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Abstract

We are interested in the rate of convergence of a subordinate Markov process to its
invariant measure. Given a subordinator and the corresponding Bernstein function
(Laplace exponent), we characterize the convergence rate of the subordinate Markov
process; the key ingredients are the rate of convergence of the original process and the
(inverse of the) Bernstein function. At a technical level, the crucial point is to bound three
types of moment (subexponential, algebraic, and logarithmic) for subordinators as time ¢
tends to co. We also discuss some concrete models and we show that subordination can
dramatically change the speed of convergence to equilibrium.
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1. Introduction and main result

The notion of stochastic stability of a Markov process is of fundamental importance both
in theoretical studies and in practical applications. There are various characterizations of
geometric (or exponential) ergodicity; see, e.g. [5], [6], [13], [20], [21], [22], and the references
therein. Inrecent years, there has been considerable interest in subgeometric (or subexponential)
ergodicity; see, e.g. [4], [10], [12], [11], [14], [23] for developments in this direction. In this
paper we study subgeometric convergence rates of Markov processes under subordination in
the sense of Bochner.

Let X = {X;: t > 0} beaMarkov process with state space (£, B(E)) and transition function
P’(x, dy). We assume that E is a locally compact and separable metric space and we denote
by B(E) the corresponding Borel o-algebra. Let f: E — [1, co) be a measurable control
function; the f-norm of a signed measure p on E is defined as ||| ¢ := sup4 < s [ (g)|. Here,
the supremum ranges over all measurable g which are dominated by f and p(g) := [ gdu. It
is not difficult to see that || - || > || - |ITv always holds for the total variation norm || - [|Tv; if f
is bounded then the norms || - || r and || - [ITv are even equivalent.
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The convergence behaviour of a process X to a stationary distribution 7 in the f-norm can
be captured by estimates of the form

[P (x,) —7llf < Cx)r(t), xeE, t>0, (1.1

where C(x) € (0, 00) is a constant depending on x € E and r: [0,00) — (0, 1] is the
nonincreasing rate function. We say that X displays subgeometric convergence in f-norm,
if the rate function r satisfies »(¢) | O and logr(¢)/t * 0 as t — oo. Such r are called
subgeometric rates.

In many cases, the convergence rate r can be explicitly given, and typical examples are

r=e.  ro=0+07F  r@6)=0+log(l+0]7, (12)

where 6 > 0, § € (0, 1], and B, y > 0 are some constants; see Section 4 below for specific
models. Note that r(f) = e~ is the classical exponential convergence rate. Some authors
refer to the above examples as subexponential, algebraic, and logarithmic rates, respectively.
Bochner’s subordination is a means to obtain more general (and also interesting) jump-type
Markov processes from a given Markov process through a random time change by an inde-
pendent nondecreasing Lévy process (a subordinator). Among the most interesting examples
are the symmetric «-stable Lévy processes, which can be viewed as subordinate to Brownian
motions. It is known that many fine properties of Markov processes (and the corresponding
Markov semigroups) are preserved under subordination; see [16], [9] for Harnack and shift
Harnack inequalities for subordinate semigroups, [24], [15] for Nash and Poincaré inequalities
under subordination, and [8] for the quasiinvariance property of subordinate Brownian motion.
Let us recall the basics of Bochner’s subordination. Let S = {S;: t > 0} be a subordinator
(without killing), i.e. a nondecreasing Lévy process on [0, co) with Laplace transform

Ee S ='W 4 >0, 1>0.

The characteristic (Laplace) exponent ¢ : (0, o0) — (0, 00) is a Bernstein function, i.e. ¢ is of
class C*° such that (—1)"‘1¢(”) > Oforalln =1, 2, ...;itis well known that every Bernstein
function admits a unique (Lévy—Khintchine) representation

¢ (u) = bu +/ (1 —e vdy), u >0, (1.3)

(0,00)

where b > 0 is the drift parameter and v is a Lévy measure, i.e. a measure on (0, 0o) satisfying
f (0.00) (y A Dv(dy) < oo. Our main reference for Bernstein functions and subordination is
[25]. Assume that S and X are independent processes. The subordinate process defined by the
random time-change Xf := Xg, is again a Markov process; if X has an invariant probability
measure 77 then 7 is also invariant for the subordinate process X¢. This follows immediately
from the form of the subordinate Markov transition function which is given by

P(;(x7d)’)=/ Ps(-x’dy)l’bl(ds)v

[0,00)

where u; := P(S; € -) is the transition probability of S;; the integral is understood in the sense
of vague convergence of probability measures.
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We are interested in the following question. Assume that P’ is subgeometrically convergent
to m with respect to the f-norm as t — o0; how fast will Pqﬁ tend to w? More precisely, we
need to find a suitable nonincreasing function ry on (0, oo) such that lim;_, o 74 (t) = 0 and

”Pé(-xv)_n”fsc(x)rlp(t)? er9 t>07 (14)

for some positive constant C(x) depending only on x € E. As we will see, if the convergence
rates of the original process X are of the three typical forms in (1.2) then we are able to derive
convergence rates for the subordinate Markov process under some reasonable assumptions on
the underlying subordinator.

