Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-06T12:19:32.499Z Has data issue: false hasContentIssue false

AN APPLICATION OF SCHUR’S ALGORITHM TO VARIABILITY REGIONS OF CERTAIN ANALYTIC FUNCTIONS II

Published online by Cambridge University Press:  02 December 2021

MD FIROZ ALI
Affiliation:
Department of Mathematics, NIT Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India e-mail: ali.firoz89@gmail.com; firoz.ali@maths.nitdgp.ac.in
VASUDEVARAO ALLU*
Affiliation:
Discipline of Mathematics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, Khordha 752050, Odisha, India
HIROSHI YANAGIHARA
Affiliation:
Department of Applied Science, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755, Japan e-mail: hiroshi@yamaguchi-u.ac.jp
*
Rights & Permissions [Opens in a new window]

Abstract

We extend our study of variability regions, Ali et al. [‘An application of Schur algorithm to variability regions of certain analytic functions–I’, Comput. Methods Funct. Theory, to appear] from convex domains to starlike domains. Let $\mathcal {CV}(\Omega )$ be the class of analytic functions f in ${\mathbb D}$ with $f(0)=f'(0)-1=0$ satisfying $1+zf''(z)/f'(z) \in {\Omega }$ . As an application of the main result, we determine the variability region of $\log f'(z_0)$ when f ranges over $\mathcal {CV}(\Omega )$ . By choosing a particular $\Omega $ , we obtain the precise variability regions of $\log f'(z_0)$ for some well-known subclasses of analytic and univalent functions.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let ${\mathbb C}$ be the complex plane. For $c \in {\mathbb C}$ and $r> 0$ , let ${\mathbb D}(c,r) := \{ z \in {\mathbb C} : |z-c| < r \}$ and $\overline {\mathbb D}(c,r) := \{ z \in {\mathbb C} : |z-c| \leq r \}$ . In particular, we denote the unit disk by ${\mathbb D} := {\mathbb D}(0,1)$ . Let ${\mathcal A}({\mathbb D})$ be the class of analytic functions in the unit disk ${\mathbb D}$ endowed with the topology of uniform convergence on every compact subset of ${\mathbb D}$ . Denote by $\mathcal {A}_0$ functions f in ${\mathcal A}({\mathbb D})$ normalised by $f(0) = f'(0)-1 = 0$ . Further, let $\mathcal {S}$ denote the standard subclass of $\mathcal {A}_0$ of normalised univalent functions in ${\mathbb D}$ . A function f in $\mathcal {A}_0$ is called starlike (respectively convex) if f is univalent and $f(\mathbb {D})$ is starlike with respect to $0$ (respectively convex). Let $\mathcal {S}^*$ and $\mathcal {CV}$ denote the classes of starlike and convex functions, respectively. It is well known that a function $f\in \mathcal {A}_0$ is in $\mathcal {S}^*$ if and only if $\mathrm {Re}\,(zf'(z)/f(z))>0$ and in $\mathcal {CV}$ if and only if $\mathrm {Re} \, \{ zf''(z)/f'(z) \} +1> 0$ for $z\in \mathbb {D}$ .

Let ${\mathcal F}$ be a subclass of ${\mathcal A}({\mathbb D})$ and $z_0 \in {\mathbb D}$ . The upper and lower estimates,

$$ \begin{align*} M_1 \leq |f'(z_0)| \leq M_2 \quad\mbox{and}\quad m_1 \leq \text{Arg } f'(z_0) \leq m_2 \quad \mbox{for all } f \in {\mathcal F}, \end{align*} $$

where the $M_j$ and $m_j$ are nonnegative constants, are respectively called distortion and rotation theorems at $z_0$ for ${\mathcal F}$ . These estimates deal only with the absolute value or argument of $f'(z_0)$ . If one wants to study the complex value $f'(z_0)$ itself, it is necessary to consider the variability region of $f'(z_0)$ when f ranges over ${\mathcal F}$ , that is, to consider the set $\{ f'(z_0) : f \in {\mathcal F } \}$ . For example [Reference Duren4, Ch. 2, Exercises 10, 11 and 13],

$$ \begin{align*} \{ \log f'(z_0) : f \in \mathcal{CV} \} = \bigg\{\!\log \frac{1}{(1-z)^2 } : |z| \leq |z_0| \bigg\}. \end{align*} $$

For $f \in \mathcal {CV}$ , an easy consequence of Schwarz’s lemma is that $|f''(0)| \leq 2$ . For fixed $z_0 \in {\mathbb D}$ and $\lambda \in \overline {\mathbb D}$ , Gronwall [Reference Gronwall7] obtained the sharp lower and upper estimates for $|f'(z_0)|$ when $f \in \mathcal {CV}$ satisfies the additional condition $f''(0) = 2 \lambda $ (see also [Reference Finkelstein5]). Let

$$ \begin{align*} \widetilde{V} (z_0, \lambda) = \{ \log f'(z_0) : f \in \mathcal{CV} \mbox{ and } f''(0) = 2 \lambda \}. \end{align*} $$

If $| \lambda | =1 $ , then, by Schwarz’s lemma, for $f \in \mathcal {CV}$ the condition $f''(0) = 2 \lambda $ forces $f(z) \equiv z/(1-\lambda z)$ and hence $\widetilde {V} (z_0, \lambda ) = \{ \log 1/(1-\lambda z_0)^2 \}$ . Since $\widetilde {V}(e^{-i \theta }z_0, e^{i \theta }\lambda ) = \widetilde {V}(z_0, \lambda )$ for all $\theta \in {\mathbb R}$ , without loss of generality we may assume that $0 \leq \lambda < 1$ . In 2006, Yanagihara [Reference Yanagihara20] obtained the following extension of Gronwall’s result.

Theorem 1.1. For any $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $0 \leq \lambda < 1$ , the set $\widetilde {V} (z_0, \lambda ) $ is a convex closed Jordan domain surrounded by the curve

$$ \begin{align*} ( - \pi , \pi ] \ni \theta \mapsto & - \bigg( 1 - \tfrac{\lambda \cos ( \theta /2)}{\sqrt{1 - \lambda^2 \sin^2 ( \theta /2) }} \bigg) \log \bigg\{ 1 - \tfrac{e^{i \theta /2} z_0} {i \lambda \sin ( \theta /2) - \sqrt{1 - \lambda^2 \sin^2 ( \theta /2) } } \bigg\}\\ & \quad - \bigg( 1 + \tfrac{\lambda \cos ( \theta /2)}{\sqrt{1 - \lambda^2 \sin^2 ( \theta /2) }} \bigg) \log \bigg\{ 1 - \tfrac{e^{i \theta /2} z_0} {i \lambda \sin ( \theta /2) + \sqrt{1 - \lambda^2 \sin^2 ( \theta /2) } } \bigg\}. \end{align*} $$

Theorem 1.1 can be equivalently written as follows.

Theorem 1.2. Let ${\mathbb H} = \{ w \in {\mathbb C} : \text {Re} \, w> 0 \}$ . For any $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $0 \leq \lambda < 1$ , the variability region

$$ \begin{align*} \bigg\{\!\int_0^{z_0} \frac{g(\zeta )-g(0)}{\zeta} \, d \zeta : g \in {\mathcal A}({\mathbb D}) \mbox{ with } g(0)=1, g'(0)= 2 \lambda, g({\mathbb D}) \subset {\mathbb H} \bigg\} \end{align*} $$

coincides with the convex closed Jordan domain defined in Theorem 1.1.

Theorem 1.1 is a direct consequence of Theorem 1.2 with $g(z) = 1 + zf''(z)/f'(z)$ . For similar results, we refer to [Reference Ali and Vasudevarao1 Reference Ali and Vasudevarao1, Reference Ponnusamy, Vasudevarao and Yanagihara13, Reference Ul-Haq18, Reference Yanagihara19, Reference Yanagihara21] and the references therein.

Recently, the present authors [Reference Ali, Allu and Yanagihara2] extended Theorem 1.2 to the most general setting.

