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Abstract

Suppose a*(a® + 1) divides b*(b* + 1) with b > a. We improve a previous result and prove a gap principle,
without any additional assumptions, namely b > a(log a)'/®/(log log a)'?. We also obtain b > a'>/14-¢
under the abc conjecture.
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1. Introduction and main results

We are interested in increasing sequences of positive integers (a,),>0 With each term
dividing the next one (that is, a, | a,+1). A simple example is (2"),59. Another example
is (n!),>1. These are simple, recursively defined sequences. It is more interesting and
challenging to require each term of the sequence to have a special form. For example,
(3")n>0 has all terms odd. For another special example, consider the Fibonacci numbers

Fi=1 F,=1, F,2=F,+F,.4 forn>2.

By the well-known fact that F,, | F,, if and only if m | n, the sequence (F),>o has
all terms of Fibonacci-type and each term dividing the next one. One may restrict the
sequence to numbers of the form n? + 1 or other polynomials, and we are interested in
the growth of such sequences. We shall focus on numbers of the form n*(n* + 1) and
study the following question.

QuesTioN 1.1. Suppose a*(a* + 1) divides b*(b*> + 1). Must it be true that there is some
gap between a and b? More precisely, is it true that b > a'*¢ for some small € > 0?

In [1] the author studied this question with some additional restrictions on a and b.
In this paper we remove all these restrictions and prove the following result.

Turorem 1.2. Let a and b be positive integers with 3 < a < b. Suppose a*(a* + 1)
divides b*(b* + 1). Then

a(log a)'/®

(logloga)'?
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Recently, Choi, Lam and the author [2] defined the gap principle of order n for
polynomials with integer coefficients as follows.

DeriniTion 1.3. Let n be a positive integer and f(x) be a polynomial with integer
coefficients. Consider the set of all positive integers ap < a; < a < --- < a, such that
f(a;) divides f(a;41) for 0 <i <n— 1. We say that f(x) satisfies the gap principle of
order n if lima, /ag = oo as ay — oo.

Hence, Theorem 1.2 implies that the polynomial f(x) = x*(x*> + 1) satisfies the gap
principle of order 1.

Assuming the abc conjecture, we can obtain a better gap result than that in [1],
without any extra assumptions.

Tueorem 1.4. Let a and b be positive integers with a < b. Suppose a*(a®> + 1) divides
b2(192 + 1). Then, under the abc conjecture with any small € > 0,

b> a15/14—e
€ .

This answers Question 1.1 in the affirmative under the abc conjecture. We hope this
article will inspire readers to study similar questions.

Notation. The symbol a | b means that a divides b. The expressions f(x) < g(x),
g(x) > f(x) and f(x) = O(g(x)) are all equivalent to |f(x)| < Cg(x) for some constant
C > 0. Finally, f(x) = 0,(g(x)), f(x) <, g(x) and g(x) >, f(x) mean that the implicit
constant C may depend on A.

2. Proof of Theorem 1.2
Since a?(a® + 1) divides b*(b* + 1), write
@@+ 1) =B+ 1)

for some integer ¢ > 1. We may assume ¢ < log a, for otherwise the theorem is true
automatically. Let D be the greatest common divisor of @ and b. Suppose a = Dx and
b = Dy with (x,y) = 1, and let T = (D*x*> + 1, D*>y* + 1). Then

D>+ 1 D2y2 +1
x? T =y? — (2.1

Since (x,y) = 1, x> must divide (D*y*> + 1)/T. Write (D*y*> + 1)/T = mx* for some
integer m. Then t(D*x?> + 1)/T = my” and

#(D*x* + 1) = mTy? (2.2)

and
D*y* + 1 =mTx’ (2.3)