Note that any nontrivial Bernstein function ¢ is strictly increasing. In this paper the inverse
function of ¢ will be denoted by ¢~!.

We can now state the main result of our paper.

Theorem 1.1. Let X be a Markov process and S an independent subordinator with Bernstein
function ¢ of the form (1.3).

(1) Assume that (1.1) holds with rate r(t) = e =07 for some constants 0 > 0 and § € (0, 1].
Ifv(dy) > cy~'=%dy for some constants ¢ > 0 and a € (0, 1) then (1.4) holds with rate

re(t) = exp[—Cr®/ @170+,

where C = C(0, 6, c,a) > 0.
(ii) Assume that (1.1) holds with rate r(t) = (1 + t)~# for some constant B > 0. If

¢ (rs)
¢ (s)

1 1 P
wo=ia[e ()]

(iii) Assume that (1.1) holds with rate r(t) = [1 4+ log(1 +¢t)]™Y for some constanty > 0. If
v(dy) > cy_l_“ dy for some constants ¢ > 0 and o € (0, 1) then (1.4) holds with rate

lim inf & >0 and limﬁ)nf > 1 for some (hence, all) A > 1, (1.5)
S

§—>00 ]()g Ky

then (1.4) holds with rate

re(t) =1 Alog77 (1 +1).
Remark 1.1. Typical examples for Bernstein function ¢ satisfying (1.5) are
o ¢(s) =log(l +s);
o $(s) =slogf(1+s)witha € (0,1)and B € [0, 1 — a);
e ¢(s) =slog P01 +5s)with0 < B <o < I;
e ¢(s)=s(1+s)"*witha € (0, 1).
‘We refer the reader to [25] for an extensive list of such Bernstein functions.

The paper is organized as follows. In order to prove Theorem 1.1, we establish in Section 2
three types of moment estimate for subordinators; this part is interesting in its own right. The
proof of Theorem 1.1 will be addressed in Section 3. Section 4 contains several concrete
models for which the corresponding convergence rates can be explicitly given. For the reader’s
convenience, the Appendix contains some elementary calculations, which have been used in
the proof of Theorem 2.1 in Section 2.
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2. Moment estimates for subordinators

In this section we prove some moment estimates for subordinators, which will be crucial
for the proof of our main result, Theorem 1.1. Related moment estimates for general Lévy
processes and subordinators can be found in [9, Section 3]. Recently, Kiihn [18] extended our
results on Lévy processes to Feller processes.

Theorem 2.1. Let S be a subordinator with Bernstein function ¢ given by (1.3).
(i) Let® > 0and$ € (0, 1]. Ifv(dy) > cy~'=%dy for some constants ¢ > 0 and a € (0, 1)
then there exists a C = C(0, 8, ¢, a) > 0 such that

Ee—0S! < exp[—Ct/@U=DF01 " for all sufficiently large t > 1.

(ii) Let B > 0.
(a) We have

EsF s | (1Y It >0
t _e,BF(,B)|:¢ <;>i| forallt > 0.

(b) If the Bernstein function ¢ satisfies (1.5) then there exists a C = C(8) > 0 such
that

- 1\
ES, p < C[tbl <?)] for all sufficiently large t > 1.
(c) Ifthe Bernstein function ¢ satisfies

fim inf 2%

§— 00 ¢(S)

> 1 for some (hence, all) A > 1

then there exists a C = C(B) > 0 such that

1 B
ES;” < C[qb_l(;)} forallt € (0,1].

(iii) Lety > 0.
(@) Ifv(dy) > cy~'=*dy for some constants ¢ > 0 and a € (0, 1) then there exists a
C =C(y,c,a) > 0 such that
Elog " (14 8) < Clog™" (1 + %) forallt > 0.

(b) Ifv(dy) = cy_l_“ dy for some constants ¢ > 0 and o € (0, 1) then there exists a
C =C(y,c,a) > 0 such that

Elog™” (14 8;) > Clog™ (1 + %) forallt > 0.

