No CrossRef data available.
Published online by Cambridge University Press: 08 January 2020
Let $p$ be a prime,
$G$ a solvable group and
$P$ a Sylow
$p$-subgroup of
$G$. We prove that
$P$ is normal in
$G$ if and only if
$\unicode[STIX]{x1D711}(1)_{p}^{2}$ divides
$|G:\ker (\unicode[STIX]{x1D711})|_{p}$ for all monomial monolithic irreducible
$p$-Brauer characters
$\unicode[STIX]{x1D711}$ of
$G$.