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Abstract

By combining the generating function approach with the Lagrange expansion formula, we evaluate, in
closed form, two multiple alternating sums of binomial coefficients, which can be regarded as alternating
counterparts of the circular sum evaluation discovered by Carlitz [‘The characteristic polynomial of a
certain matrix of binomial coefficients’, Fibonacci Quart. 3(2) (1965), 81-89].
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1. Introduction and outline

In mathematics and applied science, Fibonacci and Lucas numbers are well known.
They are defined by the same recurrence relations

F,=F,+F,, and L,=L, 1+L,»
but with different initial conditions
F():O,Flzl and L()=2,L1:1.

According to these recurrence relations, it is not hard to check that both definitions for
Fibonacci and Lucas numbers can be extended to negative integer indices by

F,=(-1)"'F, and L_,=(-1)'L, forneN.
In 1965, Carlitz [2] discovered an elegant identity for circular sums:

m—1
n— kl n— ki+1 an+m
= =07 1.1

Oskl,kz,...,k,,,Sn( mn i=1
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386 W. Chu [2]

There are three different proofs that can be found in [1, 5, 8]. Denote an m-tuple of
integers by k = (ki, k2, . .., ki) € N{J'. We define two component-related sums by

m

|k|:zm1k,~ and ||k||:Zik,~.
i=1

i=1

Recently, the author [5] found the following alternating counterpart:

n+1 ifm=50;

m—1
—k K
> (—1)k(”k 1)1—[(” ! +1)=(—1)'1Lm/sJ w  ifm= 1

0<ky koymm<n i=1 Vi ifm=32;

where u, and v, are two periodic sequences (see A010892 and A049347 recorded in
[9]) and related by u,,.; = v, and given explicitly by

1 ifn=60, 1; 1 ifn=;0;
u, =<-1 ifn=¢3,4;, and v,=4-1 ifn=;31;
0 ifn=¢2,5; 0 ifn=32.

To reduce lengthy expressions, the following abbreviations will be used throughout
the paper. For a real number x, the greatest integer not exceeding it will be denoted
by [x]. We shall use y for the logical function with y(true) = 1 and y(false) = 0.
For three integers i, j, m with m > 0, the notation i =, j stands for ‘i is congruent to
j modulo m’.

The aim of the present paper is to evaluate two further alternating circular sums of
binomial coefficients by making use of the generating function approach:

m—1
(Dm(n) — Z (_1)”1(“(” ]; kl) 1_[ (n _kI.(H—l); (12)

0<ky,ka,....km<n =1

m—1
@ Oskl,l;,k,gn( : kin 11:1[ ki 4
To fulfil this task, the Lagrange expansion formula [7] will be crucial. We give
it in the following form (see Comtet [6, Section 3.8] and Chu [3, 4]). For a formal
power series ¢(x) subject to the condition ¢(0) # 0, the functional equation y = x/¢(x)
determines x as an implicit function of y. Then for another formal power series F(x) in
the variable x, the following expansions hold for both composite series:

() = FO) + ) =1 (g (),

n=1
FO() =
T=a¢/ @/el) "TFHFD$" ) 1.4
1 — x¢’(x)/@(x) ;y X" HF(0)e" (x)} (14)
where [x]¢(x) denotes the coefficient of x* in the formal power series ¢(x). ]
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2. The first alternating sum ®,,(n)
Observe that @,,(n) defined in (1.2) can be rewritten as
m—1
_ _1\Zkaina n—k n = kisi
Oumy= > (=) ( ‘. )]—[( o)
0<ky,ka,....km<n i=1

where ) k;—; denotes the sum of the odd indexed components of k. Then we have the
following theorem.

THEOREM 2.1 (generating functions: m,n € N). We have

1
& if m =24,
Y S Lo T
®,(n) = |
'] ifm=21-1.
e
Recall the Binet formulae:
n_ gr 1+v5
F, = o'~ P and L,=a"+p", wherea,B= \/_
a—-pB 2

When m is even with m =24, we can rewrite the generating function and then
decompose it into partial fractions:

1 ~ 1 1 { a B }
L=yLi+ (D% 1=yt +pH +y2(=DF ot =1 -yt 1-ypt)
By extracting the coefficient of x" across the above equation, we find the following

counterpart of Carlitz’ formula (1.1).