Remark 2.1. Theorem 2.1(ii) is motivated by an argument in [2, Proof of Theorem 2.1], where
the sPecial case B = % was treated; see also [26, Proof of Theorem 1.3]. For the estimate of
ES, /% for large ¢, it was assumed in [2, Theorem 2.1] that the Bernstein function ¢ satisfies

lim inf w > 0, lim inf ¢ (s)| log s| < oo, lim sup ACD) < 00
s—oo logs 540 $0 ¢=1(s)

2.1
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By Lemma 2.2(ii) and Lemma 2.3(ii) below, the third condition in (2.1) implies that there exist
constants ¢y, ¢2, k > 0 such that

¢ (s) < c1s”, 0<s <o,
and then
. . logt
limsup ¢ (s)|logs| < c1 limsup — =
540 oo 1K

This means that the third condition in (2.1) implies the second, and so (2.1) can be written as

(s) =1 (1s)

lim inf ¢— > 0, lim sup g < for some (hence, all) A > 1.
s=oo logs sy0 @H(s)

Before we present the proof of Theorem 2.1, we need some preparation. The following
useful lemma is taken from [6, Lemma A.1, p. 193]; see also [24, Lemma 5] for a special case.

Lemma 2.1. Let C > 0, h: [0,00) — (0, 1] be an absolutely continuous function, and
p: (0,11 — (0, 1] be a nondecreasing function. If

KW (t) < Co(h(t)) foralmostallt >0

then
Gh(@) <Gh(©0) —Ct forallt >0,
where
I dqu
G(v)::—/ _—, O0<v<l.
v )

For any strictly increasing function g: (0, oco) — (0, co), we denote by g_1 its inverse
function.

Lemma 2.2. Let g: (0, 00) — (0, 00) be a strictly increasing function.
(1) The following statements are equivalent:
(@) lim,_, o g(t) = 0o and limsup,_, o (g~ (hot) /g~ (t)) < 0o for some iy > 1;
(b) lim,_, o g(t) = 00 and limsup,_, .. (g~ (At)/g~1 (1)) < oo forall » > 1;
(c) liminf;— ~(g(Aot)/g(t)) > 1 for some Ay > 1.
If g is concave then (a)—(c) are also equivalent to
(d) liminf, oo (g(At)/g(t)) > 1 forall . > 1.
(i1) The following statements are equivalent:
(a) lim suptw(g’l()\ot)/g’l(t)) < oo for some Ay > 1;
(b) limsup, | o(g~"(A1)/g™ (1)) < oo forall x> 1;
(c) liminf; o(g(Aot)/g(t)) > 1 for some Ao > 1.
If g is concave then (a)—(c) are also equivalent to

(d) liminf,0(g(A1)/g () > 1 forall A > 1.
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Proof. We will only show (i), since the proof of (ii) is completely analogous.

(a) <= (b) The direction (b) = (a) is trivial. Conversely, suppose that (a) holds for some
Ao > 1. By the monotonicity of g, (b) holds for all A € (1, Ag]. Now assume that A > g
and let k := [log, 2|, where | x| denotes the integer part of a nonnegative real number
x > 0. Since (a) implies that there exist ¢; > 1 and ¢; > 0 such that

g 0o =g, t=e, 2.2)
we find that
gl < gtk < K0, 1> g,

and so
limsup(g~ (1) /g~ (1) < ¢f ! < 0.

—>00

(a) <= (c) If (a) holds, we can apply g to both sides of (2.2) and substitute g‘l(t) = s to
obtain

rg(s) < glers), s> g Yea).

This implies that

Ao > 1,

and then (c).
Conversely, if (c) is satisfied for some A9 > 1 then it is clear that lim;_, », g(t) = o0,
and, moreover, we can easily reverse the above argument to deduce (a).

(c) <= (d) Assume that g is concave. If (c) holds for some Ag > 1 then (d) holds for all
A > Xp. Itremains to consider the A € (1, Ag) case. By (c), there existc3 > landcqg > 0
such that

g(hot) > c3g(1), t > cy.

Using the concavity of g, we obtain, for any > ¢4 and A € (1, Ag),

(M) = Ao_kt+ Lo
& =8 A — 1 )»()—10

>Ao—)» (t)+k_1 Gl
Z 18 o150
Ao — A (t)+k_1 o
> C >
Ao — lg Ao — 1 38
which yields
At Ao — A A—1 Ao — A A—1
iminf S0 5 20 3 > =2 =1
t—oo  g(t) M—1  Ap—1 M—1  Ap—1
This completes the proof. (]

Below we extend a lemma which was originally proved in [17].
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Lemma 2.3. Let g: (0, 00) — (0, 00) be a nondecreasing function.

o If

> 1 forsome i > 1
then there exist positive constants c1, k1, M such that
g(t) = 1t forallt € [M, o).

(i) If
At
1iminf& > 1 forsomel > 1
0 g

(1)
then there exist positive constants co, k2, m such that

g(t) < ot forallt € (0, m].

Proof. The first assertion can be found in [17, Lemma 3.8]. Part (ii) can be shown in a
similar way. By our assumption, there exist c3 > 1 and m > 0 such that

g(At) = c3g8(1), 0<t<m.

