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Abstract

Suppose a2(a2 + 1) divides b2(b2 + 1) with b > a. We improve a previous result and prove a gap principle,
without any additional assumptions, namely b� a(log a)1/8/(log log a)12. We also obtain b�ε a15/14−ε

under the abc conjecture.
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1. Introduction and main results

We are interested in increasing sequences of positive integers (an)n≥0 with each term
dividing the next one (that is, an | an+1). A simple example is (2n)n≥0. Another example
is (n!)n≥1. These are simple, recursively defined sequences. It is more interesting and
challenging to require each term of the sequence to have a special form. For example,
(3n)n≥0 has all terms odd. For another special example, consider the Fibonacci numbers

F1 = 1, F2 = 1, Fn+1 = Fn + Fn−1 for n ≥ 2.

By the well-known fact that Fm | Fn if and only if m | n, the sequence (F2n )n≥0 has
all terms of Fibonacci-type and each term dividing the next one. One may restrict the
sequence to numbers of the form n2 + 1 or other polynomials, and we are interested in
the growth of such sequences. We shall focus on numbers of the form n2(n2 + 1) and
study the following question.

Question 1.1. Suppose a2(a2 + 1) divides b2(b2 + 1). Must it be true that there is some
gap between a and b? More precisely, is it true that b > a1+ε for some small ε > 0?

In [1] the author studied this question with some additional restrictions on a and b.
In this paper we remove all these restrictions and prove the following result.

Theorem 1.2. Let a and b be positive integers with 3 ≤ a < b. Suppose a2(a2 + 1)
divides b2(b2 + 1). Then

b�
a(log a)1/8

(log log a)12 .
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Recently, Choi, Lam and the author [2] defined the gap principle of order n for
polynomials with integer coefficients as follows.

Definition 1.3. Let n be a positive integer and f (x) be a polynomial with integer
coefficients. Consider the set of all positive integers a0 < a1 < a2 < · · · < an such that
f (ai) divides f (ai+1) for 0 ≤ i ≤ n − 1. We say that f (x) satisfies the gap principle of
order n if lim an/a0 =∞ as a0 →∞.

Hence, Theorem 1.2 implies that the polynomial f (x) = x2(x2 + 1) satisfies the gap
principle of order 1.

Assuming the abc conjecture, we can obtain a better gap result than that in [1],
without any extra assumptions.

Theorem 1.4. Let a and b be positive integers with a < b. Suppose a2(a2 + 1) divides
b2(b2 + 1). Then, under the abc conjecture with any small ε > 0,

b�ε a15/14−ε .

This answers Question 1.1 in the affirmative under the abc conjecture. We hope this
article will inspire readers to study similar questions.

Notation. The symbol a | b means that a divides b. The expressions f (x)� g(x),
g(x)� f (x) and f (x) = O(g(x)) are all equivalent to | f (x)| ≤ Cg(x) for some constant
C > 0. Finally, f (x) = Oλ(g(x)), f (x)�λ g(x) and g(x)�λ f (x) mean that the implicit
constant C may depend on λ.

2. Proof of Theorem 1.2

Since a2(a2 + 1) divides b2(b2 + 1), write

ta2(a2 + 1) = b2(b2 + 1)

for some integer t > 1. We may assume t ≤ log a, for otherwise the theorem is true
automatically. Let D be the greatest common divisor of a and b. Suppose a = Dx and
b = Dy with (x, y) = 1, and let T = (D2x2 + 1,D2y2 + 1). Then

tx2 D2x2 + 1
T

= y2 D2y2 + 1
T

. (2.1)

Since (x, y) = 1, x2 must divide (D2y2 + 1)/T . Write (D2y2 + 1)/T = mx2 for some
integer m. Then t(D2x2 + 1)/T = my2 and

t(D2x2 + 1) = mTy2 (2.2)

and
D2y2 + 1 = mT x2. (2.3)

Multiplying (2.2) by D2, (2.3) by mT and combining,

[(mT )2 − tD4]x2 = tD2 + mT. (2.4)
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Similarly, multiplying (2.2) by mT , (2.3) by tD2 and combining,

[(mT )2 − tD4]y2 = tD2 + tmT. (2.5)

Subtracting (2.4) from (2.5),

s(y2 − x2) = (t − 1)mT (2.6)

with
s = (mT )2 − tD4. (2.7)

From (2.3), we have (mT,D) = 1. Hence,

(s,mT ) = ((mT )2 − tD4,mT ) = (tD4,mT ) = (t,mT ).

