

ϕ(v1, . . . , avi + bv′i, . . . , vm) = aϕ(v1, . . . , vi, . . . , vm) + bϕ(v1, . . . , v′i, . . . , vm),

for i = 1, . . . , m, vi, v′i ∈ V and a, b ∈ C. By the unique factorisation property of the

m-fold tensor space ⊗mV , any m-multilinear map ϕ will factor through ⊗mV; that is,

there exists a unique linear map T : ⊗mV −→ W such that

ϕ(v1, . . . , vm) = T(v1 ⊗ · · · ⊗ vm) for any v1, . . . , vm ∈ V .

An m-multilinear map ψ : ×mV −→ W is said to be completely symmetric if

ψ(vσ(1), . . . , vσ(m)) = ψ(v1, . . . , vm),

for all σ ∈ Sm (the permutation group of degree m) and v1, . . . , vm ∈ V . For example,

the multilinear map χ⊗ : ×mV −→ W defined, for each v1, . . . , vm ∈ V , by

χ⊗(v1, . . . , vm) =
1

m!

∑

σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m),

is completely symmetric. In particular, when W = ⊗mV , by the unique factorisation

property of ⊗mV , there is a unique linear map T(Sm, 1) : ⊗mV −→ ⊗mV such that

χ⊗(v1, . . . , vm) = T(Sm, 1)(v1 ⊗ · · · ⊗ vm) for any v1, . . . , vm ∈ V . This is a symmetriser

and hence an orthogonal projection (with respect to the induced inner product defined

below) on ⊗mV (see [2, Theorem 6.3]). The image of ⊗mV under the map T(Sm, 1) is

called the m-fold completely symmetric space, denoted by

T(Sm, 1)(⊗mV) := ∨mV ,

and its elements are linear combinations of vectors of the form

v1 ∨ · · · ∨ vm := T(Sm, 1)(v1 ⊗ · · · ⊗ vm) =
1

m!

∑

σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

Of course,

vσ(1) ∨ · · · ∨ vσ(m) = v1 ∨ · · · ∨ vm (2.1)

for any v1, . . . , vm ∈ V and any σ ∈ Sm. Again, the space ∨mV is equipped with the

following unique factorisation property.

PROPOSITION 2.1 [2, Theorem 6.14]. Let V and W be vector spaces over C, and let

φ : ×mV −→ W be a completely symmetric multilinear map. Then, there is a unique

https://doi.org/10.1017/S000497272000115X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272000115X


[3] Multinomial Vandermonde convolution 355

linear transformation T1 : ∨mV −→ W such that φ(v1, . . . , vm) = T1(v1 ∨ · · · ∨ vm), for

any v1, . . . , vm ∈ V.

Let V be an inner product space with inner product ( , ). Let E = {e1, . . . , en} be an

orthonormal ordered basis for V. It is well known that

E⊗ := {e⊗α := eα(1) ⊗ · · · ⊗ eα(m) | α ∈ Γm,n}

is an orthonormal ordered (lexicographic order) basis for ⊗mV under the induced inner

product on ⊗mV , defined by

〈v1 ⊗ · · · ⊗ vm, u1 ⊗ · · · ⊗ um〉 =

m
∏

i=1

(vi, ui) for all vi, ui ∈ V ,

where

Γm,n = {α := (α(1), . . . ,α(m)) ∈ Nm | 1 ≤ α(i) ≤ n, for i = 1, . . . , m}.

Then, ∨mV is spanned by

E∨ = {T(Sm, 1)(e⊗α) := e∨α := eα(1) ∨ · · · ∨ eα(m) | α ∈ Γm,n}.

Since T(Sm, 1)2
= T(Sm, 1) = T(Sm, 1)∗, for α, β ∈ Γm,n,

〈e∨α , e∨β 〉 = 〈T(Sm, 1)(e⊗α), T(Sm, 1)(e⊗β )〉 = 〈T(Sm, 1)(e⊗α), e⊗β 〉

=

〈

1

m!

∑

σ∈Sm

eα(σ(1)) ⊗ · · · ⊗ eα(σ(m)), eβ(1) ⊗ · · · ⊗ eβ(m)

〉

=
1

m!

∑

σ∈Sm

m
∏

i=1

(eα(σ(i)), eβ(i)).

That is,

〈e∨α , e∨β 〉 =
1

m!