This implies that, for any n € N,

m
an—1°

g) <c3"g(W"), 0<t<

m
ny = {logk 7J + 1.

_ m —log, (m/1) glam)
) < C3nlg<)‘nt)\n,1> < ¢ 8D g (am) = T ro8 ",

thus completing the proof. ]

Letr € (0, m] and set

From this, we obtain

g < g( -
)Ln,fl

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. (i) We split the proof of this part into four steps.
Step 1. Without loss of generality, we may assume that S has no drift part, i.e. the infinitesimal
generator of S is given by

°cé)r(x):f(o (G gy, g ChE),

For § € (0, 1], set

gx) = e_e"s, x >0.

By Dynkin’s formula, we have

t
Eg(S,) = Eg(S,) + ]E{[ £g(Su)du}, 0<s<t. (2.3)
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Step 2. We will now estimate Lg(x) for x > 0. Since v(dy) > cy~'"*dy, we have
Lg(x) = / (€00 — =) (dy)
(0,00)

oo
< cefexs-/ (efex‘s((lerx*l)‘sfl) —1
0 y

o0
= cx e / (e’ =h )
0 Z
Noting that
R e S ) VLI R (S (RErY

we conclude that

Lgx) < cx %0 /oo (e—9xﬁ((1+z)“—1) -1 ?Z
O 1x—041)1/6 1 Z o
00
< (- e*‘)cx*“e*”‘s/ dz
@-1x=s41y/o—y 2!
— _(1 _ e_l)cot_le_exs [(9—1 +x5)1/5 _ x]—O{
=—Cip(g(x)), (2.4)

where C; := (1 — e ea™16%/% and
p(u) == u[(1 —logu)'/? — (—logu)'/?17, 0<u<l.

Step 3. Some lengthy, but otherwise elementary, calculations (see Lemma A.l in the
Appendix) yield that p is convex and strictly increasing on (0, 1]. Therefore, (2.3) and (2.4)
together with Tonelli’s theorem and Jensen’s inequality yield, for 0 < s < ¢,

A

t
Eg(S:) —Eg(Ss) < —C1E{/ p(g(Su))du}

t
¢ / Ep(g(S,)) du

IA

t
—C1/ p(Eg(Sy)) du.

Setting
h(t) :=Eg(Sh), 1>0,

we find that
h(t) — h(s)
r—s

Due to (2.3), & is absolutely continuous on [0, 00), and so we can let ¢ | s to obtain

1 t
< —Cl—/ o(h(u))du, 0<s<t.
r—s ),
K (s) < —Cip(h(s)) foralmostall s > 0.

According to Lemma 2.1, we have

G(h(1) = G(1) — Cut, t =0,
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where

I qu
G(v)::—/ _ O<v<l.
v )

Clearly, G is strictly increasing with lim, |0 G(r) = —oo and G(1) = 0. Thus, we obtain
h(t) <GHG() - Ciy =G (=Cin),  1>0, (2.5)

where G ! is the inverse function of G.
Step 4. In order to find a lower bound for G (v), we first observe that, for v € (0, 1],

1
G(v) = _/ u (1 —logu)'/? — (—logu)'/*1% du

—logv
:_/ [(1 4 s5)'/% — s1/%7 gs.
0

It is easy to see that, for s > 0,

1/8 s 1 Is (1=8)/8 1 (-85 _ 1
I+s)7°—s/° == u du53(1+s) <
s

5 < 52(1_5)/5 max{s(l_’s)/‘s, 1}.

Thus, for v € (0, e_l), we have

—logv 1 1 —logv
[(1+ s)1/8 _ sl/s]a ds < _2a(1—8)/8 + _201(1—8)/5 sa(l—S)M ds
0 oo 5 1

Cs + Ca(— log v)(a(1—5)+8)/5

IA

for some C, = C»(8, o) > 0. This means that, for all v € (0, e_l),
G(v) = =C2 — Ca(~log v) @I =0+,
from which we can easily deduce that
G (—C11) < exp[—(C1C; 't — 1)/ @1=9F0) ) t>2C7"'Co.
Combining this with (2.5), the assertion follows.
(i) We prove these three assertions separately.

e Using the identity
1 o
x P = —f e uP1dy, x >0, (2.6)
'@ Jo

and Tonelli’s theorem, we obtain, for ¢t > 0,

1 o 1 o
]ESt_ﬁ = —E{/ e Styp-1 du} = —/ e "Wy dy.
e o '8 Jo

Changing variables according to v = ¢ (), we obtain

dv

¢ (@1 (v)
1 o0

== / eV d{[p~ (v)1F}. 2.7)
B Jo

r(BES, " = /0 Ooe*f“[qu(v)]ﬁ*l
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Thus, we obtain the lower bound, since, for any ¢ > 0,