Let $\Omega $ be a simply connected domain in ${\mathbb C}$ with $\Omega \not = {\mathbb C}$ and let P be a conformal map of ${\mathbb D}$ onto $\Omega $ . Let ${\mathcal F}_\Omega $ be the class of analytic functions g in ${\mathbb D}$ with $g( {\mathbb D}) \subset \Omega $ . Then the map $P^{-1} \circ g$ maps ${\mathbb D}$ into ${\mathbb D}$ . For $c = (c_0,c_1, \ldots , c_n ) \in {\mathbb C}^{n+1}$ , let

$$ \begin{align*} {\mathcal F}_\Omega (c ) = \{ g \in {\mathcal F}_\Omega: (P^{-1} \circ g) (z) = c_0 + c_1z+\cdots +c_nz^n + \cdots \ \in {\mathbb D} \}. \end{align*} $$

Let $H^\infty ({\mathbb D})$ be the Banach space of analytic functions f in ${\mathbb D}$ with the norm defined by $\| f \|_\infty = \sup _{z \in {\mathbb D}} |f(z)|$ , and $H_1^\infty ({\mathbb D}) = \{ \omega \in H^\infty ({\mathbb D}) : \| \omega \|_\infty \leq 1 \}$ be the closed unit ball of $H^\infty ({\mathbb D})$ . The coefficient body ${\mathcal C}(n)$ defined by

$$ \begin{align*} {\mathcal C}(n)= \{ c &= (c_0,c_1, \ldots , c_n ) \in {\mathbb C}^{n+1}: \mbox{there exists } \omega \in H_1^\infty ({\mathbb D})\\ &\quad \mbox{such that } \omega (z) = c_0+c_1 z + \cdots + c_n z^n + \cdots \} \end{align*} $$

is a compact and convex subset of ${\mathbb C}^{n+1}$ . The coefficient body ${\mathcal C}(n)$ has been completely characterised by Schur [Reference Schur15, Reference Schur and Gohberg16]. For a detailed treatment, we refer to [Reference Foias and Frazho6, Ch. I] and [Reference Bakonyi and Constantinescu3, Ch. 1].

We call $c = (c_0, \ldots , c_n )$ the Carathéodory data of length $n+1$ . For given Carathéodory data $c =(c_0,\ldots ,c_n) \in {\mathbb C}^{n+1}$ , the Schur parameter $\gamma = (\gamma _0 , \ldots , \gamma _k)$ , $k=0,1, \ldots , n$ , is defined as follows.

For $j=0,1,\ldots $ , define recursively $c^{({\kern1.5pt}j)} = (c_0^{({\kern1.5pt}j)},c_1^{({\kern1.5pt}j)}, \ldots , c_{n-j}^{({\kern1.5pt}j)})$ and $\gamma _j = c_0^{({\kern1.5pt}j)}$ by

$$ \begin{align*} c_0^{({\kern1.5pt}j)} = \frac{c_1^{({\kern1.5pt}j-1)}}{1-|\gamma_{j-1}|^2}, \quad c_p^{({\kern1.5pt}j)} = \frac{c_{p+1}^{({\kern1.5pt}j-1)} + \overline{\gamma_{j-1}} \sum_{\ell =1}^p c_{p-\ell}^{({\kern1.5pt}j)} c_\ell^{({\kern1.5pt}j-1)}}{1-|\gamma_{j-1}|^2} \quad (1 \leq p \leq n- j) \end{align*} $$

with $c ^{(0)} =c = (c_0,\ldots ,c_n)$ . In the jth step ( $j=0,1,\ldots $ ), if $|\gamma _j|> 1$ , then we put $k=j$ and $\gamma = ( \gamma _0, \ldots , \gamma _j )$ ; if $|\gamma _j | =1$ , then we put $k=n$ and, for $p=j+1, \ldots , n$ , we take

$$ \begin{align*}\gamma_p = \begin{cases} \infty & \mbox{if}\ c_{p-j}^{({\kern1.5pt}j)} \not= 0, \\[6pt] 0 & \mbox{if}\ c_{p-j}^{({\kern1.5pt}j)} =0; \end{cases} \end{align*} $$

if $|\gamma _j | < 1$ , then we proceed to the $({\kern1.5pt}j+1)$ th step. Applying this procedure recursively, we obtain the Schur parameter $\gamma = ( \gamma _0 , \ldots , \gamma _k )$ , $k=0, \ldots , n$ , of $c =(c_0, \ldots , c_n)$ .

When $|\gamma _0|<1, \ldots , |\gamma _n| < 1$ , each of $c=(c_0, \ldots , c_n )= c^{(0)}$ and $\gamma = (\gamma _0, \ldots , \gamma _n )$ is uniquely determined by the other. For an explicit representation of $\gamma $ in terms of c, we refer to [Reference Schur15, Reference Schur and Gohberg16]. For given $c=(c_0, \ldots , c_n) \in {\mathbb C}^{n+1}$ , Schur [Reference Schur15, Reference Schur and Gohberg16] proved that $c \in \text {Int} \, {\mathcal C}(n)$ , $c \in \partial {\mathcal C}(n)$ and $c \not \in {\mathcal C}(n)$ are respectively equivalent to the conditions:

  • (C1) $k=n$ and $|\gamma _i|<1$ for $i=1,2,\ldots ,n$ ;

  • (C2) $k=n$ and $|\gamma _0|<1, \ldots , |\gamma _{i-1}|<1$ , $|\gamma _i|=1$ , $\gamma _{i+1}= \cdots = \gamma _n=0$ for some i with $i=0, \ldots , n$ ; and

  • (C3) neither $\mathrm {\mathbf {(C1)}}$ nor $\mathrm {\mathbf {(C2)}}$ holds.

For $c \in \text {Int} \, {\mathcal C}(n)$ , the Schur parameter can be computed as follows. Let $\omega \in H_1^\infty ({\mathbb D})$ be such that $\omega (z) = c_0+ c_1 z + \cdots + c_n z^n + \cdots $ . Define

$$ \begin{align*} \omega_0(z) = \omega(z) \quad\mbox{and}\quad \omega_k (z) = \displaystyle \frac{\omega_{k-1} (z)-\omega_{k-1}(0)}{z(1-\overline{\omega_{k-1}(0) }\omega_{k-1}(z))} \quad (k=1,2,\ldots,n). \end{align*} $$

Then $\gamma _p = \omega _p(0)$ and $\omega _p(z) = c_0^{(p)}+c_1^{(p)}z+ \cdots + c_{n-p}^{(p)}z^{n-p} + \cdots $ for $p=0,1, \ldots , n$ . For a detailed proof, we refer to [Reference Foias and Frazho6, Ch. 1].

For $a \in {\mathbb D}$ , define $\sigma _a \in \mbox {Aut} ( {\mathbb D})$ by

$$ \begin{align*}\sigma_a (z) = \frac{z+a}{1+ \overline{a}z}, \quad z \in {\mathbb D}. \end{align*} $$

For $\varepsilon \in \overline {\mathbb D}$ and the Schur parameter $\gamma =( \gamma _0,\ldots , \gamma _n)$ of $c \in \text {Int} \, {\mathcal C}(n)$ , let

(1.1) $$ \begin{align} \begin{aligned} \omega_{\gamma , \varepsilon }(z) &= \sigma_{\gamma_0} ( z \sigma_{\gamma_1} ( \cdots z \sigma_{\gamma_{n}} ( \varepsilon z) \cdots )), \quad z \in {\mathbb D}, \\ Q_{\gamma , j} (z, \varepsilon ) &= \int_0^z \zeta^j \{ P(\omega_{\gamma,\varepsilon} (\zeta )) - P(c_0) \}\, d \zeta , \quad z \in {\mathbb D} \text{ and } \varepsilon \in \overline{\mathbb D}.\end{aligned} \end{align} $$

Then $\omega _{\gamma , \varepsilon } \in H_1^\infty ({\mathbb D})$ with Carathéodory data c, that is, $\omega _{\gamma , \varepsilon }(z) = c_0+c_1z+\cdots + c_nz^n + \cdots $ . By using the Schur algorithm, the present authors [Reference Ali, Allu and Yanagihara2] obtained the following general result for the region of variability.

