Article contents
GENERAL STABILITY OF THE EXPONENTIAL AND LOBAČEVSKIǏ FUNCTIONAL EQUATIONS
Published online by Cambridge University Press: 08 March 2016
Abstract
Let $S$ be a semigroup possibly with no identity and
$f:S\rightarrow \mathbb{C}$. We consider the general superstability of the exponential functional equation with a perturbation
$\unicode[STIX]{x1D713}$ of mixed variables
$$\begin{eqnarray}\displaystyle |f(x+y)-f(x)f(y)|\leq \unicode[STIX]{x1D713}(x,y)\quad \text{for all }x,y\in S. & & \displaystyle \nonumber\end{eqnarray}$$
$S$ is a uniquely
$2$-divisible semigroup with an identity, we obtain the general superstability of Lobačevskiǐ’s functional equation with perturbation
$\unicode[STIX]{x1D713}$
$$\begin{eqnarray}\displaystyle \biggl|f\biggl(\frac{x+y}{2}\biggr)^{2}-f(x)f(y)\biggr|\leq \unicode[STIX]{x1D713}(x,y)\quad \text{for all }x,y\in S. & & \displaystyle \nonumber\end{eqnarray}$$
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 94 , Issue 2 , October 2016 , pp. 278 - 285
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.
References
- 1
- Cited by