Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-06T04:53:09.308Z Has data issue: false hasContentIssue false

SIR epidemics on a scale-free spatial nested modular network

Published online by Cambridge University Press:  24 March 2016

Alberto Gandolfi*
Affiliation:
Università di Firenze and New York University Abu Dhabi
Lorenzo Cecconi*
Affiliation:
Università di Firenze
*
* Postal address: Dipartimento di Statistica, Informatica, Applicazioni G. Parenti, Università di Firenze, Viale Morgagni 59, 50134 Firenze, Italy. Email address: l.cecconi@disia.unifi.it
** Postal address: Dipartimento di Matematica e Informatica U. Dini, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy. Email address: gandolfi@math.unifi.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a class of random scale-free spatial networks with nested community structures called SHEM and analyze Reed–Frost epidemics with community related independent transmissions. We show that in a specific example of the SHEM the epidemic threshold may be trivial or not as a function of the relation among community sizes, distribution of the number of communities, and transmission rates.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

References

[1]Aiello, W.et al. (2008). A spatial web graph model with local influence regions. Internet Math. 5, 175196. CrossRefGoogle Scholar
[2]Albert, R., Jeong, H. and Barabási, A.-L. (1999). Internet: diameter of the world-wide web. Nature 401, 130131. Google Scholar
[3]Ball, F., Mollison, D. and Scalia-Tomba, G. (1997). Epidemics with two levels of mixing. Ann. Appl. Prob. 7, 4689. Google Scholar
[4]Ball, F., Sirl, D. and Trapman, P. (2010). Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math. Biosci. 224, 5373. CrossRefGoogle ScholarPubMed
[5]Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509512. Google Scholar
[6]Bartoszyński, R. (1972/73). On a certain model of an epidemic. Zastos. Mat. 13, 139151. Google Scholar
[7]Becker, N. G. and Dietz, K. (1995). The effect of household distribution on transmission and control of highly infectious diseases. Math. Biosci. 127, 207219. Google Scholar
[8]Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31, 3122. Google Scholar
[9]Britton, T. (2010). Stochastic epidemic models: a survey. Math. Biosci. 225, 2435. Google Scholar
[10]Britton, T., Deijfen, M., Lagerås, A. N. and Lindholm, M. (2008). Epidemics on random graphs with tunable clustering. J. Appl. Prob. 45, 743756. Google Scholar
[11]Costello, E. K.et al. (2009). Bacterial community variation in human body habitats across space and time. Science 326, 16941697. Google Scholar
[12]Daley, D. J. and Gani, J. (1999). Epidemic Modelling: An Introduction. Cambridge University Press. Google Scholar
[13]Dawson, D. A. and Gorostiza, L. G. (2007). Percolation in a hierarchical random graph. Commun. Stoch. Anal. 1, 2947. Google Scholar
[14]Dawson, D. A. and Gorostiza, L. G. (2013). Percolation in an ultrametric space. Electron J. Prob. 18, 26 pp. Google Scholar
[15]Deijfen, M., van der Hofstad, R. and Hooghiemstra, G. (2013). Scale-free percolation. Ann. Inst. H. Poincaré Prob. Statist. 49, 817838. Google Scholar
[16]Eriksen, K. A. and Hörnquist, M. (2001). Scale-free growing networks imply linear preferential attachment.Phys. Rev. E 65, 017102. Google Scholar
[17]Flaxman, A. D., Frieze, A. M. and Vera, J. (2007). A geometric preferential attachment model of networks. II. In Algorithms and Models for the Web-Graph (Lecture Notes Comput. Sci. 4863), Springer, Berlin, pp. 4155. Google Scholar
[18]Foley, R. and Gamble, C. (2009). The ecology of social transitions in human evolution. Phil. Trans. R. Soc. B 364, 32673279. Google Scholar
[19]Gandolfi, A. (2013). Percolation methods for SEIR epidemics on graphs. In Dynamic Models of Infectious Diseases, Vol. 2, Non Vector-Borne Diseases, eds V. S. H. Rao and R. Durvasula, Springer, New York, pp. 3158. Google Scholar
[20]Gandolfi, A., Keane, M. and de Valk, V. (1989). Extremal two-correlations of two-valued stationary one-dependent processes. Prob. Theory Relat. Fields 80, 475480. CrossRefGoogle Scholar
[21]Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018. Google Scholar
[22]Grimmett, G. (1999). Percolation, 2nd edn. Springer, Berlin. CrossRefGoogle Scholar
[23]Jones, J. H. and Handcock, M. S. (2003). An assessment of preferential attachment as a mechanism for human sexual network formation. Proc. R. Soc. London B 270, 11231128. Google Scholar
[24]Jordan, J. (2010). Degree sequences of geometric preferential attachment graphs. Adv. Appl. Prob. 42, 319330. Google Scholar
[25]Kephart, J. O., Sorkin, G. B., Chess, D. M. and White, S. R. (1997). Fighting computer viruses. Scientific Amer. 277, 5661. Google Scholar
[26]Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. London A 115, 700721. Google Scholar
[27]Koval, V., Meester, R. and Trapman, P. (2012). Long-range percolation on the hierarchical lattice. Electron. J. Prob. 17, 21 pp. Google Scholar
[28]Kuulasmaa, K. and Zachary, S. (1984). On spatial general epidemics and bond percolation processes. J. Appl. Prob. 21, 911914. CrossRefGoogle Scholar
[29]Meester, R. and Trapman, P. (2011). Bounding basic characteristics of spatial epidemics with a new percolation model. Adv. Appl. Prob. 43, 335347. CrossRefGoogle Scholar
[30]Neal, P. (2003). SIR epidemics on a Bernoulli random graph. J. Appl. Prob. 40, 779782. Google Scholar
[31]Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200. Google Scholar
[32]Sander, L. M., Warren, C. P. and Sokolov, I. M. (2003). Epidemics, disorder, and percolation. Physica A 325, 18. Google Scholar
[33]Schulman, L. S. (1983). Long range percolation in one dimension. J. Phys. A 16, L639L641. CrossRefGoogle Scholar
[34]Shearer, J. B. (1985). On a problem of Spencer. Combinatorica 5, 241245. Google Scholar
[35]Stokols, D. and Clitheroe, C. (2010). Environmental psychology. In Environmental Health: From Global to Local, ed. H. Frumkin, Jossey-Bass, San Francisco, CA, pp. 137171. Google Scholar
[36]Temmel, C. A. (2014). Shearer's measure and stochastic domination of product measures. J. Theoret. Prob. 27, 2240. CrossRefGoogle Scholar
[37]Trapman, J. P. (2006). On stochastic models for the spread of infections. Doctoral thesis. Vrije Universiteit. Google Scholar
[38]Tropman, J. E., Erlich, J. L. and Rothman, J. (eds) (2001). Tactics and Techniques of Community Intervention, 4th edn. Peacock, Itasca, IL. Google Scholar
[39]Xu, X.-J., Zhang, X. and Mendes, J. F. F. (2007). Impacts of preference and geography on epidemic spreading. Phys. Rev. E 76, 056109. CrossRefGoogle ScholarPubMed
[40]Yukich, J. E. (2006). Ultra-small scale-free geometric networks. J. Appl. Prob. 43, 665677. CrossRefGoogle Scholar
[41]Zhou, T., Fu, Z. and Wang, B. (2006). Epidemic dynamics on complex networks. Progr. Natural Sci. 16, 452457. Google Scholar