Theorem 1.3 [Reference Ali, Allu and Yanagihara2]

Let $n \in {\mathbb N} \cup \{ 0 \}$ , $j \in \{-1,0, 1,2 , \ldots \}$ and $c =(c_0, \ldots , c_n) \in {\mathbb C}^{n+1}$ be Carathéodory data. Let $\Omega $ be a convex domain in ${\mathbb C}$ with $\Omega \not = {\mathbb C}$ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ . For each fixed $z_0 \in {\mathbb D} \backslash \{0 \}$ , let

$$ \begin{align*} V_\Omega^j (z_0, c ) = \bigg\{ \int_0^{z_0} \zeta^j ( g( \zeta ) - g(0) ) \, d \zeta : g \in {\mathcal F}_\Omega (c ) \bigg\}. \end{align*} $$

  1. (i) If $c = (c_0, \ldots , c_n ) \in \text {Int} \,{\mathcal C}(n)$ and $\gamma =(\gamma _0, \ldots , \gamma _n )$ is the Schur parameter of c, then $Q_{\gamma , j}(z_0, \varepsilon )$ defined by (1.1) is a convex univalent function of $\varepsilon \in \overline {\mathbb D}$ and

    $$ \begin{align*}V_\Omega^j (z_0,c) = Q_{\gamma , j}(z_0, \overline{\mathbb D} ) := \{ Q_{\gamma , j}(z_0, \varepsilon ) : \varepsilon \in \overline{\mathbb D} \}. \end{align*} $$
    Furthermore,
    $$ \begin{align*}\int_0^{z_0} \zeta^j \{ g(\zeta ) - g(0) \} \, d \zeta = Q_{\gamma , j}(z_0, \varepsilon ) \end{align*} $$
    for some $g \in {\mathcal F}_\Omega (c )$ and $\varepsilon \in \partial {\mathbb D}$ if and only if $g (z) \equiv P( \omega _{\gamma , \varepsilon } (z ))$ .
  2. (ii) If $c \in \partial {\mathcal C}(n)$ and $\gamma =( \gamma _0, \ldots , \gamma _i, 0, \ldots , 0 )$ is the Schur parameter of c, then $V_\Omega ^j (z_0,c )$ reduces to a set consisting of a single point $w_0$ , where

    $$ \begin{align*}w_0 = \int_0^{z_0} \zeta^j \{ P( \sigma_{\gamma_0} ( \zeta \sigma_{\gamma_1}(\cdots \zeta \sigma_{\gamma_{i-1}} (\gamma_i \zeta ) \cdots )))- P(c_0) \} \, d \zeta. \end{align*} $$
  3. (iii) If $c \not \in {\mathcal C}(n)$ , then $V_\Omega ^j (z_0,c ) = \emptyset $ .

In the present article, we first show that in the case $n=0$ , $j=-1$ and $c=0$ , the conclusion of Theorem 1.3 holds when one weakens the assumption that $\Omega $ is convex to $\Omega $ is starlike with respect to $P(0)$ (Theorem 2.1). We then present several applications of Theorems 1.3 and 2.1 to obtain the precise variability region for several well-known subclasses of analytic and univalent functions. We also obtain certain subordination results.

2 Main results

Before we state our first result, let us recall the definition of subordination. For two analytic functions f and g in $\mathbb {D}$ , we say that f is subordinate to g, written as $f \prec g$ or $f(z) \prec g(z)$ , if there exists an analytic function $\omega : \mathbb {D} \rightarrow \mathbb {D}$ with $\omega (0)=0$ such that $f(z)= g(\omega (z))$ for $z\in \mathbb {D}$ . If g is univalent in $\mathbb {D}$ , the subordination $f \prec g$ is equivalent to $f(0)= g(0)$ and $f(\mathbb {D})\subseteq g(\mathbb {D})$ .

Theorem 2.1. Let $b \in {\mathbb C}$ , $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $\Omega $ be a starlike domain with respect to b satisfying $\Omega \not = {\mathbb C}$ . Let P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(0) =b$ . Then the region of variability

$$ \begin{align*} V_\Omega^{-1} (z_0,0) = \bigg\{\!\int_0^{z_0} \frac{g(\zeta ) - b}{\zeta } \, d \zeta : g \in {\mathcal F}_\Omega , g(0) = b \bigg\} \end{align*} $$

is a convex closed Jordan domain that coincides with the set $K ( \overline {\mathbb D}(0, |z_0| ) )$ , where $K(z) = \int _0^z \zeta ^{-1} (P(\zeta ) -b) \, d \zeta $ . Furthermore, for $| \varepsilon | =1$ and $g \in {\mathcal F}_\Omega $ with $g(0) = b$ , the relation $\int _0^{z_0} \zeta ^{-1}(g(\zeta ) - b) \, d \zeta = K(\varepsilon z_0)$ holds if and only if $g(z) \equiv P ( \varepsilon z )$ .

Proof. Let $g \in {\mathcal A} ({\mathbb D})$ be such that $g(0)=b$ and $g({\mathbb D}) \subset \Omega $ . Then g is subordinate to P. By using a result of Suffridge [Reference Suffridge17], we may conclude that

$$ \begin{align*} \int_0^z \frac{ g(\zeta) -b }{\zeta} \, d \zeta \prec K(z) := \int_0^z \frac{ P(\zeta) -b }{\zeta} \, d \zeta. \end{align*} $$

Thus, there exists $\omega \in H_1^\infty ({\mathbb D})$ with $\omega (0)=0$ and $\int _0^z \zeta ^{-1} \{g(\zeta ) -b \}\, d \zeta = K(\omega (z))$ and so

$$ \begin{align*}V_\Omega^{-1} (z_0,0) \subset \{ K(\omega (z_0) ) : \omega \in H_1^\infty ({\mathbb D}) \mbox{ and } \omega(0) = 0 \} = K( \overline{\mathbb D}(0,|z_0| )). \end{align*} $$

For $\varepsilon \in \overline {\mathbb D}$ , let $g_\varepsilon (z) = P(\varepsilon z)$ . Then $g_\varepsilon (0) = P(0) = b$ and $g_\varepsilon ({\mathbb D}) = P({\mathbb D})=\Omega $ . Therefore,

$$ \begin{align*}K(\varepsilon z_0)=\int_0^{\varepsilon z_0} \frac{ P(\zeta) -b }{\zeta} \, d \zeta = \int_0^{z_0} \frac{ g_\varepsilon(\zeta) -b }{\zeta} \, d \zeta \in V_\Omega^{-1} (z_0, 0) \end{align*} $$

and hence $K(\overline {\mathbb D}(0,|z_0|)) \subset V_\Omega ^{-1} (z_0,0)$ .

We now deal with the uniqueness. Suppose that

(2.1) $$ \begin{align} \int_0^{z_0} \frac{g( \zeta ) - b}{\zeta} \, d \zeta = K(\varepsilon z_0) \end{align} $$

for some g with $g(0)=b$ and $g({\mathbb D}) \subset \Omega $ and $| \varepsilon | =1$ . Then there exists $\omega \in H_1^\infty ({\mathbb D})$ with $\omega (0)=0$ such that $\int _0^z \zeta ^{-1} \{g(\zeta ) -b \} \, d \zeta = K(\omega (z))$ . From (2.1), $K( \omega (z_0)) = K ( \varepsilon z_0 )$ . Since K is a convex univalent function, $\omega (z_0) = \varepsilon z_0$ . It follows from Schwarz’s lemma that $\omega (z) \equiv \varepsilon z$ . Consequently, $g(z) \equiv P(\varepsilon z)$ .