PROPOSITION 2.2 (explicit formula: n, 1 € N). We have

nl+ﬂ
Fp,

©o,(n) =

However, when m is odd with m = 24 — 1, there exists no such closed formula. By
expanding the corresponding generating function into power series

(]

l—yFﬁz_( Dy ;)’Fﬂ » + (=YY :Z ( l)k/l()l+kFil__kz

i=0 k

and then extracting the coefficient of y”, we get the binomial sum expression.

PROPOSITION 2.3 (explicit formula: n, A € N).

- n—=k\ ,_
cbn_l(n):;(—l)“( L )Fﬂ_ék-

The first five values are highlighted in the following corollary.
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COROLLARY 2.4 (explicit formula: n € N). We have

1
@(n) = [)’n]l_—2 = (=D DBh(n #5 2);

y+y

1+ (=D
= 5 :

1
@3 = I3
1
s =I5 = (DI DBy (n 25 2);

1
©7(n) = [Y'l-———— = Fusts
I-y-y

1
() =h'l—= 1.
o) = g s =+

PROOF OF THEOREM 2.1. First, it is routine to verify the relations

(=D (” ;lkz) = LA -,

(I’l - k]) _ [x"—kl] ka

km (1 _x)l+k,,,'

They can be used to express the binomial sum with respect to k; in @,,(n) as

1 _ - _ kln—kz n—k1
<Dm<n)—h220< 1) ( B )( L )

xon(1 = xyr

= Mg

We proceed next with the binomial sum with respect to k; in @,,(n):

o (1 = x)"* (n = ks
2 _
q)m(n)_];)[xn]—(l—x)”km ( o )

= [x"]

X (1 = xy" y {2 —x}”‘k3

(1=—x)+» " 11-x

= [x"]

ﬁwz—mnx{l—xyj

(I—x)* " 12 -x
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Repeat this process for the binomial sum with respect to k3 in ®,,(n):

3 () = Z[ n]ka(Z x)" x{l —x}k3(n k4)( 1y

x) 1 +km 2 — X

ka(z —x)" 1 n—ky ; ka(z _ x)k“
(=} =

= 4 X _—
B T e “7—x (1= x)1

_ [xn]xk"’(Fz—xFo)" {F3—XF1}k“

B (1 — x)+hn F, — xF,

and then the binomial sum with respect to k4 in ®,,(n):

m ks km (3 _ y)1—ks
@4()_2[ ]xk 2-x) (n ks) [x”]x (3 -x)

)1+k k4 (1 _x)1+k,,,

= [+"]

)Ckm(F4 — xF)" N {Fz —XFO}kS
(1 —)C)H'km F4 —)CFQ ’

By means of the induction principle, we can show that for 1 < j < m/2, the binomial
sums with respect to k»;_; and kj;_» in ®,,(n) are respectively given by

NOE Z . ()( ’”’)( 1yt

ko 1=0
_ [x"]xk'"(Ff — xFj2)" {Fj+1 —xFj }"2/'
ST U R T
= <D2"*<n)(” . ’”’"1)
" kaj

koj—2=0

= [+"]

Xk (Fipy — xFj_p)" {ijl - xFi3 }sz'
(1 = x)l+hn Fjo —xFio)

According to the parity of m, we can determine ®,,(n) separately as follows. For
even m = 24, we can evaluate

O,(n) = Y O ()

km=0

= Zn:[xn]ka([;/l - XFA—Z)"{F/IH —xF) }k”’

CAT T a-o T VR —xFn
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(Fr = xF12)" < { X(Fas1 —xFa1) }k’"

=W (= 0(Fr—+F12)

=0
(Fy — xF o)™}

=l ](1 = X)(F1—xF_2) = x(Fps1 — xF 1)’

which simplifies to

(Fy — xF o)™

Ol = N T3 2y

By means of the Lagrange expansion formula, these expressions can be simplified
further. In fact, specialise first in (1.4) by

F/I—XF/I,Z

FO = T

and @(x) = F, —xF,,.