_p 1/t 1 B
BT (BES, " > fo e"”d{[«p‘l(v)]ﬁ}ze—l[wl(—)}.

t

e By (1.5), and Lemmas 2.2(ii) and 2.3(ii), there exist constants c{, ¢, > landc3, c4, & > 0

such that
7' 25) <ci97'().  O<s <o, (2.8)
P ()| < 38", 0<s <oy, 2.9)
ol (s) < e, s > . (2.10)

By (2.7), the integration by parts formula, and (2.10), we find that, for # > Bc4,

oo 00 s ,B
proes” = [Co ol e = [ [¢—1(;)} g
0 0
Ift > c2_1 and s € (1, cat), we set kg := [log, s| and use (2.8) 1 + k times to obtain
-1 < ¢! 21+ks£
’ <f) =¢ ( t
< ks g1 (1>
=G ¢ —
t
I+logy s , —1 1
=4 ® ;

_Cl¢ < ) ]0g2c|
Thus, for ¢t > max{cgl, 2Bca},

s~ ([ [+ o )
QT A e

o0
n / o~ (1=Bea/Ds 4
oot

1 1 P B 1 1 P 2t /2
< [df <;>] +c ' +/310gm)[¢>‘ (;)] + 2e72/2,

Since, from (2.9), it follows that

e—c2t/2B) 1 e 1 ¢
lim sup ———— = limsup — exp[ :| lim sup — exp|: :| =0,
t—oo @1(1/1) 50 S 28¢(s) 50 S 2Bc3sk

we can find some ¢5 = ¢5(8) > 0 such that
1\1%
e 2t/2 < |:¢_1<—>i| , t > cs.
t
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Therefore, we conclude that

p
BTBES,” <G +cT0+ ﬁ]ogzcl))[tpl (;)] , 1 >max{e; !, 2Beq, cs),

which proves our claim.

e From our assumption and Lemma 2.2(i) we know that

, : ¢~ (2s)
lim ¢(s) =00 and limsup < o0
§—>00

§—> 00 ¢71 (s)

Thus, there is a constant cg > 1 such that
¢ '(25) < cep~(s) foralls > 1,
from which we obtain
d1(2"s) < cg¢71(s) foralls > 1 andn € N.

This, together with (2.7), yields that, for any ¢ € (0, 1],

2+l
/ )e—’”d{w—l(vnﬁ}

2k /t

o0

1/t
BT (BIES, " = </ +>
0

k=0

(I Eel )]
(o Ere e )

(iii) Assume that v(dy) > ¢y~ '"®dy. Using the Lévy—It6 decomposition of the Lévy pro-
cess S;, we denote by S, that part of S; whose jumps are governed by the Lévy measure
cy~17*dy. Clearly, S, has, up to a constant, the same jump behaviour as an «-stable subordi-
nator; moreover,

S, > S, t>0.

By (2.6) and Tonelli’s theorem, we find that, for ¢ > 0,

Elog™”(1+8,) <Elog7?(1+S,)

1 00 -
— ]E{/ e—ulog(1+S,)My—1 du}
I'(y) o

1 oo B
— —uy,,y—1
- r(y)fo E{(1 + S)“Ju? " du.

Since S‘t behaves like an «-stable subordinator, we obtain, from [1, Equation (14)],

o

P(S, € ds) < Ca,ctsflfo‘e*”f ds,
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where C,, . > 01is a constant depending only on « and ¢; using the change of variable v = ts™*

and Tonelli’s theorem, we obtain

- Co.c OO oo —u - —ts7¢ -1
Elog™”(1+5) r(’)t (14s)“s~ 1% ds Ju? ' du
Y 0 0

C . o0 t 1/0{ —Uu
— _*C —v y—1
ol ([0+() ) era)ea
C . o0 oo t 1/0{ —Uu
_ o,C - y—l —v
=) Jo ( (1+<v) ) ‘ d“>e .
1/
C‘”/ log"’(l—i—(%) > “Vdv
1/a
(/ / )log 14 1+( ) )e_”dv

IA

First,
1
I <log7(1 +r1/0‘)/ e Vdv=(1—e Hlog™7 (1 +1"%).
0

Since the function x — x~!log(1 + x) is strictly decreasing for x > 0, we have

log(1+x) log(142)
>
X A

For v > 1, using this inequality with x = (rv=")1/% and 1 = /%, we obtain

e £\ log(1+ 1Y) (1N log(l + 1Y)
e\t 5 T e \y) T gt

o
I <log7(1+ zl/“)/ v/%e Vdy < F(Z + 1) log™" (1 +¢1/%).
1 o

, 0<x <A (2.11)

and so

These estimates give the upper bound in Theorem 2.1(iii)(a).