2.1 The class $\mathcal {CV} (\Omega )$

Suppose that $\Omega $ is a simply connected domain with $1 \in \Omega $ . Define

$$ \begin{align*} \mathcal{CV} (\Omega ) = \bigg\{ f \in {\mathcal A}_0({\mathbb D}) : 1 + z \frac{f''(z)}{f'(z)} \in \Omega \text{ for all } z\in{\mathbb D} \bigg\}. \end{align*} $$

Let P be the conformal map of $\mathbb {D}$ onto $\Omega $ with $P(0)=1$ . Then $1+zf''(z)/f'(z)\prec P$ for each $f\in \mathcal {CV}(\Omega )$ . For $\alpha \in \mathbb {R}$ , let $\mathbb {H}_{\alpha }:=\{z\in \mathbb {C}: \mathrm {Re}\, z>\alpha \}$ and $\mathbb {H}_{0}=\mathbb {H}$ . If $\Omega = {\mathbb H}$ and $P(z)=(1+z)/(1-z)$ , then $\mathcal {CV}({\mathbb H}) = \mathcal {CV}$ is the well-known class of normalised convex functions in ${\mathbb D}$ . If $\Omega \subset {\mathbb H}$ , then $\mathcal {CV}(\Omega )$ is a subclass of $\mathcal {CV}$ . For $0 \leq \alpha < 1$ , $\mathcal {CV}(\alpha ):=\mathcal {CV}(\mathbb {H}_{\alpha })$ is the class of convex functions of order $\alpha $ . In this case, we have $P(z) \kern-0.6pt =\kern-0.6pt \{1 \kern-0.5pt +\kern-0.5pt (1\kern-0.5pt -2 \alpha )z\}/(1\kern-0.5pt -z)$ . If $0 \kern-0.5pt<\kern-0.5pt \beta \kern-0.5pt\leq\kern-0.5pt 1$ , then $\mathcal {CV}_{\beta }\kern-0.5pt:=\mathcal {CV}( \{ w \in {\mathbb C}\kern-0.5pt : |\kern-1.5pt\arg \, w| \kern-0.5pt<\kern-0.5pt \pi \beta /2\})$ is the class of strongly convex functions of order $\beta $ and $P(z) = \{(1+z)/(1-z)\}^\beta $ .

As an application of Theorem 2.1, we determine the variability region of $\log f'(z_0)$ when f ranges over $\mathcal {CV}(\Omega )$ .

Theorem 2.2. Let $\Omega $ be a starlike domain with respect to $1$ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(0)=1$ . Then, for each fixed $z_0 \in {\mathbb D} \backslash \{ 0 \}$ , the region of variability

$$ \begin{align*} V_{\mathcal{CV}(\Omega)}(z_0):= \{ \log f'(z_0 ) : f \in \mathcal{CV}( \Omega ) \} \end{align*} $$

is a convex closed Jordan domain that coincides with the set $K( \overline {\mathbb D}(0,|z_0|))$ , where $K(z) = \int _0^z \zeta ^{-1} (P( \zeta )- 1) \, d \zeta $ is a convex univalent function in ${\mathbb D}$ . Furthermore, $\log f'(z_0) = K( \varepsilon z_0)$ for some $\varepsilon $ with $|\varepsilon | =1$ and $f \in \mathcal {CV}( \Omega )$ if and only if $f(z) = \varepsilon ^{-1}F(\varepsilon z)$ , where $F(z)= \int _0^z e^{K(\zeta )} \, d \zeta $ .

Proof. Let $c = 0 \in {\mathbb C}^1$ be given Carathéodory data of length one. In that case, ${\mathcal F}_\Omega (0)= \{ g \in {\mathcal A}({\mathbb D}): g({\mathbb D}) \subset \Omega \text { and } (P^{-1} \circ g) (0) = 0 \}$ . It is easy to see that the map

$$ \begin{align*}\mathcal{CV}( \Omega ) \ni f \mapsto g(z) = 1 + z \frac{f''(z)}{f'(z)} \in {\mathcal F}_\Omega (0) \end{align*} $$

is bijective. Indeed, since $g(z) = 1+ zf''(z)/f'(z)$ is analytic in ${\mathbb D}$ , $f'(z)$ does not have zeros in ${\mathbb D}$ and so

(2.2) $$ \begin{align} \log f'(z)= \int_0^z \zeta^{-1} (g( \zeta )-1)\, d \zeta, \end{align} $$

where $\log f'$ is a single-valued branch of the logarithm of $f'$ with $\log f'(0) = 0$ . The conclusions now follow from Theorem 2.1 and (2.2).

As an application of Theorem 1.3, we determine the variability region of $\log f'(z_0)$ when f ranges over $\mathcal {CV}(\Omega )$ with the conditions $f''(0) = 2 \lambda $ and $f'''(0) = 6 \mu $ . Here $z_0 \in {\mathbb D} \backslash \{ 0 \}$ ; $\lambda , \mu \in {\mathbb C}$ are arbitrarily preassigned values. By letting $\Omega $ be one of the particular domains mentioned above, we can determine variability regions of $\log f'(z_0)$ for various subclasses of $\mathcal {CV}$ .

Let $\Omega $ be a simply connected domain with $\Omega \not = {\mathbb C}$ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(z)= \alpha _0 + \alpha _1 z + \alpha _2z^2 + \cdots $ . Let g be an analytic function in ${\mathbb D}$ with $g(z)= b_0+b_1 z + b_2 z^2 +\cdots $ satisfying $g({\mathbb D}) \subset \Omega $ . For simplicity, we assume that $P(0)=g(0)$ , that is, $\alpha _0 =b_0$ . Let

$$ \begin{align*} \omega (z) = (P^{-1}\circ g)(z) = c_0 + c_1 z + c_2 z^2 + \cdots ,\quad z \in {\mathbb D}. \end{align*} $$

Then

(2.3) $$ \begin{align} c_0 = 0, \quad c_1 = \frac{b_1}{\alpha_1}, \quad c_2 = \frac{\alpha_1^2 b_2 - \alpha_2 b_1^2}{\alpha_1^3}. \end{align} $$

By Schwarz’s lemma, $|b_1| \leq |\alpha _1|$ with equality if and only if $g(z) = P(\varepsilon z)$ for some ${\varepsilon \in \partial {\mathbb D}}$ . Let $\gamma = (\gamma _0,\gamma _1,\gamma _2)$ be the Schur parameter of the Carathéodory data $c = (0,c_1,c_2)$ . Then $\gamma _0 = \omega (0) = c_0 = 0$ and

$$ \begin{align*} \omega_1(z) = \frac{\omega(z)}{z}, \quad \gamma_1 = \omega_1 (0), \quad \omega_2(z) = \frac{\omega_1 (z)-\gamma_1}{z(1-\overline{\gamma_1}\omega_1(z))}, \quad \gamma_2 = \omega_2 (0). \end{align*} $$

A simple computation shows that

(2.4) $$ \begin{align} \gamma_0 = 0, \quad \gamma_1 = c_1 = \frac{b_1}{\alpha_1}, \quad \gamma_2 = \frac{c_2}{1-|c_1|^2} = \frac{ \overline{\alpha_1} ( \alpha_1^2 b_2 - \alpha_2 b_1^2 )} {\alpha_1^2(|\alpha_1|^2 -|b_1|^2)}. \end{align} $$

For $f \in \mathcal {CV}( \Omega )$ and $k \in {\mathbb N}$ , let $a_k(f) = f^{(k)}(0)/k!$ . Also let $g(z) = 1 + zf''(z)/f'(z) = 1+b_1z +b_2z^2 +\cdots $ . Then

(2.5) $$ \begin{align} b_1 = 2 a_2(f) \quad\mbox{and}\quad b_2 = 6 a_3(f) -4 a_2(f)^2. \end{align} $$

From (2.4) and (2.5),

$$ \begin{align*} \gamma_0 = 0, \quad \gamma_1 = \frac{2 a_2(f) }{\alpha_1}, \quad \gamma_2 = \frac{ 2\overline{\alpha_1} \{ 3\alpha_1^2 a_3(f) - 2(\alpha_1^2+\alpha_2) a_2(f)^2 \}} {\alpha_1^2(|\alpha_1|^2-4|a_2(f)|^2)}. \end{align*} $$

Let $ {\mathcal A} (2 , \Omega ) = \{ a_2(f) : f \in \mathcal {CV} ( \Omega )\}.$ By Schwarz’s lemma, ${\mathcal A} (2 , \Omega ) = \overline {\mathbb D}(0, |\alpha _1|/2)$ . For $f \in \mathcal {CV}(\Omega )$ and $\lambda \in \partial {\mathcal A} (2 , \Omega )$ , we have $a_2 (f) = \lambda $ if and only if $f(z) \equiv \gamma _1^{-1}F(\gamma _1 z)$ , where $\gamma _1 = 2 \lambda / \alpha _1$ . By applying Theorem 1.3 with $n=1$ and $j=-1$ , we obtain the following generalisation of Theorem 1.1.

