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Abstract

We propose a class of random scale-free spatial networks with nested community
structures called SHEM and analyze Reed–Frost epidemics with community related
independent transmissions. We show that in a specific example of the SHEM the epidemic
threshold may be trivial or not as a function of the relation among community sizes,
distribution of the number of communities, and transmission rates.
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1. Introduction

There are a number of both deterministic [12], [26] and random [9], [19], and [37] mathe-
matical models of disease spreading, each formulated to overcome some shortcomings of the
previous models. One of the current issues is to combine several of the improved features into
a unified model.

Among the random models, in particular, the basic Bernoulli, or Erdős Rényi, random
graph [30] has been modified to take care of spatial features [9] analyzed via percolation [32].
Other modifications, such as preferential attachment [5] and [16], are instead scale free, i.e. with
a polynomial tail, mostly of exponent between 1 and 3, of the degree distribution [2] and [16];
one interesting finding is that some scale-free random models have a zero critical threshold for
large-scale disease spreading [25], [31], and [41]. However, combining spatiality with scale-
free properties requires some effort [15], [40]; see also [1], [17], and [24] for works connecting
preferential attachment with a metric space; and [23] and [39], studied only on a numerical base
due to their intrinsic complications. Other models, such as random intersection [10], exhibit
network modularity, i.e. the gathering of individuals in communities with higher transmission
rates [3], [4], [6], [7]. Yet another characteristic of some real-world networks is the nested
structure of communities (see, for example, [11], [18], [35], and [38]), a feature missing in the
networks generated by random intersection and similar mechanisms. Finally, transmission rates
depend realistically from the type of community, and two individuals might have a complex
intertransmission rate depending on the communities to which both belong.

Received 12 July 2011; revision received 3 February 2015.
∗ Postal address: Dipartimento di Matematica e Informatica U. Dini, Università di Firenze, Viale Morgagni 67/A,
50134 Firenze, Italy, and New York University Abu Dhabi, PO Box 129 188, Abu Dhabi, UAE
Email address: gandolfi@math.unifi.it
∗∗ Postal address: Dipartimento di Statistica, Informatica, Applicazioni G.Parenti, Università di Firenze, Viale
Morgagni 59, 50134 Firenze, Italy. Email address: l.cecconi@disia.unifi.it

137

https://doi.org/10.1017/apr.2015.10 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:gandolfi@math.unifi.it?subject=Adv. Appl. Prob.%20paper%2014053
mailto:l.cecconi@disia.unifi.it?subject=Adv. Appl. Prob.%20paper%2014053
https://doi.org/10.1017/apr.2015.10


138 A. GANDOLFI AND L. CECCONI

In this paper we introduce a new class of epidemic models, which we call spatial hierarchical
epidemic model (SHEM), which exhibit many of the features mentioned above as they, at
the same time, have spatial features, are scale-free, and possess a community structure with
transmission rates between two individuals depending on the communities to which they both
belong.

We now describe a quite general version of SHEM, and later specialize to a specific example.
The basic construction of a SHEM is as follows. Consider an infinite set V whose elements
v ∈ V represent either individuals or their fixed locations, and which will be the vertex set of
several graphs. To start, consider the set of all edges B = {{u, v} | u, v ∈ V } and a set of basic
edges B1 ⊆ B determining the basic graph G1 = (V , B1); basic edges represent some primitive
relation between individuals, identify a basic metric structure, and, typically, refer to a spatial
structure. Next, we take a hierarchical structure of partitions of V into larger and larger blocks
representing communities. Then consider random sets Su, u ∈ V , of nonnegative integers; Su

indicates the set of communities to which u belongs. Two individuals are in contact if they are
linked by a basic edge in B1 or there is at least one community to which they both belong. The
first random network we study is the random graph Gα,z = (V , Bα,z), where an edge {u, v} is
in Bα,z if the two individuals u and v are in contact; here α and z are two parameters which are
later specified. In a real population Gα,z would be the network of the perceived contacts among
individuals and we call it a connectivity graph or connectivity network. Note that the above
construction introduces two distances on V : one is the distance d in the basic graph G1, the other
is the distance dH generated by the hierarchical structure (see Section 2 and [27] for details);
we use both of them. The description of the model is then completed by the assumption that
disease transmission takes place independently for each link between two individuals, either
via the basic edges or via a community, with a rate which is decreasing as the community gets
larger. Two additional parameters are natural to describe infections: a transmission rate λ0 to
neighbors, and a decrease rate ρ of the transmission rate for large communities.