If v(dy) = ¢y~ '=*dy then, for any t > 0, the distribution of S; coincides with that of
t1/e S, anditis easy to see that Elog(1 + S;) < oo forall # > 0. Since the function x — x~7
is convex for x € (0, 00), it follows from Jensen’s inequality that

Elog™” (14 8,) > [Elog(1 4+ $)177 = [Elog(1 + t"/%S)]77.

For t > 1, since
log(1 +11/%81) < logl(1 + 0" + (1 +1/¥5]

1
=log(1+ S1) + — log(l +1)

log(1 + Sl)
log?2

_ ((log(d + S1)
- log?2

>1g(1+t)

+ >1og(1 + 1/,
o
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it holds that

Elog(l 4+ S 1\
EIOgV(lJrSz)z(MJr—) log™7 (1 + 1'/%). (2.12)
log2 o

Fort € (0, 1), from Lemma A.2 with T = e e (0, 1) and x = S;, we obtain

1 -y
Elog 7 (1+S;) > |:IE{1 5 log(1 4 /%) log(1 + Sl)}:|

og

_ (Elog(l + S0

-Y
) log™” (1 +11/9). (2.13)
log2

Therefore, from (2.12) and (2.13), we obtain the desired lower bound in Theorem 2.1(iii)(b).
O
3. Proof of Theorem 1.1

Theorem 1.1 follows at once from Lemma 3.1 below together with the corresponding upper
moment bounds for subordinators derived in Theorem 2.1.

Lemma 3.1. If (1.1) holds with some rate function r then so does (1.4) with rate function
re(t) = Er(Sy).

Proof. By the definition of P(; (x,dy) and (1.1), we find that, forall# > O and x € E,

PG, ) — 7l = H /[0 P = mus)

f
5/ 1P (. ) — 7 e (ds)
[0,00)

=Ck) 7 () (ds)
[0,00)

= C)Er(S),

and the claim follows. O

4. Examples

In this section we discuss three models for which we are able to obtain explicit convergence
rates, so that our main result Theorem 1.1 can be applied.

4.1. Q-processes on Z
Let O = (gij)i,jez, be a Q-matrix with
qoo =—Xo,  qoi =Xopi,  gi0o=—qii =X, ix=1,

and g;; = 0 otherwise, where (p;);>1 and (;);>0 are two sequences of positive numbers with
Y2y pi = land sup;.gA; < oo. It is well known that there exists a unique Q-process with
transition semigroup P* = Y_7° (1 Q)" /n!; see [5, Corollary 2.24]. Moreover, we assume that

o0
.. o =1
higloréf)», =0 and IE_I pik; < 00.
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Under these assumptions, it is easy to see that the process admits an invariant distribution 7
given by

00 -1
7o = <1 +Aozpjx;1> , i = mohopir; i > 1.
j=1
For this toy model, it is known, see [14, (the proofs of) Propositions 12 and 14], that:
o if
> 24 —1
Zp,-(l Y Ai_l)ki_l/zee % < oo forsome 6 >0
i=1

then (1.1) holds for any ¢ € [0, 1] with

r(t) — e—29q«ﬁ’ f(l) — (1 +)\;1/2692){])1—4;

o0
Zpiki_l_e < oo forsomed >0
i=1

then (1.1) holds for any g8 € [0, 8] with

r@ty =0+, f@)y=1+27

o0
Zpi(l v D log? (1va!) <o forsomed >0
i=1

then (1.1) holds for any y € [0, 6] with
rt) =[1+1log(l +0]77, fG@) =[1+1log(1va Hr.

4.2. Diffusion processes on R¢
Consider the stochastic differential equation (SDE)

dX; = b(X,) dt + o(X,)dB,,  Xo=x, .1

where {B;: t > 0} is a standard d-dimensional Brownian motion, b: RY > RYando: RY —
R?*4 are locally Lipschitz, o is bounded, and the smallest eigenvalue of a(x) := o (x)o | (x)
is bounded away from 0 in every bounded domain. If there exist constants p € (0, 1), C > 0,
and M > 0 such that

(b(x),x) < —=Clx|'""", x| =M,

then (4.1) has a unique solution with infinite lifetime and an invariant probability measure r;
moreover, (1.1) holds for any ¢ € (0, 1) with
r(0) = expl=Cigr' =P/ f ) = 14 (14 k)P explCa (1 — @)lx|' 7]
for some positive constants C and C»; see [10, Theorem 5.4].
Set
A=A+ A

K :
204

3
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. A_:=inf M A= sup Tr(a(x)).
x#0 |x| xeRd

In order to obtain algebraic rates of convergence, we need the following condition.
(A) There exist constants C > K and M > 0 such that (b(x), x) < —CA4, |x| > M.
It is not difficult to see that under (A) there is a unique nonexplosive solution to the SDE (4.1).

