Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-06T06:41:01.948Z Has data issue: false hasContentIssue false

Subgeometric rates of convergence for Markov processes under subordination

Published online by Cambridge University Press:  17 March 2017

Chang-Song Deng*
Affiliation:
Wuhan University
René L. Schilling*
Affiliation:
TU Dresden
Yan-Hong Song*
Affiliation:
Zhongnan University of Economics and Law
*
* Postal address: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China. Email address: dengcs@whu.edu.cn
** Postal address: Fachrichtung Mathematik, Institut für Mathematische Stochastik, TU Dresden, 01062 Dresden, Germany. Email address: rene.schilling@tu-dresden.de
*** Postal address: School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China. Email address: songyh@znufe.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We are interested in the rate of convergence of a subordinate Markov process to its invariant measure. Given a subordinator and the corresponding Bernstein function (Laplace exponent), we characterize the convergence rate of the subordinate Markov process; the key ingredients are the rate of convergence of the original process and the (inverse of the) Bernstein function. At a technical level, the crucial point is to bound three types of moment (subexponential, algebraic, and logarithmic) for subordinators as time t tends to ∞. We also discuss some concrete models and we show that subordination can dramatically change the speed of convergence to equilibrium.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

References

[1] Bogdan, K.,Stós, A. and Sztonyk, P. (2003).Harnack inequality for stable processes on d-sets.Studia Math. 158,163198.CrossRefGoogle Scholar
[2] Böttcher, B.,Schilling, R. L. and Wang, J. (2011).Constructions of coupling processes for Lévy processes.Stoch. Process. Appl. 121,12011216.Google Scholar
[3] Böttcher, B.,Schilling, R. and Wang, J. (2014).Lévy Matters III(Lecture Notes Math. 2099)Springer,Cham.Google Scholar
[4] Butkovsky, O. (2014).Subgeometric rates of convergence of Markov processes in the Wasserstein metric.Ann. Appl. Prob. 24,526552.Google Scholar
[5] Chen, M.-F. (2004).From Markov Chains to Non-Equilibrium Particle Systems,2nd edn.Word Scientific,River Edge, NJ.Google Scholar
[6] Chen, M.-F. (2005).Eigenvalues, Inequalities, and Ergodic Theory.Springer,London.Google Scholar
[7] Deng, C.-S. (2014).Harnack inequalities for SDEs driven by subordinate Brownian motions.J. Math. Anal. Appl. 417,970978.Google Scholar
[8] Deng, C.-S. and Schilling, R. L. (2015).On a Cameron‒Martin type quasi-invariance theorem and applications to subordinate Brownian motion.Stoch. Anal. Appl. 33,975993.Google Scholar
[9] Deng, C.-S. and Schilling, R. L. (2015).On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes.Stoch. Process. Appl. 125,38513878.Google Scholar
[10] Douc, R.,Fort, G. and Guillin, A. (2009).Subgeometric rates of convergence of f-ergodic strong Markov processes.Stoch. Process. Appl. 119,897923.Google Scholar
[11] Douc, R.,Moulines, E. and Soulier, P. (2007).Computable convergence rates for sub-geometric ergodic Markov chains.Bernoulli 13,831848.Google Scholar
[12] Douc, R.,Fort, G.,Moulines, E. and Soulier, P. (2004).Practical drift conditions for subgeometric rates of convergence.Ann. Appl. Prob. 14,13531377.Google Scholar
[13] Down, D.,Meyn, S. P. and Tweedie, R. L. (1995).Exponential and uniform ergodicity of Markov processes.Ann. Prob. 23,16711691.Google Scholar
[14] Fort, G. and Roberts, G. O. (2005).Subgeometric ergodicity of strong Markov processes.Ann. Appl. Prob. 15,15651589.CrossRefGoogle Scholar
[15] Gentil, I. and Maheux, P. (2015).Super-Poincaré and Nash-type inequalities for subordinated semigroups.Semigroup Forum 90,660693.Google Scholar
[16] Gordina, M.,Röckner, M. and Wang, F.-Y. (2011).Dimension-independent Harnack inequalities for subordinated semigroups.Potential Anal. 34,293307.Google Scholar
[17] Jacob, N.,Knopova, V.,Landwehr, S. and Schilling, R. L. (2012).A geometric interpretation of the transition density of a symmetric Lévy process.Sci. China Math. 55,10991126.Google Scholar
[18] Kühn, F. (2017).Existence and estimates of moments for Lévy-type processes.Stoch. Process. Appl. 127,10181041.Google Scholar
[19] Masuda, H. (2007).Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps.Stoch. Process. Appl. 117,3556.Google Scholar
[20] Meyn, S. P. and Tweedie, R. L. (1993).Stability of Markovian processes II: continuous-time processes and sampled chains.Adv. Appl. Prob. 25,487517.Google Scholar
[21] Meyn, S. P. and Tweedie, R. L. (1993).Stability of Markovian processes III: Foster‒Lyapunov criteria for continuous-time processes.Adv. Appl. Prob. 25,518548.Google Scholar
[22] Meyn, S. and Tweedie, R. L. (2009).Markov Chains and Stochastic Stability,2nd edn.Cambridge University Press.Google Scholar
[23] Röckner, M. and Wang, F.-Y. (2001).Weak Poincaré inequalities and L 2-convengence rates of Markov semigroups.J. Funct. Anal. 185,564603.Google Scholar
[24] Schilling, R. and Wang, J. (2012).Functional inequalities and subordination: stability of Nash and Poincaré inequalities.Math. Z. 272,921936.Google Scholar
[25] Schilling, R. L.,Song, R. and Vondraček, Z. (2012).Bernstein Functions: Theory and Applications(De Gruyter Stud. Math. 37),2nd edn.De Gruyter,Berlin.CrossRefGoogle Scholar
[26] Schilling, R. L.,Sztonyk, P. and Wang, J. (2012).Coupling property and gradient estimates of Lévy processes via the symbol.Bernoulli 18,11281149.Google Scholar
[27] Tweedie, R. L. (1994).Topological conditions enabling use of Harris methods in discrete and continuous time.Acta Appl. Math. 34,175188.Google Scholar
[28] Wang, F.-Y. and Wang, J. (2014).Harnack inequalities for stochastic equations driven by Lévy noise.J. Math. Anal. Appl. 410,513523.Google Scholar