1 Introduction and outline
In mathematics and applied science, Fibonacci and Lucas numbers are well known. They are defined by the same recurrence relations
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu1.png?pub-status=live)
but with different initial conditions
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu2.png?pub-status=live)
According to these recurrence relations, it is not hard to check that both definitions for Fibonacci and Lucas numbers can be extended to negative integer indices by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu3.png?pub-status=live)
In 1965, Carlitz [Reference Carlitz2] discovered an elegant identity for circular sums:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqn1.png?pub-status=live)
There are three different proofs that can be found in [Reference Benjamin, Rouse and Howard1, Reference Chu5, Reference Mikic8]. Denote an m-tuple of integers by
$\mathbf {k}=(k_{1},k_{2},\ldots ,k_{m})\in \mathbb {N}_{0}^{m}$
. We define two component-related sums by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu4.png?pub-status=live)
Recently, the author [Reference Chu5] found the following alternating counterpart:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu5.png?pub-status=live)
where
$u_{n}$
and
$v_{n}$
are two periodic sequences (see A010892 and A049347 recorded in [Reference Sloane9]) and related by
$u_{2n+1}=v_{n}$
and given explicitly by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu6.png?pub-status=live)
To reduce lengthy expressions, the following abbreviations will be used throughout the paper. For a real number x, the greatest integer not exceeding it will be denoted by
$\lfloor {x}\rfloor $
. We shall use
$\chi $
for the logical function with
$\chi (\text {true})=1$
and
$\chi (\text {false})=0$
. For three integers
$i,j,m$
with
$m>0$
, the notation
$i\equiv _{m}j$
stands for ‘i is congruent to j modulo m’.
The aim of the present paper is to evaluate two further alternating circular sums of binomial coefficients by making use of the generating function approach:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqn2.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqn3.png?pub-status=live)
To fulfil this task, the Lagrange expansion formula [Reference Lagrange7] will be crucial. We give it in the following form (see Comtet [Reference Comtet and Reidel6, Section 3.8] and Chu [Reference Chu3, Reference Chu4]). For a formal power series
$\varphi (x)$
subject to the condition
$\varphi (0)\not =0$
, the functional equation
$y=x/\varphi (x)$
determines x as an implicit function of y. Then for another formal power series
$F(x)$
in the variable x, the following expansions hold for both composite series:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu7.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqn4.png?pub-status=live)
where
$[x^{k}]\phi (x)$
denotes the coefficient of
$x^{k}$
in the formal power series
$\phi (x)$
.□
2 The first alternating sum
$\boldsymbol {\Phi _{m}(n)}$
Observe that
$\Phi _{m}(n)$
defined in (1.2) can be rewritten as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu8.png?pub-status=live)
where
$\sum k_{2i-1}$
denotes the sum of the odd indexed components of
$\mathbf {k}$
. Then we have the following theorem.
Theorem 2.1 (generating functions:
$m,n\in \mathbb {N}$
).
We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu9.png?pub-status=live)
Recall the Binet formulae:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu10.png?pub-status=live)
When m is even with
$m=2\lambda $
, we can rewrite the generating function and then decompose it into partial fractions:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu11.png?pub-status=live)
By extracting the coefficient of
$x^{n}$
across the above equation, we find the following counterpart of Carlitz’ formula (1.1).
Proposition 2.2 (explicit formula:
$n,\lambda \in \mathbb {N}$
).
We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu12.png?pub-status=live)
However, when m is odd with
$m=2\lambda -1$
, there exists no such closed formula. By expanding the corresponding generating function into power series
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu13.png?pub-status=live)
and then extracting the coefficient of
$y^{n}$
, we get the binomial sum expression.
Proposition 2.3 (explicit formula:
$n,\lambda \in \mathbb {N}$
).
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu14.png?pub-status=live)
The first five values are highlighted in the following corollary.
Corollary 2.4 (explicit formula:
$n\in \mathbb {N}$
).
We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu15.png?pub-status=live)
Proof of Theorem 2.1.
