Published online by Cambridge University Press: 18 November 2020
For a finite group G, let
$\Delta (G)$
denote the character graph built on the set of degrees of the irreducible complex characters of G. A perfect graph is a graph
$\Gamma $
in which the chromatic number of every induced subgraph
$\Delta $
of
$\Gamma $
equals the clique number of
$\Delta $
. We show that the character graph
$\Delta (G)$
of a finite group G is always a perfect graph. We also prove that the chromatic number of the complement of
$\Delta (G)$
is at most three.
This research was supported in part by a grant from the School of Mathematics, Institute for Research in Fundamental Sciences (IPM).