Theorem 2.3. Let $\Omega $ be a convex domain with $1 \in \Omega $ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(z)=1+ \alpha _1 z + \cdots $ . For $\lambda \in {\mathbb C}$ with $|\lambda | \leq |\alpha _1|/2 $ and $z_0 \in {\mathbb D} \backslash \{ 0 \}$ , consider the variability region

$$ \begin{align*}V_{\mathcal{CV}(\Omega)}(z_0,\lambda):= \{ \log f'(z_0) : f \in \mathcal{CV}( \Omega ) \mbox{ with } a_2(f) = \lambda \}. \end{align*} $$

  1. (i) If $|\lambda |= |\alpha _1|/2 $ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda )$ reduces to a set consisting of a single point $w_0$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\gamma _1 \zeta )- 1 \} \, d \zeta $ with $\gamma _1 = 2 \lambda /\alpha _1$ .

  2. (ii) If $|\lambda | < |\alpha _1|/2 $ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda ) = Q_{\gamma _1}(z_0, \overline {\mathbb D} )$ , where $\gamma _1 = 2 \lambda /\alpha _1$ and

    $$ \begin{align*}Q_{\gamma_1}(z_0, \varepsilon ) = \int_0^{z_0} \zeta^{-1} \bigg\{ P \bigg( \zeta \frac{\varepsilon \zeta + \gamma_1} {1+ \overline{\gamma_1} \varepsilon \zeta} \bigg) -1 \bigg\} \, d \zeta \end{align*} $$
    is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ . Furthermore, $ \log f'(z_0) = Q_{\gamma _1}(z_0, \varepsilon ) $ for some $\varepsilon \in \partial {\mathbb D}$ and $f \in \mathcal {CV}( \Omega )$ with $a_2(f) = \lambda $ if and only if
    $$ \begin{align*}f(z) = \int_0^z e^{Q_{\gamma_1}(\zeta , \varepsilon )} \, d \zeta , \quad z \in {\mathbb D}. \end{align*} $$

Next let $ {\mathcal A} (3 , \Omega ) = \{ (a_2(f), a_3(f) ) \in {\mathbb C}^2 : f \in \mathcal {CV}( \Omega ) \}$ and, for $\lambda , \mu \in {\mathbb C}$ , let $\gamma _1 := \gamma _1 (\lambda ,\mu )$ and $\gamma _2 := \gamma _2 (\lambda , \mu )$ be given by

(2.6) $$ \begin{align} \gamma_1 = \frac{2 \lambda }{\alpha_1} \end{align} $$

and

(2.7) $$ \begin{align} \gamma_2 = \begin{cases} \displaystyle \frac{ 2\overline{\alpha_1} \{ 3\alpha_1^2 \mu - 2(\alpha_1^2+\alpha_2)\lambda^2 \}} {\alpha_1^2(|\alpha_1|^2-4|\lambda|^2)} & \text{if } |\gamma_1| < 1, \\[6pt] 0 & \text{if } |\gamma_1| =1 \text{ and } 3\alpha_1^2 \mu = 2(\alpha_1^2+\alpha_2)\lambda^2, \\[6pt] \infty & \text{if } |\gamma_1| = 1 \text{ and } 3\alpha_1^2 \mu \not= 2(\alpha_1^2+\alpha_2)\lambda^2. \end{cases} \end{align} $$

Then $(\lambda , \mu ) \in {\mathcal A} (3 , \Omega )$ if and only if one of the following conditions holds:

  1. (a) $|\gamma _1 (\lambda , \mu ) | = 1 $ and $\gamma _2 ( \lambda , \mu )=0$ ;

  2. (b) $|\gamma _1 (\lambda , \mu ) | < 1 $ and $ | \gamma _2 ( \lambda , \mu ) |=1$ ;

  3. (c) $|\gamma _1 (\lambda , \mu ) | < 1 $ and $| \gamma _2 ( \lambda , \mu )| < 1$ .

In case (a), for $f \in \mathcal {CV}( \Omega )$ , $(a_2(f), a_3(f)) = (\lambda , \mu )$ if and only if $g(z) = P(\gamma _1 z )$ , that is, $f(z) = \gamma _1 F(\gamma _1 z)$ , where $\gamma _1 = \gamma _1(\lambda , \mu )$ . Similarly, in case (b), for $f \in \mathcal {CV}( \Omega )$ , $(a_2(f), a_3(f)) = (\lambda , \mu ) $ if and only if $g(z) = P(z \sigma _{\gamma _1}( \gamma _2 z) )$ , that is,

$$ \begin{align*}f(z) = \int_0^z \exp\bigg[ \int_0^{\zeta_1} \zeta_2^{-1} \{ P(\zeta_2 \sigma_{\gamma_1}( \gamma_2 \zeta_2) )-1\} \, d \zeta_2 \bigg]\, d \zeta_1. \end{align*} $$

We note that $(\lambda , \mu ) \in \partial {\mathcal A} (3 , \Omega )$ if and only if either (a) or (b) holds.

Suppose that (c) holds, that is, $(\lambda , \mu ) \in \text {Int} \, {\mathcal A} (3 , \Omega )$ . Then, for $f \in \mathcal {CV}( \Omega )$ , $(a_2(f), a_3(f)) = (\lambda , \mu )$ if and only if there exists $\omega ^* \in H_1^\infty ({\mathbb D})$ such that

$$ \begin{align*}g(z) = 1 + \frac{zf''(z)}{f'(z)} = P(z \sigma_{\gamma_1}(z \sigma_{\gamma_2}(z \omega^*(z))) ). \end{align*} $$

Let

(2.8) $$ \begin{align} Q_{\gamma_1, \gamma_2}(z, \varepsilon ) = \int_0^z \zeta^{-1} \{ P( \zeta \sigma_{\gamma_1}(\zeta \sigma_{\gamma_2} ( \varepsilon \zeta )) ) -1 \} \, d \zeta , \quad z \in {\mathbb D} \text{ and } \varepsilon \in \overline{\mathbb D}. \end{align} $$

Then, for any fixed $\varepsilon \in \overline {\mathbb D}$ , $Q_{\gamma _1, \gamma _2}(z, \varepsilon )$ is an analytic function of $z \in {\mathbb D}$ and, for each fixed $z \in {\mathbb D}$ , $Q_{\gamma _1, \gamma _2}(z, \varepsilon )$ is an analytic function of $\varepsilon \in \overline {\mathbb D}$ . Theorem 1.3 leads to the following result.

Theorem 2.4. Let $\Omega $ be a convex domain with $1 \in \Omega $ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(z)=1+ \alpha _1 z + \cdots $ . Let $(\lambda , \mu ) \in {\mathbb C}^2$ and $\gamma _1 = \gamma _1(\lambda , \mu )$ and $\gamma _2 = \gamma _2(\lambda , \mu )$ be defined by (2.6) and (2.7), respectively. For $z_0 \in {\mathbb D} \backslash \{ 0 \}$ , consider the variability region

$$ \begin{align*}V_{\mathcal{CV}(\Omega)}(z_0,\lambda,\mu):= \{ \log f'(z_0) : f \in \mathcal{CV}( \Omega ) \text{ with } (a_2(f),a_3(f)) = (\lambda , \mu) \}. \end{align*} $$

  1. (i) If $|\gamma _1(\lambda , \mu )|=1$ and $|\gamma _2(\lambda , \mu )| =0$ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda ,\mu )$ reduces to a set consisting of a single point $w_0$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\gamma _1 \zeta )- 1 \} \, d \zeta $ .

