Bull. Aust. Math. Soc. 101 (2020), 396–400 doi:10.1017/S0004972719000996

GAPS BETWEEN DIVISIBLE TERMS IN $a^2(a^2 + 1)$

TSZ HO CHAN[®]

(Received 12 July 2019; accepted 5 August 2019; first published online 13 September 2019)

Abstract

Suppose $a^2(a^2 + 1)$ divides $b^2(b^2 + 1)$ with b > a. We improve a previous result and prove a gap principle, without any additional assumptions, namely $b \gg a(\log a)^{1/8}/(\log \log a)^{12}$. We also obtain $b \gg_{\epsilon} a^{15/14-\epsilon}$ under the abc conjecture.

2010 *Mathematics subject classification*: primary 11B83; secondary 11A05. *Keywords and phrases*: divisibility, gap principle, hyperelliptic curve, abc conjecture.

1. Introduction and main results

We are interested in increasing sequences of positive integers $(a_n)_{n\geq 0}$ with each term dividing the next one (that is, $a_n \mid a_{n+1}$). A simple example is $(2^n)_{n\geq 0}$. Another example is $(n!)_{n\geq 1}$. These are simple, recursively defined sequences. It is more interesting and challenging to require each term of the sequence to have a special form. For example, $(3^n)_{n\geq 0}$ has all terms odd. For another special example, consider the Fibonacci numbers

$$F_1 = 1$$
, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ for $n \ge 2$.

By the well-known fact that $F_m | F_n$ if and only if m | n, the sequence $(F_{2^n})_{n \ge 0}$ has all terms of Fibonacci-type and each term dividing the next one. One may restrict the sequence to numbers of the form $n^2 + 1$ or other polynomials, and we are interested in the growth of such sequences. We shall focus on numbers of the form $n^2(n^2 + 1)$ and study the following question.

QUESTION 1.1. Suppose $a^2(a^2 + 1)$ divides $b^2(b^2 + 1)$. Must it be true that there is some gap between a and b? More precisely, is it true that $b > a^{1+\epsilon}$ for some small $\epsilon > 0$?

In [1] the author studied this question with some additional restrictions on *a* and *b*. In this paper we remove all these restrictions and prove the following result.

THEOREM 1.2. Let a and b be positive integers with $3 \le a < b$. Suppose $a^2(a^2 + 1)$ divides $b^2(b^2 + 1)$. Then

$$b \gg \frac{a(\log a)^{1/8}}{(\log \log a)^{12}}.$$

^{© 2019} Australian Mathematical Publishing Association Inc.

Recently, Choi, Lam and the author [2] defined the gap principle of order n for polynomials with integer coefficients as follows.

DEFINITION 1.3. Let *n* be a positive integer and f(x) be a polynomial with integer coefficients. Consider the set of all positive integers $a_0 < a_1 < a_2 < \cdots < a_n$ such that $f(a_i)$ divides $f(a_{i+1})$ for $0 \le i \le n-1$. We say that f(x) satisfies the gap principle of order *n* if $\lim a_n/a_0 = \infty$ as $a_0 \to \infty$.

Hence, Theorem 1.2 implies that the polynomial $f(x) = x^2(x^2 + 1)$ satisfies the gap principle of order 1.

Assuming the abc conjecture, we can obtain a better gap result than that in [1], without any extra assumptions.

THEOREM 1.4. Let a and b be positive integers with a < b. Suppose $a^2(a^2 + 1)$ divides $b^2(b^2 + 1)$. Then, under the abc conjecture with any small $\epsilon > 0$,

$$b \gg_{\epsilon} a^{15/14-\epsilon}$$

This answers Question 1.1 in the affirmative under the abc conjecture. We hope this article will inspire readers to study similar questions.

Notation. The symbol a | b means that a divides b. The expressions $f(x) \ll g(x)$, $g(x) \gg f(x)$ and f(x) = O(g(x)) are all equivalent to $|f(x)| \le Cg(x)$ for some constant C > 0. Finally, $f(x) = O_{\lambda}(g(x))$, $f(x) \ll_{\lambda} g(x)$ and $g(x) \gg_{\lambda} f(x)$ mean that the implicit constant C may depend on λ .