Multiplying (2.2) by D?, (2.3) by mT and combining,
[(mT)* — tD*]x* = tD* + mT. (2.4)
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Similarly, multiplying (2.2) by mT, (2.3) by tD? and combining,
[(mT)? — tD*1y* = tD* + tmT. (2.5)
Subtracting (2.4) from (2.5),
s(y? = x¥) = (t— DmT (2.6)

with
s = (mT)* - tD*. (2.7)

From (2.3), we have (mT, D) = 1. Hence,
(s,mT) = (mT)* — tD*,mT) = tD*, mT) = (t,mT).
Combining this with (2.6) shows s | (t — 1)t and (2.7) gives a hyperelliptic curve
Y2=1X*+5

by setting ¥ =mT and X = D. Let A := (¢t — 1)t. Voutier [3] studied such integral
solutions on hyperelliptic curves using transcendental number theory. From [3,
Theorem 1],

maX(X, Y) < eCI/l(max(l,log/l))%

for some constant C; > 1. Suppose A < Cl_1 log D/(log max(e, log D))*. Then

1 log D
D=X<exp(C1— 02
C1 (log max(e, log D))%

(log max(e, log D))%) =D,

which is a contradiction. Therefore, (t — 1)t > C}' log D/(log max(e, log D)) and

vlog D

> )
(log max(e, log D))*8

(2.8)

From (2.2), 2tD*x> > mTy* and tD? > mT. This together with (2.4) gives tD” > x?.
Hence, as t < loga and a = Dx, we have log D > log a. Therefore, (2.8) gives

yloga

t _—
> (loglog a)*®

and we have Theorem 1.2 as b*/a* > .

3. Proof of Theorem 1.4

Firstly, for any integer n, let R(n) := [],, p be the radical or kernel of an integer n.
We state the abc conjecture.

ConsecTurk 3.1. For every € > 0, there exists a constant C, such that for all triples
(a, b, c) of coprime positive integers with a + b = ¢, we have

¢ < C.R(abc)'*.
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Secondly, we state a lemma which follows easily from the unique factorisation of
integers.

Lemma 3.2. Suppose a | A*> and a = alag with a; squarefree. Then aya | A.

Proor oF THEOREM 1.4. Basically, we follow the proof of Theorem 1.2. Using the same
notation as in Section 2,

a=Dx, b=Dy and s+ tD*=mT)?
with (mT, D) = 1. Let
(t,(mT)Y)=d and d= d1d§ with d; squarefree.
By Lemma 3.2, mT = d,d,S . Then

t
;z +=D'=diS>. 3.1)

Here, the three terms are integers and pairwise relatively prime. We can apply the abc
conjecture and obtain

t 1+e
Ipt<c. DdlS) (3.2)

d
since s | (t — 1)t. Suppose t < 10D*. As d; < d, (3.1) gives

((l‘ —dl)t

(d;S)? < tD* or d,S <t'*D?.

Putting this into (3.2),
P 52 \l+e
ZJD4 <, (—D3) .

d
Hence,
D <, /778, (3.3)
As s +tD* = (mT)?, s | (t — 1)t and t < D*, we have mT < t'/2D?. This together with
(2.4) gives
, tD?

< — or x<t'’D.
S

Therefore, by (3.3),

7/2+16€ 2/7-2¢

a=Dx<'’D* < 1t or t>.a

which gives Theorem 1.4 as b*/a* > t.
We are left with the case > 10D*. Suppose y/x = b/a < a'/> = (Dx)'/°. From (2.1),
1"/* < \2y/x. Hence,

10D* < t < 2(Dx)*°. (3.4)
This gives
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On the other hand, (2.3) and (2.1) give
mT < 2D*y*/x* <222 D2,

Putting this into (2.4),

1 x\?

2 2

2 < +2V2D?* or —(—) <t (3.6)
1+2+V2\D

Combining (3.4) and (3.6),

| (x )2 4/5 5/6 47/3
——— (=) <200* or x<[2(1+ V2)1°D
1+2+2\D

which contradicts (3.5). Therefore, b/a > a'/>, which also gives Theorem 1.4. ]
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