  2. (ii) If $|\gamma _1(\lambda , \mu )| <1$ and $|\gamma _2(\lambda , \mu )| =1$ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda ,\mu )$ reduces to a set consisting of a single point $w_0$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\zeta \sigma _{\gamma _1}( \gamma _2 \zeta ))- 1 \} \, d \zeta $ .

  3. (iii) If $|\gamma _1(\lambda , \mu )| <1$ and $|\gamma _2(\lambda , \mu )| <1$ , that is, $(\lambda , \mu ) \in \text {Int} \, {\mathcal A}(3, \Omega )$ , then $Q_{\gamma _1, \gamma _2}(z_0, \varepsilon )$ defined by (2.8) is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ and

    $$ \begin{align*}V_{\mathcal{CV}(\Omega)}(z_0,\lambda,\mu) = Q_{\gamma_1, \gamma_2}(z_0, \overline{\mathbb D}). \end{align*} $$
    Furthermore, $\log f'(z_0) = Q_{\gamma _1, \gamma _2}(z_0, \varepsilon )$ for some $\varepsilon $ with $| \varepsilon | =1$ and $f \in \mathcal {CV}( \Omega ) $ with $(a_2(f),a_3(f)) = (\lambda , \mu )$ if and only if
    $$ \begin{align*}f(z) = \int_0^z \exp \bigg[ \int_0^{\zeta_1} \zeta_2^{-1} \{ P ( z \sigma_{\gamma_1}(z \sigma_{\gamma_2}(\varepsilon \zeta_2 ))) - 1 \} \, d \zeta_2 \bigg] \, d \zeta_1. \end{align*} $$

Remark 2.5. For a simply connected domain $\Omega $ with $1 \in \Omega $ , define

$$ \begin{align*}\mathcal{S}^*( \Omega ) = \bigg\{ f \in {\mathcal A}_0({\mathbb D} ) : z \frac{f'(z)}{f(z)} \in \Omega \text{ for all } z\in{\mathbb D} \bigg\}. \end{align*} $$

Then $f \in \mathcal {CV} (\Omega )$ if and only if $zf'(z) \in \mathcal {S}^*( \Omega )$ . Thus, we can easily translate the theorems of this section to results about variability regions of $\log \{ f(z_0)/z_0 \}$ when f ranges over $\mathcal {S}^* ( \Omega )$ with or without the conditions $f''(0) = \lambda $ and $f'''(0) = \mu $ .

2.2 Uniformly convex functions

For $0\le k < \infty $ , the class $k\mbox {-}\mathcal {UCV}$ of k-uniformly convex functions is $\mathcal {CV}(\Omega _k)$ , where $\Omega _k:=\{ w \in {\mathbb C} : \text {Re} \, w> k |w-1| \}$ . Here $\Omega _k$ is a convex domain containing $1$ , bounded by a conic section. The conformal map $P_k$ that maps the unit disk $\mathbb {D}$ conformally onto $\Omega _k$ is given by

$$ \begin{align*}P_k= \begin{cases} \displaystyle \frac{1}{1-k^2}\cosh\bigg(A\log\frac{1+\sqrt{z}}{1-\sqrt{z}}\bigg)-\frac{k^2}{1-k^2} & \mbox{for } 0\le k<1,\\[10pt] \displaystyle 1+\frac{2}{\pi^2}\bigg(\log\frac{1+\sqrt{z}}{1-\sqrt{z}}\bigg)^2 & \mbox{for } k=1,\\[10pt] \displaystyle \frac{1}{k^2-1} \sin \bigg(\frac{\pi}{2K(x)} \int_0^{u(z)/\sqrt{x}} \frac{dt}{\sqrt{(1-t^2)(1-x^2 t^2)}}\bigg) + \frac{k^2}{k^2-1} & \mbox{for } 1<k<\infty, \end{cases} \end{align*} $$

where $A=(2/\pi )\operatorname {\mathrm {\operatorname {arc}}}\cos k$ , $u(z)=(z-\sqrt {x})/(1-\sqrt {x}z)$ and $K(x)$ is the elliptic integral defined by

$$ \begin{align*}K(x)=\int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-x^2 t^2)}},\quad x\in(0,1). \end{align*} $$

For more details concerning uniformly convex functions, we refer to [Reference Kanas and Wiśniowska10, Reference Ronning14]. When $k=0$ , the class $0\mbox {-}\mathcal {UCV}$ is essentially the same as $\mathcal {CV}$ . Let $P_k(z)= 1+\alpha _{k1}z+\alpha _{k2}z^2+\cdots $ . Then it is a simple exercise to see that

$$ \begin{align*}\alpha_{k1}= \begin{cases} \displaystyle \frac{2A^2}{1-k^2} & \mbox{for}\ 0\le k<1,\\[6pt] \displaystyle 8/\pi^2 & \mbox{for}\ k=1,\\[6pt] \displaystyle \frac{\pi^2}{4(k^2-1)K^2(x)(1+x)\sqrt{x}} & \mbox{for}\ 1<k<\infty. \end{cases} \end{align*} $$

Let $f\in k\mbox {-}\mathcal {UCV}$ be of the form $f(z)=z+a_2z+a_3z^2+\cdots $ and $g(z)=1+zf''(z)/f'(z)$ . Then, from (2.3) and (2.5), we obtain $|a_2|\le \alpha _{k1}/2$ . For $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $|\lambda |\le \alpha _{k1}/2$ , consider the region of variability

$$ \begin{align*}V_{k\mbox{-}\mathcal{UCV}}(z_0,\lambda)= \{ \log f'(z_0) : f \in k\mbox{-}\mathcal{UCV} \mbox{ with } a_2(f) = \lambda \}. \end{align*} $$

The following corollary is a simple consequence of Theorem 2.3.

Corollary 2.6. Let $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $\lambda \in {\mathbb C}$ with $|\lambda | \leq \alpha _{1k}/2$ . Let $\gamma _1 = 2 \lambda /\alpha _{1k}$ .

  1. (i) If $|\gamma _1 |= 1 $ , then $V_{k\mbox {-}\mathcal {UCV}}(z_0,\lambda )=\{w_0\}$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P_k(\gamma _1 \zeta )- 1 \} \, d \zeta $ .

  2. (ii) If $|\gamma _1 |<1 $ , then $V_{k\mbox {-}\mathcal {UCV}}(z_0,\lambda ) = Q_{\gamma _1}(z_0, \overline {\mathbb D} )$ , where

    $$ \begin{align*}Q_{\gamma_1}(z_0, \varepsilon ) = \int_0^{z_0} \zeta^{-1} \bigg\{ P_k \bigg( \zeta \frac{\varepsilon \zeta + \gamma_1} {1+ \overline{\gamma_1} \varepsilon \zeta} \bigg) -1 \bigg\} \, d \zeta \end{align*} $$
    is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ . Furthermore,
    $$ \begin{align*}\log f'(z_0) = Q_{\gamma_1}(z_0, \varepsilon ) \end{align*} $$
    for some $\varepsilon \in \partial {\mathbb D}$ and $f \in k\mbox {-}\mathcal {UCV}$ with $a_2(f) = \lambda $ if and only if
    $$ \begin{align*}f(z) = \int_0^z e^{Q_{\gamma_1}(\zeta , \varepsilon )} \, d \zeta , \quad z \in {\mathbb D}. \end{align*} $$