By the above scheme, different versions of SHEM can be produced, possibly worthy of
further investigation. We start here by studying in detail one specific example, in which,
to focus on the role of network randomness, the disease transmission mechanism is kept as
simple as possible. We call the specific example an SIR (susceptible → infected → removed)
epidemic on a hypercubic lattice nested SHEM, as its basic graph is V = Z

d endowed with
nearest-neighbor edges, communities are nested, and epidemic spreading is described by an
SIR mechanism. To keep things simple, we consider constant infectious times T = 1, with
the infection starting from a single infected individual, typically at the origin. Each infected
individual u randomly transmits the disease to each susceptible individual with which u is in
contact, independently in each community they share, or along the basic nearest-neighbor edges
of Z

d . The nearest-neighbor transmission rate is some λ0 > 0, so that there is a probability
p = 1 − exp(−λ0) ∈ [0, 1] of transmission along nearest-neighbor edges. Transmission rates
λk for a shared community at level k are taken to be exponentially decreasing, so that there exists
ρ ∈ [0, 1] such that λk ≈ pρk in such a way that the transmission probability in a community
at level k is 1 − exp(−λk) = pρk .

The main focus of interest in epidemics is on large outbreaks from the initially infected
individuals, which we study as a function of the parameters of the SIR epidemics on the
hypercubic lattice nested SHEM. It is well known [19], [28], and [32] however that for SIR
epidemics with constant transmission times, the set of infected individuals during an outbreak
equals the percolation cluster of the initially infected individual in a bond percolation model
with bond percolation probabilities equal to transmission probabilities. This allows us to use
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SIR epidemics on a scale-free network 139

either percolation or epidemics terminology and techniques. In this paper the former is used
mainly to develop the detailed mathematical arguments, and the latter to discuss the meaning
of the obtained results. In particular, percolation models have the advantage of having no
time variables. In our case the bond percolation probability, i.e. the transmission probability
between two individuals, is then the probability that there is a transmission in one of the shared
communities or via the basic edges.

The SIR epidemic on the hypercubic lattice nested SHEM will depend on five parame-
ters:

(i) d, indicating space dimension;

(ii) z, determining the growth factor zd of community sizes;

(iii) α ≥ 1, determining the distribution of the number of communities to which an individual
belongs;

(iv) p, indicating the transmission probabilities to neighbors;

(v) ρ, modulating the decrease in transmission probabilities for large communities.

Our main results concern, on the one hand, the connectivity of the basic graph and, on the
other hand, the occurrence of a large outbreak transition. For the connectivity of the basic graph,
we show that the degree distribution Dv of any vertex v ∈ V satisfies P(Dv ≥ h) ≈ h−γ+1,
where γ − 1 = logz α/(d − logz α), so that the network is scale-free for all α ∈ (1, zd); in
particular, for zd/2 ≤ α ≤ z2d/3 the network exhibits the typical value of γ − 1 ∈ (1, 3). For
the epidemics outbreak, we study the onset of a large outbreak as a function of p, and find
that there is a well defined critical point pc (which is independent of the random realization of
the connectivity network) such that for p > pc there is a large outbreak, while there is not for
p < pc. We then find that pc is trivial (pc = 0) or not depending on the decrease rate ρ of
the transmission probabilities: if α ∈ [1, zd ] and ρ < α/zd , or α > zd , then pc > 0; however,
if α ∈ [1, zd) and ρ > α/zd then pc = 0. This fully determines the (α, ρ) phase diagram in
terms of the remaining parameters.

The large ρ phase means that with a slow decrease rate in the transmission probabilities
a large epidemic outbreak occurs no matter how small these transmission probabilities are.
Thus, our results reveal that the triviality of the critical value can indeed occur in scale-free
networks [31] even in the presence of a very structured population with realistic features,
outlining the possibility of such a highly undesirable situation. On the other hand, the fact that
we identify a transition to the more common nontrivial threshold suggests lines of intervention
in terms of reduction of transmission rates in selected highly pivotal communities: we leave
this matter for future investigation. The phase diagram is plotted in Figure 1.

In Section 2 we give precise definitions and state the main results, and in Section 3 we discuss
the relation with other models. In Section 4 we study the connectivity graph proving the results
about the asymptotic degree distribution. In Section 5 we study the community dependent
SIR epidemic and identify the parameter range where the critical point is trivial. Finally, in
Section 6 we bound our model with a toy model in which each variable Xu is replaced by a
collection of independent variables {X(u,v)}v∈Zd on directed edges with the same distribution
but with α replaced by

√
α. In spite of the seemingly inaccurate bound, this enables us to

identify the exact region in which pc > 0. A potential relation with one-dependent processes
and Shearer’s distribution and a hint as to why the bounds end up being so sharp is briefly
discussed in Section 3.
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Figure 1: The α − ρ phase diagram of the nested hierarchical modular spatial hypercubic lattice nested
SHEM in dimension d.