∑

σ∈Sm

δασ,β for any α, β ∈ Γm,n. (2.2)

Define the right action of Sm on Γm,n by α · σ := (α(σ−1(1)), . . . ,α(σ−1(m))) for

each σ ∈ Sm and α ∈ Γm,n. Then, the orbit of α is

Γα := {α · σ | σ ∈ Sm} = {α · σ
−1 | σ ∈ Sm} = {ασ | σ ∈ Sm},

and the stabiliser of α is

Gα := {σ ∈ Sm | α · σ = α} = {σ ∈ Sm | α · σ
−1
= α} = {σ ∈ Sm | ασ = α}.

Let ∆ be the set comprising the first element (ordered by lexicographic order) in each

orbit Γα of Γm,n. For each α ∈ ∆, Sm can be partitioned as Sm = ⊔
s
i=1

Gατi, where

S = {τ1, . . . , τs} is the set of representatives of the right cosets of Gα in Sm. So,
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Γα = {ατ1, . . . ,ατs} and |{σ ∈ Sm | ασ = ατj}| = |Gα| for each j = 1, . . . , s. Hence,

∑

γ∈Γm,n

f (γ) =
∑

α∈∆

∑

γ∈Γα

f (γ) =
∑

α∈∆

1

|Gα|

∑

σ∈Sm

f (ασ), (2.3)

for any function f : Γm,n −→ W.

By (2.2), if β < Γα, then 〈e∨α , e∨
β
〉 = 0. Also,

‖ e∨α ‖
2
=

1

m!

∑

σ∈Sm

δασ,α =
|Gα|

m!
.

Then, e∨α = 0 if and only if |Gα| = 0. Since Gα contains at least one element (the

identity element), e∨α , 0 for all α ∈ Γm,n. Let ∨m
α (V) := Span{e∨ασ | σ ∈ G} be the

orbital subspace of ∨mV associated with α ∈ ∆. Then ∨mV = ⊕⊥
α∈∆

Vm
α (V) (orthogonal

direct sum). By Freese’s theorem [2, Theorem 6.34], dim(∨m
α (V)) = 1 for each α ∈ ∆.

Note that

∆ = Gm,n := {α := (α(1), . . . ,α(m)) ∈ Γm,n | α(1) ≤ · · · ≤ α(m)}. (2.4)

Thus, Ē∨ = {e∨α | α ∈ Gm,n} is an orthogonal ordered basis for ∨mV .

Furthermore, for each α ∈ Gm,n, if α = (l1, . . . , l1, l2, . . . , l2, . . . , lk . . . , lk), where the

multiplicity of li is mi for each i = 1, . . . , k, we write α as α := (l
m1

1
, l

m2

2
, . . . , l

mk

k
), where

1 ≤ l1 < · · · < lk ≤ n and m1 + · · · + mk = m. Note also that each element of Gα can

only permute an entry of α among li entries. Thus, Gα � Sm1
× · · · × Smk

and hence

|Gα| = m1! · · ·mk! := ν(α). (2.5)

For any matrix A = (aij) ∈ Mn(C) and α, β ∈ Γm,n, denote by A[α|β] the matrix of

size m × m constructed from A using rows and columns of A indexed by α and β,

respectively. This matrix need not be a submatrix of A unless α, β ∈ Qm,n, where

Qm,n := {α ∈ Γm,n | α(1) < · · · < α(m)} ⊂ Gm,n ⊂ Γm,n.

The permanent of A is defined as per(A) :=
∑

σ∈Sn

∏n
i=1 Aiσ(i) and thus

per(A[α|β]) =
∑

σ∈Sm

m
∏

i=1

Aα(i)β(σ(i)),

for any α, β ∈ Γm,n.

3. Main results

Let V be an inner product space over C equipped with an orthonormal basis

E := {e1, . . . , en}. Let 1 ≤ m ≤ n, and let u1, . . . , un−m ∈ V be arbitrary fixed elements.

Consider a multilinear map Ψ : ×mV −→ ∨nV defined by

Ψ(v1, . . . , vm) := v1 ∨ · · · ∨ vm ∨ u1 ∨ · · · ∨ un−m for v1, . . . , vm ∈ V .

By (2.1), it turns out that Ψ(vσ(1), . . . , vσ(m)) = Ψ(v1, . . . , vm) for any v1, . . . , vm ∈ V .

Thus, Ψ is a completely symmetric multilinear map. By Proposition 2.1, there is a
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unique linear transformation T1 : ∨mV −→ ∨nV satisfying

T1(v1 ∨ · · · ∨ vm) = v1 ∨ · · · ∨ vm ∨ u1 ∨ · · · ∨ un−m,

for each v1 ∨ · · · ∨ vm ∈ ∨
mV .