Proposition 4.1. Assume that (A) holds. Then (1.1) holds for any B € (0, C — K) and any
m e (0,C — K — ) with

ry=0+0"", fx)=1+x*".

4.3. SDEs driven by a-stable processes
Consider the SDE
dX[ :b(X[)dt+dZ[, X() =X, (42)

where {Z;: t > 0} is an a-stable (0 < o < 2) Lévy process on R?, and b: RY — R? is
continuous such that

(b(x) —b(y),x —y) < L|x — y|%, X,y eR? forsome L € R.
Under these assumptions there exists a unique nonexplosive solution to the SDE (4.2), which

is (strong) Feller by the dimension-free Harnack inequality, see [7], [28], and Lebesgue irre-
ducible; see, e.g. [19].

Proposition 4.2. (i) If there exist constants p > 0, C > 0, and M > 0 such that
(b(x),x) < =ClxPlog (1 + [x]),  |x| = M, 43)
then (1.1) holds for any q € (0, 1) and anym € (0, 1 A (d — 1 + )) with
r(t) = exp[—Cqr/M*P, fx) =14 x"170
for some constant C = C’(C, p,M,m) > 0.
(ii) If there exist p € (0, 1 A (d — 1 +)), C > 0, and M > 0 such that
(b(x), x) < =ClafPH2TINETID x| > (44)

then (1.1) holds forany B € (0, p/(0A(d—1+0a)—p))andany0) <m < p—BA AN —
1+ o) — p) with

ry=0+0"F, Fx)=14x".

Remark 4.1. If (4.3) holds with p = 0 then we obtain exponential rates of convergence in
Proposition 4.2(i); see, e.g. [19, Lemma 2.4].
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4.4. Proofs of Propositions 4.1 and 4.2

Our proofs of Propositions 4.1 and 4.2 are based on the following Foster—Lyapunov criterion,
which is a special case of [10, Theorem 3.2]; see also [12, Theorem 2.8] for the corresponding
result for discrete-time Markov chains.

Let X be a Markov process with generator (A, D). It is well known that, for g := Af and
f € D, the process Mf = f(Xy) — f(Xo) — fo g(Xy) ds is a martingale. Recall that the
extended generator consists of all pairs (f, g) of measurable functions such that Mt is a local
martingale for some unique g; note that we do not require f € D nor g = Af; see [3, pp. 25,
26] for details. We denote the extended generator by (A, D(#A)).

Proposition 4.3. Let X be a Markov process on the state space (E, B(E)) with extended
generator (A, D(A)). Assume that

(i) some skeleton chain (i.e. a Markov chain with transition kernel PT for some T > 0) is
Y-irreducible for some o -finite measure ;

(i) there exist a closed petite set B, a constant b > 0, a continuous function V. € D(A),
V:E — [1,00)withsupg V < 0o, and a nondecreasing differentiable concave function
@: [1, 00) = (0, 00) satisfying limy_, ¢’ (x) = 0 and

AV(X) < —poV(x)+blp(x), x € E, 4.5)

where 1 is the indicator function. Then there exists an invariant probability measure w such
that m(p o V) < oo, and (1.1) holds for any q € (0, 1) with

rt)=1A(@oH, ()™ and f=1V(poV)' ™,

where H, Uis the inverse of the function
Hy (1) / " > 1
u) = _, u>1.
’ e

Proof of Proposition 4.1. Aswaspointed outin[10, p. 908], itis a standard argument that (A)
ensures the existence of a unique invariant probability measure 7, and that any skeleton chain is
m-irreducible. Thus, we know that every compact set is a closed petite set; see [27, Theorems 5.1
and 7.1].

Fix B € (0,C —K)andm € (0, C — K — B). Observe that C2(R?) C D(+4). Choose a test
function V € CZ(R?) such that V (x) = (1 + |x[)>"+2f*2 for |x| > M. By (A), we obtain, for
all |x| > M,

AV (X) < —CryQm + 28 +2)(1 + |x )22+ ¢!