Then we can deduce that

yE,
= — =
y = x/p(x) YT F
together with the generating function
FO&O) — _ Fa-xFao / {1 Lo }
1- X(p/(x)/¢(x) F/l(l —3x+ x2) Fﬂ — XF/I—Z
_ (Fa—xF)? _ YR,
= ——"———"—, wherex=—7F—
Fa(1 = 3x +x?) 1+vyF

1
L+ 29F 0 = 39F, + Y2F2 +2F2 = 3Y2F,Foy

After some routine simplification, we find the elegant formula

1
()] =[H" s h =2A.
m() = [y ]1 LD where m

Analogously for odd m = 21 — 1, we can evaluate

O,(m) = > O ()

k=0
_ Zn:[x"]ka(FMl —xF_)" {_ Fay—xFa3 }k
= (1 = x)+kn Fv1 —xFay
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(Far1 —xFpp)" i{ —x(Fa_1 — xFy23) }k”’

= [x"
] 1- (I =x)(Fas1 —xFa-1)

=0
(Fag1 — xFpo)™!

= xl’l 5
[ ](1 = X)(Fas1 — xFao1) + x(Fazy — xFa23)

which simplifies to

(Fag1 — xFp)™!

Pult) =+ 2

By means of the Lagrange expansion formula, these expressions can be simplified
further. In fact, specialise now in (1.4) by

Froo—xFp

F(x) =
O = =D+ 2F

and  @(x) = Fapp — xF).

Then we can deduce that

YF 11
= — =
y =x/¢(x) T+yF
together with the generating function below
F(x(y)) _ Fao —xFy /{1 N XFa }
1 =x¢'(0)/p(x)  Fa(1 =x) +x2Fa Fari —xF
_ (Fae1 —xFyy)? _ YFan
= , Wherex = ———
F§+1(1—X)+XZF/1+|F,1,2 1+yF/1_1
1

1+ 29F e — yFa + VIF? 4+ Y F i Faso = Y FanFaoy
After some routine simplification, we confirm another elegant formula,
1
) =" , wherem =24-1.
m(n) [y ] 1— ng_z — (_1)/1))2 m

Hence, both statements of Theorem 2.1 are proved. ]

3. The second alternating sum ¥,,(n)
Analogously, we can reformulate the circular sum ¥,,(n) as
m—1
_ _ Zkin_kl n—kis
Y= > (-1 ( . )ﬂ( o)
0<ky ko, skp<n i=1

where )’ ky; stands for the sum of the even indexed components of k. We have the
following theorem.
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THEOREM 3.1 (generating functions).
1

YN Sy

ifm=24;
Wn(n) =

n : —
M SR e YRl
REMARK 3.2. Comparing the generating functions in Theorems 2.1 and 3.1, we can
see that @,,(n) = ¥,,(n) for all n € N when m is even. This is not surprising because
in this case, both sums ¥,,(n) and ®,,(n), defined respectively in (1.3) and (1.2), are
equivalent if we reverse the order for the components of k. When m is odd, we have

instead ¥,,,(n) = ®,,,.¢(n) for all n € N.

According to this remark, we have the following summation formulae, where Ws(n),
¥, (n) and Wo(n) are integer sequences A006190, A004254 and A041025, respectively,
recorded in [9]:

1
Yi(n) = [y”]ﬁ =Fpi1;
-y-y
W) =[] — ‘1
n)= =n 5
’ (1-y)7?
1 S
\PS(”):D’”]I_?’ _ 2 = ( k )3” 2k7
Yo k=0
1 S(n+k+1
v =p'l———= 3k,
=5 k_0(2k+1)
1 N (n—k\
Wo(n) = [Y'l-——— = g2k,
1-8y—y = k

PROOF OF THEOREM 3.1. We only need to prove the case when m is odd with m =
21 — 1. According to the binomial relations