Let A = (aij) ∈ Mn(C) and α ∈ Γm,n. Define

αm := (α(1), . . . ,α(m)) ∈ Γm,n and αc
m := (α(m + 1), . . . ,α(n)) ∈ Γn−m,n, (3.1)

and further define

vi :=

n
∑

j=1

aαm(i)jej (1 ≤ i ≤ m) and uk :=

n
∑

j=1

aαc
m(k)jej (1 ≤ k ≤ n − m).

Denote v1 ∨ · · · ∨ vm ∨ u1 ∨ · · · ∨ un−m := v∨ ∨ u∨. We now calculate:

v∨ ∨ u∨ =

( n
∑

j=1

aαm(1)jej

)

∨ · · · ∨

( n
∑

j=1

aαm(m)jej

)

∨

( n
∑

j=1

aαc
m(1)jej

)

∨ · · ·

∨

( n
∑

j=1

aαc
m(n−m)jej

)

=

∑

γ∈Γn,n

n
∏

i=1

aα(i)γ(i)e
∨
γ (by the multilinear property of ∨)

=

∑

β∈Gn,n

1

ν(β)

∑

σ∈Sn

n
∏

i=1

aα(i)βσ(i)e
∨
βσ (by (2.3), (2.4) and (2.5))

=

∑

β∈Gn,n

1

ν(β)

(

∑

σ∈Sn

n
∏

i=1

aα(i)βσ(i)

)

e∨β (by (2.1)).

By the definition of the permanent function on the matrix A[α|β], we conclude that

v∨ ∨ u∨ =
∑

β∈Gn,n

1

ν(β)
per(A[α|β])e∨β . (3.2)

On the other hand, by an analogous calculation to the one given above,

v∨ = v1 ∨ · · · ∨ vm =

∑

θ∈Gm,n

1

ν(θ)
per(A[αm|θ])e

∨
θ .

Applying T1 to both sides,

v∨ ∨ u∨ =
∑

θ∈Gm,n

1

ν(θ)
per(A[αm|θ])T1(e∨θ )

=

∑

θ∈Gm,n

1

ν(θ)
per(A[αm|θ])(e

∨
θ ∨ u1 ∨ · · · ∨ un−m)
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=

∑

θ∈Gm,n

1

ν(θ)
per(A[αm|θ])

(

e∨θ ∨
∑

γ∈Gn−m,n

1

ν(γ)
per(A[αc

m|γ])e∨γ

)

.

Let β = (β(1), . . . , β(n)) ∈ Gn,n, θ ∈ Gm,n and γ ∈ Gn−m,n. By (2.1), any permutation on

the subscripts of e∨
θ
∨ e∨γ = eθ(1) ∨ · · · ∨ eθ(m) ∨ eγ(1) ∨ · · · ∨ eγ(n−m) does not give a new

element in ∨nV . Then, e∨
β
= e∨

θ
∨ e∨γ if and only if Iβ = Iθ ∪ Iγ as multisets, where Iβ :=

{β(1), . . . , β(n)}, Iθ := {θ(1), . . . , θ(m)} and Iγ := {γ(1), . . . , γ(n − m)}. Define

G(β) := {(θ, γ) ∈ Gm,n × G(n−m,n) | Iθ ∪ Iγ = Iβ as multisets}. (3.3)

Then,

v∨ ∨ u∨ =
∑

β∈Gn,n

(

∑

(θ,γ)∈G(β)

1

ν(θ)ν(γ)
per(A[αm|θ]) per(A[αc

m|γ])

)

e∨β . (3.4)

Since Ē∨ = {e∨
β
| β ∈ Gn,n} is a basis for ∨nV , comparing (3.2) and (3.4), yields a

generalised Laplace expansion for the permanent function.

THEOREM 3.1. Let A ∈ Mn(C) and m ∈ N such that m ≤ n. Then, for each α, β ∈ Gn,n,

per(A[α|β]) =
∑

(θ,γ)∈G(β)

ν(β)

ν(θ)ν(γ)
per(A[αm|θ]) per(A[αc

m|γ]),

where G(β) is defined as in (3.3) and αm,αc
m are defined as in (3.1).

In fact, this theorem also holds when Gn,n ( Γn,n is replaced by Γn,n, because per is

invariant under permuting rows or columns.

In particular, if β = (1, . . . , n), then θ and γ must have union {1, . . . , n}. Only one of

θ, γ can be chosen freely, say θ ∈ Gm,n. But then θ ∈ Qm,n (because the entries of θ are

parts of β with no multiplicities) and thus γ = θc. That is,

G(β) = {(θ, θc) | θ ∈ Qm,n}.