F Al (m+ B+ D@m 428 + D(1 + |x|)2m+2P
—A_(m 4 B+ (1 + x| T2+ g1

+ A+ B+ D1+ [x > 2Py
~2h(m+ B+ 1)(C — K — f—m)(1 + |x])?"+28
D —Ci(1 + |x|)2m+28,
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This implies that the Foster—Lyapunov condition (4.5) holds with ¢(x) = Cyx ™ +A)/(m+p+1)
B = {x € R?: |x| < M}, and some constant b > 0. Using Proposition4.3 withg = B/(m+8),
we know that (1.1) holds with

-8
—B/(m+B) €1 m/(m-+p) 2m
r@)y=1A[C 1+ ——¢ , x)=1VvI[C 14 |x .
(1) [1 ( m+,8+1>] Jf(x) (& (I +1x)]
This completes the proof. O

Proof of Proposition 4.2. (i) First of all, it is clear that

{v € C*(RY):

d
/ Vix+y — V(x))HTym < oo forall x € Rd} C D(A).
[yl>1 y

Fixm € (0, 1 A(d—1+a)) and choose a test function V € CZ(Rd) suchthat V(x) = (14 |x|)™
for x| > M. Then V € D(+4) and

AV (x) = (b(x), VV (X)) + A1V (x) + A2V (x),

where

Cd,a

A1V (x) := / Vx+y) = V) —7 dv,
lyl>1 &l

Cd’
ALV (x) = / (V& +y) = Vx) = (VV(x), y) —ge—dy.
0<|y|<1 |yl
Since |41V (x)] = o(1) and |A2V (x)| = o(1) as |x| — oo, see the proof of [19, Lemma 2.4],
we obtain from (4.3) that, for |x| > M,
—Cm(1+ |x)" x| log ™7 (1 + |x]) + o(1)
—C1Vx)(1+p+logVx)~*

AV (x)

IA

A

for some C; = C1(C, p, M,m) > 0. Hence, (4.5) is satisfied with ¢(x) = C1x(1 4+ p +
log x)~7, and the claim follows from Proposition 4.3 and some straightforward calculations.

(i) Seto := 1A(d—1+a)—pandfix B € (0, p/o)andm € (0, p—Bo). Choose V € C%(R?)
such that V (x) = (1 + |x|)"+e®B+D for |x| > M. As in part (i), it is not difficult to obtain from
(4.4) that (4.5) holds with ¢(x) = Cox"+eB)/(m+e(B+D) for some C» = C»(C, p, M, m) > 0.
Thus, the assertion follows from Proposition 4.3 with ¢ = o8/ (m + 0B). (]
Appendix A
LemmaA.l. Lett > 1, o € (0,1), and
g(x) = x[(1 —logx)" — (—logx)*]7¢, 0<x<l.
Then the function g is convex and strictly increasing on (0, 1].

Proof. Obviously, we need to prove the statement only forx € (0, 1). By adirect calculation,
we find that, for x € (0, 1),

s, e
X

g (x) [(1 —logx)" — (—logx)"17'[(1 — logx)"™ ! — (—logx)™™ 1]

= &()n(x),
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where

£(x) = gi—x) = [(1 —logx)" — (—logx)"1"%,

n(x) =1+ ra[(1 —logx)" — (—logx)"]~'[(1 —logx)™! — (—logx)*"1].

Since £(x) > 0 and n(x) > O for all x € (0, 1), g is strictly increasing on (0, 1). Noting
that g’ (x) = &' (x)n(x) + &(x)n'(x), it suffices to prove that £’ (x) > 0 and n'(x) > 0 for all
x € (0,1). Forx € (0, 1), we have

’ _ 'L'_Ol _ T _ T1—a—1 _ =1 _ -1
§'(0) = —I[(1 —logx)" — (~logx)*|™*~'[(1 — logx) (=logx)™'1>0,
and
in/(x) = 211 —logx)" — (= logx)*]2[(1 — logx)™™" — (— logx)" ! 2
TN X
— T~ log )7 = (= log )1 [(1 — log x)* 2 — (= logx)* 2]
X
1
=~ —log»)" — (= log x)"17%¢ (x),
where

c(x) :=t[(1 —logx)" ! — (= logx)""'1?
— (r = D1 —logx)" — (—logx)"][(1 — logx)" % — (—logx)"~?]
= (1 —logx)>* 2 + (—logx)** 2 = 27(1 — logx)" ! (— logx)* !
+ (= (A —logx)"(—=logx)* "2 + (t — 1)(1 — log x)""2(—log x)".
It remains to check that {(x) > O for all x € (0, 1). From the elementary inequality
y2+z222yz, y,2>0,
it follows that, for x € (0, 1),
£(x) = 2(1 —logx)" N (—=logx)""!' —27(1 — logx)* "' (= logx)™~!
+(t = D1 —logx)"(—logx)" 2 + (t — (1 — logx)"%(—logx)®
=(t — 1)(1 —logx)"%(—logx)" 2
>0,
and the proof is complete. (|

LemmaA.2. Lett € (0,1) and x > 0. Then

log(1+1x) < log(1 + 7)log(1 + x).

log?2
Proof. From (2.11) we infer that
1(wg(l—+r) > log 2.
T
This, together with Bernoulli’s inequality, yields
1+ 17x < (14 x)7 < (1 + x)logd+o)/log2

and the claim follows by taking the logarithm on both sides. ]
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