2.3 Janowski starlike and convex functions

For $A,B\in \mathbb {C}$ with $|B|\le 1$ and $A\ne B$ , let $P_{A,B}(z):=(1+Az)/(1+Bz)$ . Then $P_{A,B}$ is a conformal map of $\mathbb {D}$ onto a convex domain $\Omega _{A,B}$ . In this case, the classes $\mathcal {S}^* ( \Omega _{A,B} )$ and $\mathcal {CV} (\Omega _{A,B})$ reduce to

$$ \begin{align*}\mathcal{S}^*(A,B):=\bigg\{f \in {\mathcal A}_0: \frac{z f'(z)}{f(z)} \prec \frac{1+A z}{1+B z} \bigg\} \end{align*} $$

and

$$ \begin{align*}\mathcal{CV}(A,B):=\bigg\{f \in {\mathcal A}_0: \frac{z f''(z)}{f'(z)}+1 \prec \frac{1+A z}{1+B z} \bigg\}, \end{align*} $$

respectively. Since $P_{A,B}(\mathbb {D})=P_{-A,-B}(\mathbb {D})$ , without loss of generality we may assume that $A\in \mathbb {C}$ with $-1\le B\le 0$ and $A\ne B$ . It is important to note that functions in $\mathcal {S}^*(A,B)$ with $A\in \mathbb {C}$ , $-1\le B\le 0$ and $A\ne B$ are not in general univalent. For ${-1\le B<A\le 1}$ , it is easy to see that $\Omega _{A,B}\subset \mathbb {H}$ and so $\mathcal {S}^*(A,B)\subset \mathcal {S}^*$ . A similar result holds for $\mathcal {CV}(A,B)$ . For $-1\le B<A\le 1$ , the class $\mathcal {S}^*(A,B)$ was first introduced and investigated by Janowski [Reference Janowski9].

Note that $P_{A,B}(z):=(1+Az)/(1+Bz)=1+(A-B)z+\cdots $ . For $f\in \mathcal {CV}(A,B)$ , from (2.3) and (2.5) we immediately obtain $|a_2(f)|\le |A-B|/2$ . For $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $|\lambda |\le |A-B|/2$ , consider

$$ \begin{align*} V_{\mathcal{CV}(A,B)}(z_0) &:= \{ \log f'(z_0 ) : f \in \mathcal{CV}(A,B) \},\\ V_{\mathcal{CV}(A,B)}(z_0,\lambda) &:= \{ \log f'(z_0) : f \in \mathcal{CV}(A,B) \mbox{ with } a_2(f) = \lambda \}. \end{align*} $$

The following corollary is a simple consequence of Theorems 2.2 and 2.3.

Corollary 2.7. Let $z_0 \in {\mathbb D} \backslash \{ 0 \}$ be fixed and $\lambda \in \mathbb {C}$ be such that $|\lambda |\le |A-B|/2$ . Also, let $\gamma _1 = 2 \lambda /(A-B)$ .

  1. (i) The region of variability $V_{\mathcal {CV}(A,B)}(z_0)$ is a convex, closed Jordan domain and coincides with the set $K( \overline {\mathbb D}(0,|z_0|))$ , where

    $$ \begin{align*}K(z) = \int_0^z \frac{A-B}{1+B\zeta} \, d \zeta \end{align*} $$
    is a convex univalent function in ${\mathbb D}$ . Furthermore, $\log f'(z_0) = K( \varepsilon z_0)$ for some $\varepsilon $ with $|\varepsilon | =1$ and $f \in \mathcal {CV}(A,B)$ if and only if $f(z) = \varepsilon ^{-1}F(\varepsilon z)$ , where $F(z)= \int _0^z e^{K(\zeta )} \, d \zeta $ .
  2. (ii) If $|\gamma _1 |= 1 $ , then $V_{\mathcal {CV}(A,B)}(z_0,\lambda )=\{w_0\}$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\gamma _1 \zeta )- 1 \} \, d \zeta $ .

  3. (iii) If $|\gamma _1 |< 1 $ , then $V_{\mathcal {CV}(A,B)}(z_0,\lambda ) = Q_{\gamma _1}(z_0, \overline {\mathbb D} )$ , where

    $$ \begin{align*} Q_{\gamma_1}(z_0, \varepsilon ) = \int_0^{z_0} \frac{(A-B)\sigma_{\gamma_1}(\varepsilon \zeta)}{1+ B\zeta \sigma_{\gamma_1}(\varepsilon \zeta)} \, d \zeta \end{align*} $$
    is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ . Furthermore,
    $$ \begin{align*} \log f'(z_0) = Q_{\gamma_1}(z_0, \varepsilon ) \end{align*} $$
    for some $\varepsilon $ with $\varepsilon \in \partial {\mathbb D}$ and $f \in \mathcal {CV}( \Omega )$ with $a_2(f) = \lambda $ if and only if
    $$ \begin{align*}f(z) = \int_0^z e^{Q_{\gamma_1}(\zeta , \varepsilon )} \, d \zeta , \quad z \in {\mathbb D}. \end{align*} $$

Remark 2.8. The region of variability $V_{\mathcal {CV}(A,B)}(z_0,\lambda )$ for the class $\mathcal {CV}(A,B)$ was first obtained by Ul-Haq [Reference Ul-Haq18] for $-1\le B<0$ and $A>B$ . Although Ul-Haq considered the problem for $A\in \mathbb {C}$ , $0<B\le 1$ and $A\ne B$ , the computation is valid only for $-1\le B<0$ and $A>B$ . We also note that the Herglotz representation [Reference Ul-Haq18, formula (2)] for functions in $\mathcal {CV}(A,B)$ is not valid when $-1< B<0$ .

In particular, for $A= e^{-2i\alpha }$ with $\alpha \in (-\pi /2,\pi /2)$ and $B= -1$ , the class $\mathcal {CV}(A,B)$ reduces to the class of functions that satisfy $\mathrm {Re}\, \{e^{i\alpha }(1+zf''(z)/f'(z))\}>0$ for $z\in \mathbb {D}$ . The functions in this class, denoted by $\mathcal {S}_{\alpha }$ , are known as Robertson functions. If we choose $A= e^{-2i\alpha }$ with $\alpha \in (-\pi /2,\pi /2)$ and ${B= -1}$ in Corollary 2.7, then we obtain the result obtained in [Reference Ponnusamy, Vasudevarao and Yanagihara13].

For $A= 1-2\alpha $ with $-1/2\le \alpha <1$ and $B= -1$ , the class $\mathcal {CV}(A,B)$ reduces to the class of functions f satisfying $\mathrm {Re}\, (1+zf''(z)/f'(z))>\alpha $ for $z\in \mathbb {D}$ . This is the class $\mathcal {CV}(\alpha )$ of convex functions of order $\alpha $ . For $0\le \alpha <1$ , $\mathcal {CV}(\alpha )\subset \mathcal {CV}$ . On the other hand, for $-1/2\le \alpha <0$ , functions in $\mathcal {CV}(\alpha )$ are convex functions in some direction (see [Reference Ali and Vasudevarao1 Reference Ali, Allu and Yanagihara2]). If we choose $A= 1-2\alpha $ with $-1/2\le \alpha <1$ and ${B= -1}$ in Corollary 2.7, then we obtain the precise region of variability $V_{\mathcal {CV}(\alpha )}(z_0):= \{ \log f'(z_0 ) : f \in \mathcal {CV}(\alpha ) \}$ and $V_{\mathcal {CV}(\alpha )}(z_0,\lambda ):=\{ \log f'(z_0) : f \in \mathcal {CV}(\alpha ) \mbox { and } a_2(f) = \lambda \}$ , which gives a generalisation of Theorem 1.1. In particular, if we choose $A= 2$ and $B= -1$ in Corollary 2.7, then we obtain the result obtained by Ponnusamy and Vasudevarao [Reference Ponnusamy and Vasudevarao11, Theorem 2.6]. Similarly, for $A= -2$ and $B= -1$ , the class $\mathcal {CV}(A,B)$ reduces to the class of functions f that satisfy $\mathrm {Re}\, (1+zf''(z)/f'(z))<3/2$ for $z\in \mathbb {D}$ . Functions in the class $\mathcal {CV}(-2,-1)$ are starlike, but not necessarily convex [Reference Ali and Vasudevarao1]. If we choose $A= -2$ and $B= -1$ in Corollary 2.7, then we obtain the result in [Reference Ponnusamy and Vasudevarao11, Theorem 2.8].