2. Proof of Theorem 1.2

Since $a^2(a^2 + 1)$ divides $b^2(b^2 + 1)$, write

 $ta^2(a^2+1) = b^2(b^2+1)$

for some integer t > 1. We may assume $t \le \log a$, for otherwise the theorem is true automatically. Let *D* be the greatest common divisor of *a* and *b*. Suppose a = Dx and b = Dy with (x, y) = 1, and let $T = (D^2x^2 + 1, D^2y^2 + 1)$. Then

$$tx^2 \frac{D^2 x^2 + 1}{T} = y^2 \frac{D^2 y^2 + 1}{T}.$$
(2.1)

Since (x, y) = 1, x^2 must divide $(D^2y^2 + 1)/T$. Write $(D^2y^2 + 1)/T = mx^2$ for some integer *m*. Then $t(D^2x^2 + 1)/T = my^2$ and

$$t(D^2x^2 + 1) = mTy^2$$
(2.2)

and

$$D^2 y^2 + 1 = mT x^2. (2.3)$$

Multiplying (2.2) by D^2 , (2.3) by mT and combining,

$$[(mT)^{2} - tD^{4}]x^{2} = tD^{2} + mT.$$
(2.4)

T. H. Chan

Similarly, multiplying (2.2) by mT, (2.3) by tD^2 and combining,

$$[(mT)^{2} - tD^{4}]y^{2} = tD^{2} + tmT.$$
(2.5)

Subtracting (2.4) from (2.5),

$$s(y^2 - x^2) = (t - 1)mT$$
(2.6)

with

$$s = (mT)^2 - tD^4. (2.7)$$

From (2.3), we have (mT, D) = 1. Hence,

$$(s,mT) = ((mT)^2 - tD^4, mT) = (tD^4, mT) = (t,mT).$$

Combining this with (2.6) shows $s \mid (t - 1)t$ and (2.7) gives a hyperelliptic curve

$$Y^2 = tX^4 + s$$

by setting Y = mT and X = D. Let $\lambda := (t - 1)t$. Voutier [3] studied such integral solutions on hyperelliptic curves using transcendental number theory. From [3, Theorem 1],

$$\max(X, Y) < e^{C_1 \lambda (\max(1, \log \lambda))^{\varsigma}}$$

for some constant $C_1 \ge 1$. Suppose $\lambda \le C_1^{-1} \log D / (\log \max(e, \log D))^{96}$. Then

$$D = X < \exp\left(C_1 \frac{1}{C_1} \frac{\log D}{(\log \max(e, \log D))^{96}} (\log \max(e, \log D))^{96}\right) = D,$$

which is a contradiction. Therefore, $(t - 1)t > C_1^{-1} \log D / (\log \max(e, \log D))^{96}$ and

$$t \gg \frac{\sqrt{\log D}}{(\log \max(e, \log D))^{48}}.$$
(2.8)

From (2.2), $2tD^2x^2 \ge mTy^2$ and $tD^2 \gg mT$. This together with (2.4) gives $tD^2 \gg x^2$. Hence, as $t \le \log a$ and a = Dx, we have $\log D \gg \log a$. Therefore, (2.8) gives

$$t \gg \frac{\sqrt{\log a}}{(\log \log a)^{48}}$$

and we have Theorem 1.2 as $b^4/a^4 \gg t$.

3. Proof of Theorem 1.4

Firstly, for any integer *n*, let $R(n) := \prod_{p|n} p$ be the radical or kernel of an integer *n*. We state the abc conjecture.

Conjecture 3.1. For every $\epsilon > 0$, there exists a constant C_{ϵ} such that for all triples (a, b, c) of coprime positive integers with a + b = c, we have

$$c < C_{\epsilon} R(abc)^{1+\epsilon}.$$

https://doi.org/10.1017/S0004972719000996 Published online by Cambridge University Press

398

Secondly, we state a lemma which follows easily from the unique factorisation of integers.