2. Definitions and main results

In this section we introduce the hypercubic lattice nested SHEM in detail and present the
main results of this paper. Detailed proofs are carried out in the remaining sections, starting
from the connectivity network first, and then moving to the SHEM.

As a preliminary step, though, we must point out that several proofs are obtained by
comparing the SHEM and the connectivity network to other, either simpler or well-known,
models. In so doing, we end up discussing a total of five different models plus a series of
interpolating ones. To unify the presentation we introduce a common notation.

We consider the graph (Zd , B
d) with B

d the set of all bonds of Z
d (thus not limited to its

nearest neighbor), or its directed version (Zd , 
Bd), where 
Bd is the set of all directed bonds of
Z

d . All models, including the SHEM, consist of distributions P on (the Borel σ -algebra of) H =
{0, 1}B

d
or 
H = {0, 1}
Bd

. They are defined by taking an initial configuration space X̄ (different
for different models), a probability μ on the Borel σ -algebra of X̄, a map φ : X̄ → H , or 
H , so
that P := φ(μ) = μφ−1. As μ and φ depend on some parameters, so will P. To avoid confusion,
all of these elements are decorated in each model by a reference to the model name and, when
it is relevant or there is risk of misunderstandings, the indication of the parameters (with the
exception of d). For instance, in the SHEM P = P

SHEM = P
SHEM
z,α,ρ,p = φSHEM

z (μSHEM
α,ρ,p ), where

μ = μSHEM = μSHEM
α,ρ,p is a distribution on X̄ = X̄SHEM = N

Z
d × {0, 1}B

d×N × {0, 1}B1

with B1 = {{u, v} | u, v ∈ Z
d , d(u, v) = 1} ⊆ B

d being the set of nearest-neighbor bonds.
Elements of X̄ are denoted by x and random variables taking values in X̄ by X; the restriction
of x to a subset is denoted by using the subset itself as index. For instance, if x ∈ X̄SHEM

then xZd ∈ N
Z

d
is its restriction to Z

d and x{u,v} and xBd×{1,2,3} are other possible restrictions.
Finally, if η ∈ H or 
H is distributed according to the probability P of some model, the subset of
B

d or 
Bd in which η = 1 is denoted by B or 
B decorated by the model name, and occasionally
the parameters; this generates the random graph G = (Zd , B), accordingly decorated. In the
SHEM model, for instance, it becomes B

SHEM = B
SHEM
α,z,ρ,p and GSHEM = (Zd , B

SHEM). As a
final remark, note that throughout this paper we are going to denote expectations of suitable
random variables X with respect to a probability P simply by P(X).
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We now give a detailed definition of the hypercubic lattice nested SHEM. As mentioned, we
introduce, in order, X̄SHEM, μSHEM, φSHEM, P

SHEM on H , and, finally, GSHEM = (Zd , B
SHEM).

It all depends on the five parameters: the dimension d (the first parameter) and z, α, ρ, p, the
remaining parameters introduced below.

We start from a system of partitions of Z
d into blocks. Let z ≥ 2 be a fixed integer (the second

parameter). For each k = 0, 1, 2, . . . , partition Z
d into blocks 	z,k(w) = 	z,k(w1, . . . , wd) =

{v = (u1, . . . , ud) ∈ Z
d : zkwj ≤ uj ≤ (wj + 1)zk − 1 for all j = 1, . . . , d} for w ∈

Z
d . Blocks represent a system of nested potential communities; here potential indicates that

individual u has a chance to belong to all communities 	z,k(w) for which u ∈ 	z,k(w); whether
it actually does belong to them is randomly decided as described further below. Note that blocks
are hypercubes of linear size zk , and that each partition is such that some of the hypercubes have
a vertex at the origin; k is called the level of the community. Note, also, that vertices separated
by coordinate hyperplanes always lie in different communities; the community structure is
thus confined to orthants, and vertices in different orthants are connected only through nearest-
neighbor connections: this constraint is not an unrealistic feature, however, as it might represent
very rigid borders or seas.