Moreover, ν(β) = ν(θ) = ν(θc) = 1 and if αm ∈ Qm,n, then A[αc
m|θ

c] = A(αm|θ) is a

submatrix of A obtained by deleting rows and columns indexed by αm and θ,

respectively. Thus, by Theorem 3.1, we obtain the standard form of the Laplace

expansion for the permanent function.

COROLLARY 3.2. Let A ∈ Mn(C) and ρ ∈ Qm,n, where 1 ≤ m ≤ n. Then,

per A =
∑

θ∈Qm,n

per(A[ρ|θ]) per(A(ρ|θ)).

As another point of view, we consider each β ∈ Gn,n in the form

β = (l
n1

1
, . . . , l

nk

k
) ∈ Gn,n,

where l1 < · · · < lk, ni ∈ N, for 1 ≤ i ≤ k and n1 + · · · + nk = n. Then, each θ ∈ G(β)

must be in the form βm̄ = (l
m1

1
, . . . , l

mk

k
), where 0 ≤ mi ≤ min{ni, m} ∈ Z for 1 ≤ i ≤ k

and m1 + · · · + mk = m. The corresponding γ ∈ Gn−m,m (since (θ, γ) ∈ G(β)) must have

https://doi.org/10.1017/S000497272000115X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272000115X


[7] Multinomial Vandermonde convolution 359

the form γ = (l
n1−m1

1
, . . . , l

nk−mk

k
) := βm̄c . Thus,

Ḡ(β) :=

{

m̄ := (m1, . . . , mk) ∈ Zk | 0 ≤ mi ≤min{ni, m} for i = 1, . . . , k

and

k
∑

i=1

mi = m

}

(3.5)

is in one-to-one correspondence with G(β). Now, ν(β) = n1! · · · nk!, ν(θ) = m1! · · ·mk!

and ν(γ) = (n1 − m1)! · · · (nk − mk)!. This information leads to the following alternative

version of Theorem 3.1.

THEOREM 3.3. Let A ∈ Mn(C) and α ∈ Gn,n. Then, for each β = (l
n1

1
, . . . , l

nk

k
) ∈ Gn,n

and 1 ≤ m ≤ n,

per(A[α|β])
∏k

j=1 nj!
=

∑

m̄∈Ḡ(β)

(

per(A[αm|βm̄])
∏k

j=1 mj!

)(

per(A[αc
m|βm̄c ])

∏k
j=1(nj − mj)!

)

,

where βm̄ := (l
m1

1
, . . . , l

mk

k
), βm̄c := (l

n1−m1

1
, . . . , l

nk−mk

k
) and Ḡ(β) is as in (3.5).

In particular, if A := Jn ∈ Mn(C) is the n × n matrix all of whose entries are

1, then per(A[α|β]) = n!, per(A[αm|βm̄]) = m! and per(A[αc
m|βm̄c ]) = (n − m)!, for any

m̄ ∈ Ḡ(β). Using the notation

(

n

n1, . . . , nk

)

:=
n!

n1! · · · nk!

and Theorem 3.3, we reach a multinomial Vandermonde convolution.

COROLLARY 3.4. Let m, n, n1, . . . , nk ∈ N be such that m ≤ n and n1 + · · · + nk = n.

Then
(

n

n1, . . . , nk

)

=

∑

0≤mi≤min{ni,m}∈Z,
m1+···+mk=m

(

m

m1, . . . , mk

)(

n − m

n1 − m1, . . . , nk − mk

)

.

Some combinatorial identities similar to the Vandermonde convolution can also be

derived by applying a matrix A ∈ Mn(C) and sequences α, β ∈ Gn,n to Theorem 3.3.

EXAMPLE 3.5. Let A ∈ Mn(C) be the matrix constructed from Jn by changing the first

column of Jn to the vector (x1, . . . , xn), where x1, . . . , xn are indeterminates. Let α, β

be in Gn,n, with the form α := (1, 2, . . . , n) and β := (1m, 2, 3, . . . , n − m + 1), where

1 ≤ m ≤ n is an integer. Let m̄k := (1m−k, m1, . . . , mk) ∈ Ḡ(β), where m1, . . . , mk ∈

{2, 3, . . . , n − m + 1} for each k = 0, . . . , min{m, n − m}. Then,

per(A[αm|βm̄k
]) = per

















































x1 · · · x1 1 · · · 1
...

. . .
...

...
. . .