Combining this with (2.6) shows s | (t − 1)t and (2.7) gives a hyperelliptic curve

Y2 = tX4 + s

by setting Y = mT and X = D. Let λ := (t − 1)t. Voutier [3] studied such integral
solutions on hyperelliptic curves using transcendental number theory. From [3,
Theorem 1],

max(X,Y) < eC1λ(max(1,log λ))96

for some constant C1 ≥ 1. Suppose λ ≤ C−1
1 log D/(log max(e, log D))96. Then

D = X < exp
(
C1

1
C1

log D
(log max(e, log D))96 (log max(e, log D))96

)
= D,

which is a contradiction. Therefore, (t − 1)t > C−1
1 log D/(log max(e, log D))96 and

t�

√
log D

(log max(e, log D))48 . (2.8)

From (2.2), 2tD2x2 ≥ mTy2 and tD2 � mT . This together with (2.4) gives tD2 � x2.
Hence, as t ≤ log a and a = Dx, we have log D� log a. Therefore, (2.8) gives

t�

√
log a

(log log a)48

and we have Theorem 1.2 as b4/a4 � t.

3. Proof of Theorem 1.4

Firstly, for any integer n, let R(n) :=
∏

p|n p be the radical or kernel of an integer n.
We state the abc conjecture.

Conjecture 3.1. For every ε > 0, there exists a constant Cε such that for all triples
(a, b, c) of coprime positive integers with a + b = c, we have

c < CεR(abc)1+ε .
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Secondly, we state a lemma which follows easily from the unique factorisation of
integers.

Lemma 3.2. Suppose a | A2 and a = a1a2
2 with a1 squarefree. Then a1a2 | A.

Proof of Theorem 1.4. Basically, we follow the proof of Theorem 1.2. Using the same
notation as in Section 2,

a = Dx, b = Dy and s + tD4 = (mT )2

with (mT,D) = 1. Let

(t, (mT )2) = d and d = d1d2
2 with d1 squarefree.

By Lemma 3.2, mT = d1d2S . Then

s
d

+
t
d

D4 = d1S 2. (3.1)

Here, the three terms are integers and pairwise relatively prime. We can apply the abc
conjecture and obtain

t
d

D4 < Cε

( (t − 1)t
d

Dd1S
)1+ε

(3.2)

since s | (t − 1)t. Suppose t ≤ 10D4. As d1 ≤ d, (3.1) gives

(d1S )2 � tD4 or d1S � t1/2D2.

Putting this into (3.2),
t
d

D4 �ε

( t5/2

d
D3

)1+ε

.

Hence,
D�ε t3/2+8ε . (3.3)

As s + tD4 = (mT )2, s | (t − 1)t and t ≤ D4, we have mT � t1/2D2. This together with
(2.4) gives

x2 �
tD2

s
or x� t1/2D.

Therefore, by (3.3),

a = Dx� t1/2D2 �ε t7/2+16ε or t�ε a2/7−2ε

which gives Theorem 1.4 as b4/a4 � t.
We are left with the case t > 10D4. Suppose y/x = b/a ≤ a1/5 = (Dx)1/5. From (2.1),

t1/4 ≤
4√2y/x. Hence,

10D4 < t ≤ 2(Dx)4/5. (3.4)

This gives

x >
10

25/4 D4. (3.5)
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On the other hand, (2.3) and (2.1) give

mT ≤ 2D2y2/x2 ≤ 2
√

2t1/2D2.

Putting this into (2.4),

x2 ≤ (1 + 2
√

2)tD2 or
1

1 + 2
√

2

( x
D

)2
≤ t. (3.6)

Combining (3.4) and (3.6),

1

1 + 2
√

2

( x
D

)2
≤ 2(Dx)4/5 or x ≤ [2(1 +

√
2)]5/6D7/3

which contradicts (3.5). Therefore, b/a > a1/5, which also gives Theorem 1.4. �
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