LEMMA 3.2. Suppose $a \mid A^2$ and $a = a_1a_2^2$ with a_1 squarefree. Then $a_1a_2 \mid A$.

PROOF OF THEOREM 1.4. Basically, we follow the proof of Theorem 1.2. Using the same notation as in Section 2,

$$a = Dx$$
, $b = Dy$ and $s + tD^4 = (mT)^2$

with (mT, D) = 1. Let

$$(t, (mT)^2) = d$$
 and $d = d_1 d_2^2$ with d_1 squarefree

By Lemma 3.2, $mT = d_1 d_2 S$. Then

$$\frac{s}{d} + \frac{t}{d}D^4 = d_1 S^2. ag{3.1}$$

399

Here, the three terms are integers and pairwise relatively prime. We can apply the abc conjecture and obtain

$$\frac{t}{d}D^4 < C_{\epsilon} \left(\frac{(t-1)t}{d}Dd_1S\right)^{1+\epsilon}$$
(3.2)

since $s \mid (t-1)t$. Suppose $t \le 10D^4$. As $d_1 \le d$, (3.1) gives

$$(d_1S)^2 \ll tD^4$$
 or $d_1S \ll t^{1/2}D^2$.

Putting this into (3.2),

$$\frac{t}{d}D^4 \ll_{\epsilon} \left(\frac{t^{5/2}}{d}D^3\right)^{1+\epsilon}.$$

Hence,

$$D \ll_{\epsilon} t^{3/2+8\epsilon}.$$
 (3.3)

As $s + tD^4 = (mT)^2$, $s \mid (t-1)t$ and $t \le D^4$, we have $mT \ll t^{1/2}D^2$. This together with (2.4) gives

$$x^2 \ll \frac{tD^2}{s}$$
 or $x \ll t^{1/2}D$.

Therefore, by (3.3),

$$a = Dx \ll t^{1/2} D^2 \ll_{\epsilon} t^{7/2+16\epsilon}$$
 or $t \gg_{\epsilon} a^{2/7-2\epsilon}$

which gives Theorem 1.4 as $b^4/a^4 \gg t$.

We are left with the case $t > 10D^4$. Suppose $y/x = b/a \le a^{1/5} = (Dx)^{1/5}$. From (2.1), $t^{1/4} \le \sqrt[4]{2}y/x$. Hence,

$$10D^4 < t \le 2(Dx)^{4/5}.$$
 (3.4)

This gives

$$x > \frac{10}{2^{5/4}} D^4. \tag{3.5}$$

T. H. Chan

On the other hand, (2.3) and (2.1) give

$$mT \le 2D^2 y^2 / x^2 \le 2\sqrt{2}t^{1/2}D^2.$$

Putting this into (2.4),

$$x^{2} \le (1+2\sqrt{2})tD^{2}$$
 or $\frac{1}{1+2\sqrt{2}}\left(\frac{x}{D}\right)^{2} \le t.$ (3.6)

Combining (3.4) and (3.6),

$$\frac{1}{1+2\sqrt{2}} \left(\frac{x}{D}\right)^2 \le 2(Dx)^{4/5} \quad \text{or} \quad x \le [2(1+\sqrt{2})]^{5/6} D^{7/3}$$

which contradicts (3.5). Therefore, $b/a > a^{1/5}$, which also gives Theorem 1.4.

References

- T. H. Chan, 'Common factors among pairs of consecutive integers', Int. J. Number Theory 14(3) (2018), 871–880.
- [2] T. H. Chan, S. Choi and P. C.-H. Lam, 'Divisibility on the sequence of perfect squares minus one: the gap principle', J. Number Theory 184 (2018), 473–484.
- [3] P. Voutier, 'An upper bound for the size of integral solutions to $Y^m = f(X)$ ', J. Number Theory 53 (1995), 247–271.

TSZ HO CHAN, Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA e-mail: thchan6174@gmail.com

400