...

xm · · · xm 1 · · · 1

















































= (m − k)! Em−k(x1, . . . , xm),
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where Em−k(x1, . . . , xm) =
∑

1≤i1<···<im−k≤m xi1 · · · xim−k
is the elementary symmetric poly-

nomial of degree m − k in the variables x1, . . . , xm, and

per(A[αc
m|βm̄c

k
]) = per

















































xm+1 · · · xm+1 1 · · · 1
...

. . .
...

...
. . .

...

xn · · · xn 1 · · · 1

















































= k! Ek(xm+1, . . . , xn),

where Ek(xm+1, . . . , xn) is the elementary symmetric polynomial of degree k in

the variables xm+1, . . . , xn. Also, per(A[α|β]) = m! En(x1, . . . , xn). For each k, the

matrix A[αm|βm̄k
] does not depend on the

(

n−m

k

)

-choices of the columns indexed by

m1, . . . , mk in {2, 3, . . . , n − m + 1}, because they are all the columns containing only

1. Substituting into Theorem 3.3, we obtain an elementary symmetric polynomial

identity:

Em(x1, . . . , xn) =

min{m,n−m}
∑

k=0

Em−k(x1, . . . , xm)Ek(xm+1, . . . , xn). (3.6)

EXAMPLE 3.6. Let A ∈ Mn(C) be the matrix constructed from Jn by changing the

diagonal of Jn to the vector (1, 0, . . . , 0). Suppose that α, β in Gn,n have the form

α := (1, 2, . . . , n) and β := (1m, 2, 3, . . . , n − m + 1), where 1 ≤ m ≤ n is an integer. Let

m̄k ∈ Ḡβ have the form (1m−k, m1, . . . , mk), where m1, . . . , mk ∈ {2, 3, . . . , n − m + 1} for

each k = 0, . . . , min{m, n − m}. After permuting suitable rows or columns,

per(A[αm|βm̄k
]) = per













































































































































0 1 · · · 1 1 · · · 1

1 0 · · · 1 1 · · · 1
...

...
. . .

...
...

. . .
...

1 1 · · · 0 1 · · · 1

1 1 · · · 1 1 · · · 1
...

...
. . .

...
...

. . .
...

1 1 · · · 1 1 · · · 1













































































































































:= Sm
k (0),

where Sm
k

(0) denotes the permanent of the m × m matrix J(m, k), all of whose entries

are 1 except for the first k diagonal entries which are 0. Using similar notation, it

turns out that per(A[αc
m|βm̄c

k
]) = Sn−m

n−m−k
(0) and per(A[α|β]) = Sn

n−m(0). Note that the

number of zeros in the matrix A[αm|βm̄k
] (and hence A[αc

m|βm̄c
k
]) does not depend

on the
(

n−m

k

)

-choices of the columns indexed by m1, . . . , mk ∈ {2, 3, . . . , n − m + 1},

because each column contains exactly one zero. Substituting into Theorem 3.3 gives

the combinatorial identity:

Sn
n−m(0) =

min{m,n−m}
∑

k=0

(

n − m

k

)(

m

k

)

Sm
k (0)Sn−m

n−m−k(0). (3.7)

In fact, the value of Sm
k

(0) in the above example can be calculated explicitly in terms

of the rencontres numbers. The rencontres number Dn,r is the number of permutations
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of [n] := {1, 2, . . . , n} with exactly r fixed points. It is well known that

Dn,r =
n!

r!

n−r
∑

j=0

(−1)j

j!
and Dn,r =

(

n

r

)

Dn−r,0.

Since there are
(

n

r

)

sets of r points {i1, . . . , ir} from [n] and each permutation is

one-to-one, there are exactly Dn,r

/

(

n

r

)

permutations that have {i1, . . . , ir} as their fixed

points. Note also that for the matrix J(m, k) = (Jij), the permutations σ ∈ Sm for

which
∏m

i=1 Jiσ(i) , 0 are those with no fixed points or fixed points that are subsets

of {k + 1, . . . , m}. Thus,

Sm
k (0) = Dm,0 +

(

m−k

1

)

(

m

1

) Dm,1 +

(

m−k

2

)

(

m

2

) Dm,2 + · · · +

(

m−k

m−k

)

(

m

m−k

)Dm,m−k

or, equally, for each m, k ∈ N such that k ≤ m,

Sm
k (0) =

m−k
∑

i=0

(

m − k

i

)

Dm−i,0. (3.8)

By (3.8), the identity (3.7) becomes a relation of derangement numbers.
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