-k
(n 2) = 1+ 0

ky
n—ki\ . xkn
( Ky ) =[x ](1 — x)l+kn ’
we can express the binomial sum with respect to k; in ¥,,,(n) as

o n-— k2 n-— kl
). (n) =
= e

xhn (1 + x)ke
(1 _ x)1+k,,, :

= [x"]
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We proceed next with the binomial sum with respect to k; in ¥,,(n):

ki n—ky (,, _
\PZ(H)_ Z[ ])C (1 +X) (l’l k3)( 1)k2

x)1+k

K (1 + x) { x }”‘k3

=T X T
skt 1+x\k
_[xn](l—x)”km { x } ’

Repeat this process for the binomial sums with respect to k3 in \¥,,(n):

¥ (n) = Z[xn] m;};k X {1 :x}h (n ;3](4)

B [x"]x k(1 4 2x)" { x }"4
B (1 — x)!+kn 1+2x
[ n]xk”’(Fz + xF3)" {F() + xF }k4
=[x R
(1 —x)“km F> +XF3

and then with respect to k4 in ¥,,(n):

W () = Z[xn] m(1+2x)”x{ x }k4(n k5)( Dy

) LK 1+2x

X (1 + x)" {1 + 2x}k5

= o X\ Trx
0 xn]ka(Fl + xF))" 8 {F2 + xF5 }ks
- (1 — x)!+kn Fi+xF,) ~

By means of the induction principle, we can show that for 1 < j < m/2, the binomial
sums with respect to ky;_; and ky;_» in ‘¥',,(n) are respectively given by

1, _ C 2j-2, (1= ko
(m= ) ¥ (n)( kw)

koj-1=0

ka(Fj +ij+l)n y {F}72 +)CFJ>1 }kzj
(1 = x)t+kn Fj+xFj, )’

2. \Pﬁf‘%n)(" ;fzj“)<—1>k2f-z
i

kaj2=0

= [x"]

¥ (n)

[x"]

Xk (Fig + xFj_p)" { Fj_y + xF; }kzj
(1 = )t Fig+xFjy)
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Since m = 24 — 1 is odd, we can further evaluate

(n)—Z‘P Y(n) = Z w2 )

k=0 k2a-1=0

_ Z[ n]xm(F/l 2t xFy 1)"{ Fp1 +xF, }k”‘
x) 1 +hn Fro+xFy

= [x"]

(Fa +XF/1 D" { x(Fa_1 +xF) }km

- X (I =x)(Faa +xFp_1)

(Faz +XF/1—1)"+1
(1 =x)(Fap +xF 1) = x(Faoy +xF))°

= [+"]

which simplifies to
(Fap + xF_)"™!
Fio(1 —x) = xX2F

REMARK 3.3. When m = 3, the triple sum ¥3(#n) results in

Yu(n) = [x"'] m# 3.

(1+X)n+l 1

‘I’3(n)—Z[x”] kz;lhx{l:x}k’ !

By means of the Lagrange expansion formula, we can further simplify the

generating function for ¥,,(n). In fact, specialise in (1.4) by

Fao+xFy
Fio(1 =x) = x2F
Then we can deduce that

F(x) =

and go(x) =Fi+xF_.

YF 2

y=x/p(x) = x=-———,
1 —yFi

together with the generating function
Fx(y) _ Fio+xFy /{1 _ xFa }

1 —x¢'(x)/@(x) ~ Faa(l —x) = x2F Fro+xFy
(Fan +xFp1) h _ YFo
> : » wherex = -———
Fi,(1=x) —x*Fa Faa YFa
1

L= YFio - 2yF + Y2 F2 |+ Y P Fay =y FaaFis

After some routine simplification, we arrive at
1
g =" , Wherem=241-1,
mm =y ]1 = yFa1 + (=D)Yy? "

which is also valid for m = 3. This completes the proof of Theorem 3.1.
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4. Open problems

For Carlitz’ identity (1.1), there is a combinatorial proof by Benjamin and Rouse
[1] through the domino tiling. It would be interesting to construct a similar proof
for the identity displayed in Proposition 2.2. Another intriguing problem is to find
a combinatorial interpretation of the identity W¥,,(n) = ®,,+¢(n) for all n € N and odd
m € N.
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