First, it is routine to verify the relations
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu16.png?pub-status=live)
They can be used to express the binomial sum with respect to
$k_{1}$
in
$\Phi _{m}(n)$
as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu17.png?pub-status=live)
We proceed next with the binomial sum with respect to
$k_{2}$
in
$\Phi _{m}(n)$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu18.png?pub-status=live)
Repeat this process for the binomial sum with respect to
$k_{3}$
in
$\Phi _{m}(n)$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu19.png?pub-status=live)
and then the binomial sum with respect to
$k_{4}$
in
$\Phi _{m}(n)$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu20.png?pub-status=live)
By means of the induction principle, we can show that for
$1\le j\le m/2$
, the binomial sums with respect to
$k_{2j-1}$
and
$k_{2j-2}$
in
$\Phi _{m}(n)$
are respectively given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu21.png?pub-status=live)
According to the parity of m, we can determine
$\Phi _{m}(n)$
separately as follows. For even
$m=2\lambda $
, we can evaluate
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu22.png?pub-status=live)
which simplifies to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu23.png?pub-status=live)
By means of the Lagrange expansion formula, these expressions can be simplified further. In fact, specialise first in (1.4) by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu24.png?pub-status=live)
Then we can deduce that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu25.png?pub-status=live)
together with the generating function
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu26.png?pub-status=live)
After some routine simplification, we find the elegant formula
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu27.png?pub-status=live)
Analogously for odd
$m=2\lambda -1$
, we can evaluate
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu28.png?pub-status=live)
which simplifies to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu29.png?pub-status=live)
By means of the Lagrange expansion formula, these expressions can be simplified further. In fact, specialise now in (1.4) by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu30.png?pub-status=live)
Then we can deduce that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu31.png?pub-status=live)
together with the generating function below
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu32.png?pub-status=live)
After some routine simplification, we confirm another elegant formula,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu33.png?pub-status=live)
Hence, both statements of Theorem 2.1 are proved.
3 The second alternating sum
$\boldsymbol {\Psi _{m}(n)}$
Analogously, we can reformulate the circular sum
$\Psi _{m}(n)$
as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu34.png?pub-status=live)
where
$\sum k_{2i}$
stands for the sum of the even indexed components of
$\mathbf {k}$
. We have the following theorem.
Theorem 3.1 (generating functions).
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu35.png?pub-status=live)
Remark 3.2. Comparing the generating functions in Theorems 2.1 and 3.1, we can see that
$\Phi _{m}(n)=\Psi _{m}(n)$
for all
$n\in \mathbb {N}$
when m is even. This is not surprising because in this case, both sums
$\Psi _{m}(n)$
and
$\Phi _{m}(n)$
, defined respectively in (1.3) and (1.2), are equivalent if we reverse the order for the components of
$\mathbf {k}$
. When m is odd, we have instead
$\Psi _{m}(n)=\Phi _{m+6}(n)$
for all
$n\in \mathbb {N}$
.
According to this remark, we have the following summation formulae, where
$\Psi _{5}(n)$
,
$\Psi _{7}(n)$
and
$\Psi _{9}(n)$
are integer sequences A006190, A004254 and A041025, respectively, recorded in [Reference Sloane9]:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu36.png?pub-status=live)
Proof of Theorem 3.1.
We only need to prove the case when m is odd with
$m=2\lambda -1$
. According to the binomial relations
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu37.png?pub-status=live)
we can express the binomial sum with respect to
$k_{1}$
in
$\Psi _{m}(n)$
as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu38.png?pub-status=live)
We proceed next with the binomial sum with respect to
$k_{2}$
in
$\Psi _{m}(n)$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu39.png?pub-status=live)
Repeat this process for the binomial sums with respect to
$k_{3}$
in
$\Psi _{m}(n)$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu40.png?pub-status=live)
and then with respect to
$k_{4}$
in
$\Psi _{m}(n)$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu41.png?pub-status=live)
By means of the induction principle, we can show that for
$1\le j\le m/2$
, the binomial sums with respect to
$k_{2j-1}$
and
$k_{2j-2}$
in
$\Psi _{m}(n)$
are respectively given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu42.png?pub-status=live)
Since
$m=2\lambda -1$
is odd, we can further evaluate
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu43.png?pub-status=live)
which simplifies to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu44.png?pub-status=live)
Remark 3.3. When
${m=3}$
, the triple sum
$\Psi _{3}(n)$
results in
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu45.png?pub-status=live)
By means of the Lagrange expansion formula, we can further simplify the generating function for
$\Psi _{m}(n)$
. In fact, specialise in (1.4) by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu46.png?pub-status=live)
Then we can deduce that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu47.png?pub-status=live)
together with the generating function
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu48.png?pub-status=live)
After some routine simplification, we arrive at
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000351:S0004972722000351_eqnu49.png?pub-status=live)
which is also valid for
${m=3}$
. This completes the proof of Theorem 3.1.
4 Open problems
For Carlitz’ identity (1.1), there is a combinatorial proof by Benjamin and Rouse [Reference Benjamin, Rouse and Howard1] through the domino tiling. It would be interesting to construct a similar proof for the identity displayed in Proposition 2.2. Another intriguing problem is to find a combinatorial interpretation of the identity
$\Psi _{m}(n)=\Phi _{m+6}(n)$
for all
$n\in \mathbb {N}$
and odd
$m\in \mathbb {N}$
.
Acknowledgement
The author expresses his sincere gratitude to an anonymous referee for the careful reading and valuable comments.