Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-06T17:15:15.554Z Has data issue: false hasContentIssue false

GAPS BETWEEN DIVISIBLE TERMS IN $a^{2}(a^{2}+1)$

Published online by Cambridge University Press:  13 September 2019

TSZ HO CHAN*
Affiliation:
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA email thchan6174@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose $a^{2}(a^{2}+1)$ divides $b^{2}(b^{2}+1)$ with $b>a$. We improve a previous result and prove a gap principle, without any additional assumptions, namely $b\gg a(\log a)^{1/8}/(\log \log a)^{12}$. We also obtain $b\gg _{\unicode[STIX]{x1D716}}a^{15/14-\unicode[STIX]{x1D716}}$ under the abc conjecture.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

References

Chan, T. H., ‘Common factors among pairs of consecutive integers’, Int. J. Number Theory 14(3) (2018), 871880.Google Scholar
Chan, T. H., Choi, S. and Lam, P. C.-H., ‘Divisibility on the sequence of perfect squares minus one: the gap principle’, J. Number Theory 184 (2018), 473484.Google Scholar
Voutier, P., ‘An upper bound for the size of integral solutions to Y m = f (X)’, J. Number Theory 53 (1995), 247271.Google Scholar