Since $f \in \mathcal {CV}(A,B)$ if and only if $zf'(z) \in \mathcal {S}^*(A,B)$ , we can easily translate the above results about variability regions of $\log \{ f(z_0)/z_0 \}$ when f ranges over $\mathcal {S}^*(A,B)$ with or without the condition $f''(0) = 2\lambda $ .

3 Concluding remark

Theorem 2.1 demonstrates that our results are closely related to the concept of subordination. Our assumption that $g \in {\mathcal F}_\Omega (c)$ in Theorem 1.3 can be rewritten as $g \prec P$ when $c_0=0$ . In this case, $P^{-1} (g (z)) = c_1z+\cdots +c_n z^n + \cdots $ . However, apart from a few exceptional cases, we cannot express our conclusions in terms of subordination relations. Let $c = (c_0, \ldots , c_{n-1}) = (0,\ldots , 0)\in {\mathbb C}^n$ . Then the Schur parameter for c is given by $\gamma = (\gamma _0, \ldots , \gamma _{n-1}) = (0, \ldots , 0)$ . For this particular choice of c, the function $Q_{\gamma , j}$ defined by (1.1) becomes

$$ \begin{align*} Q_{\gamma , j}(z, \varepsilon) = \int_0^z \zeta^j \{ P( \varepsilon \zeta^n ) -1 \}\, d \zeta. \end{align*} $$

Let

$$ \begin{align*} H(z) = \frac{j+1}{z^{({\kern1.5pt}j+1)/n}} \int_0^{z^{1/n}} \zeta^j \{ P( \zeta^n ) -1 \}\, d \zeta. \end{align*} $$

Then

$$ \begin{align*}\frac{j+1}{z^{j+1}} Q_{\gamma , j}(z, \varepsilon ) = H( \varepsilon z^n ). \end{align*} $$

By Theorem 1.3, for each fixed $z \in {\mathbb D} \backslash \{ 0 \}$ , $Q_{\gamma , j}(z, \varepsilon )$ is a convex univalent function of $\varepsilon \in \overline {\mathbb D}$ and $H( \varepsilon z^n )$ is also a convex univalent function of $\varepsilon \in \overline {\mathbb D}$ . Letting $z \rightarrow 1$ in ${\mathbb D}$ shows that $H (\varepsilon )$ is also convex univalent in ${\mathbb D}$ . Let $g \in {\mathcal F}_\Omega $ with $g'(0)= \cdots = g^{(n-1)}(0) = 0$ . It follows from Theorem 1.3 that for any $z \in {\mathbb D} \backslash \{ 0 \}$ , there exists $\varepsilon \in \overline {\mathbb D}$ satisfying

$$ \begin{align*}\int_0^z \zeta^j \{g(\zeta) -1 \} \, d \zeta = Q_{\gamma , j}(z, \varepsilon ). \end{align*} $$

Thus, for all $z \in {\mathbb D}$ ,

$$ \begin{align*}\frac{j+1}{z^{j+1}} \int_0^z \zeta^j \{g(\zeta) -1 \} \, d \zeta = \frac{j+1}{z^{j+1}} Q_{\gamma , j}(z, \varepsilon ) = H( \varepsilon z^n ) \subset H( {\mathbb D }). \end{align*} $$

Consequently, in view of the univalence of H, we obtain the subordination relation

$$ \begin{align*}\frac{j+1}{z^{j+1}} \int_0^z \zeta^j \{g(\zeta) -1 \} \, d \zeta \prec H(z). \end{align*} $$

This was previously proved by Hallenbeck and Ruscheweyh [Reference Hallenbeck and Ruscheweyh8] when $\text {Re} \, j \geq -1$ with $j \not = -1$ .

Footnotes

The second author thanks SERB-MATRICS for financial support.

References

Ali, M. F. and Vasudevarao, A., ‘Coefficient inequalities and Yamashita’s conjecture for some classes of analytic functions’, J. Aust. Math. Soc. 100 (2016), 120.CrossRefGoogle Scholar
Ali, M. F., Allu, V. and Yanagihara, H., ‘An application of Schur algorithm to variability regions of certain analytic functions – I’, Comput. Methods Funct. Theory. doi:10.1007/s40315-021-00362-z.CrossRefGoogle Scholar
Bakonyi, M. and Constantinescu, T., Schur’s Algorithm and Several Applications, Pitman Research Notes in Mathematics, 261 (Longman Scientific and Technical, Harlow, Essex, 1992).Google Scholar
Duren, P., Univalent Functions, Grundlehren der mathematischen Wissenschaften, 259 (Springer, New York 1983).Google Scholar
Finkelstein, M., ‘Growth estimates of convex functions’, Proc. Amer. Math. Soc. 18 (1967), 412418.Google Scholar
Foias, C. and Frazho, A. E., The Commutant Lifting Approach to Interpolation Problems, Operator Theory: Advances and Applications, 44 (Birkhäuser, Basel, 1990).Google Scholar
Gronwall, T. H., ‘On the distortion in conformal mapping when the second coefficient in the mapping function has an assigned value’, Proc. Natl. Acad. Sci. USA 6 (1920), 300302.CrossRefGoogle ScholarPubMed
Hallenbeck, D. J. and Ruscheweyh, S., ‘Subordination by convex functions’, Proc. Amer. Math. Soc. 52 (1975), 191195.CrossRefGoogle Scholar
Janowski, W., ‘Some extremal problems for certain families of analytic functions’, Ann. Polon. Math. 28 (1973), 297326.CrossRefGoogle Scholar
Kanas, S. and Wiśniowska, A., ‘Conic regions and $k$ -uniform convexity’, J. Comput. Appl. Math. 105 (1999), 327336.CrossRefGoogle Scholar
Ponnusamy, S. and Vasudevarao, A., ‘Region of variability of two subclasses of univalent functions’, J. Math. Anal. Appl. 332 (2007), 13231334.Google Scholar
Ponnusamy, S., Sahoo, S. K. and Yanagihara, H., ‘Radius of convexity of partial sums of functions in the close-to-convex family’, Nonlinear Anal. 95 (2014), 219228.CrossRefGoogle Scholar
Ponnusamy, S., Vasudevarao, A. and Yanagihara, H., ‘Region of variability of univalent functions $f(z)$ for which $z{f}^{\prime }(z)$ is spirallike’, Houston J. Math. 34 (2008), 10371048.Google Scholar
Ronning, F., ‘A survey in uniformly convex and uniformly starlike functions’, Ann. Univ. Mariae Curie-Sklodowska Sect. A 47 (1993), 123134.Google Scholar
Schur, I., ‘Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind’, J. reine angew. Math. 147 (1917), 205232.CrossRefGoogle Scholar
Schur, I., ‘On power series which are bounded in the interior of the unit circle I’, in: Schur Methods in Operator Theory and Signal Processing, Operator Theory: Advances and Applications, 18 (ed. Gohberg, I.) (Birkhäuser, Basel, 1986), 3159, translated from the German by I. Gohberg.CrossRefGoogle Scholar
Suffridge, T. J., ‘Some remarks on convex maps of the unit disk’, Duke Math. J. 37 (1970), 755777.Google Scholar
Ul-Haq, W., ‘Variability regions for Janowski convex functions’, Complex Var. Elliptic Equ. 59 (2014), 355361.CrossRefGoogle Scholar
Yanagihara, H., ‘Regions of variability for functions of bounded derivatives’, Kodai Math. J. 28 (2005), 452462.CrossRefGoogle Scholar
Yanagihara, H., ‘Regions of variability for convex functions’, Math. Nachr. 279 (2006), 17231730.CrossRefGoogle Scholar
Yanagihara, H., ‘Variability regions for families of convex functions’, Comput. Methods Funct. Theory 10 (2010), 291302.Google Scholar