Let dH (u, v) = min{k | there exists w ∈ Z
d such that u, v ∈ 	z,k(w)} ∈ {0, 1, 2, . . . ,∞}

indicate the distance determined by the hierarchical structure of the 	z,ks; dH (u, v) indicates the
level of the smallest potential community to which both individualsu andv could simultaneously
belong and takes the value ∞ if there is no such community. Note that k ≥ dH (u, v) if and
only if there exists w ∈ Z

d such that u, v ∈ 	z,k(w). Note also that there are, in fact, two
metrics, the Euclidean distance d and the graph distance dH , which play a role in defining the
SHEM and that both are stationary (see [27] for a discussion on dH ).

The configuration space X̄SHEM is built in steps. First, xu ∈ N, u ∈ Z
d , describes actual

participation to a community: u belongs to all communities 	z,k(w) such that u ∈ 	z,k(w)

and xu ≥ k; such a set of k’s is the set Su mentioned in the introduction. Next, x{u,v},k ∈ {0, 1}
indicates whether disease transmission takes place between two individuals u, v if they belong
to the same community at level k. Finally, x{u,v} ∈ {0, 1}, u, v ∈ Z

d , d(u, v) = 1, indicates if
transmission takes place between two nearest neighbors. Therefore, we take

X̄SHEM = N
Z

d × {0, 1}B
d×N × {0, 1}B1 .

A random variable X = XZd ,Bd×N,B1
∈ X̄ with distribution μSHEM describes the random

elements x ∈ X̄. We define μSHEM as follows.
For α ≥ 1 (the third parameter), let μα = ∏

u∈Zd μα,u with μα,u(Xu ≥ k) = α−k, k =
0, 1, . . . ; for α = 1 the definition is extended by assuming that Xu = +∞ for all u. Note that
with this distribution the overlap, i.e. the average number of communities to which an individual
belongs, is

∑∞
k=1 α−k = (α − 1)−1, and that for human communities this is a realistic number

for values of α approximately in the interval [ 5
4 , 10

4 ]; see [21]. Note also that for 1 ≤ α ≤ zd

all communities are populated, with an average number (zd/α)k of individuals.
Next, given ρ ∈ [0, 1] (the fourth parameter) and p ∈ [0, 1] (the fifth parameter), the

distribution of X{u,v},k , {u, v} ∈ B
d , k ∈ N, is described by a Bernoulli probability μ′

ρ,p =∏
{u,v}∈Bd ,k∈N

μ′
ρ,p,{u,v},k , where μ′

ρ,p,{u,v},k(X{u,v},k = 1) = pρ−k. Finally, for p as above,
the distribution of X{u,v}, {u, v} ∈ B1, d(u, v) = 1, is described by a Bernoulli probability
μ′′

p = ∏
{u,v}∈Bd ,d(u,v)=1 μ′′

p,{u,v}, where μ′′
ρ,p,{u,v}(X{u,v} = 1) = p.

Finally, we take μSHEM = μSHEM
α,ρ,p = μα × μ′

ρ,p × μ′′
p. The map φSHEM completes the

construction by indicating that u and v are connected in the percolation transcription of epidemic
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diffusion if they share a community or are nearest-neighbors and transmit disease to each other
at that level. Hence, φSHEM = φSHEM

z : X̄SHEM → H is such that

(φSHEM
z (x)){u,v} = 1(there exists k∈N : dH (u,v)≤k≤min(xu,xv) and x{u,v},k=1, or d(u,v)=1 and x{u,v}=1) .

Note that (φSHEM
z (x)){u,v} depends not only on x{u,v} but also on xu, xv , and x{u,v},k .

The graph of the actual connections is then GSHEM = (Zd , B
SHEM), where B

SHEM =
B

SHEM(X) = {{u, v} ∈ B
d : (φSHEM(X)){u,v} = 1}. Consequently, B

SHEM has distribution
P

SHEM = P
SHEM
z,α,ρ,p = φSHEM

z (μSHEM
α,ρ,p ).

With this definition, there is a probability pρk of infectious contact (or connection in
percolation terminology) between each pair of individuals when they simultaneously belong to
a community at level k, and a probability p of the same occurrence if they are nearest-neighbors.
Note that two individuals may have several occasions of disease transmission if they share more
communities and/or are also neighbors.

The main result of this paper is about the occurrence of a large outbreak. By the equivalence
with percolation mentioned in the introduction, a large outbreak is equivalent to the occurrence
of percolation. For u ∈ Z

d and η ∈ H , let Vu = Vu(η) be the set of vertices connected to u,
let Au,∞ = {η | |Vu(η)| = ∞} and let A∞ = ⋃

u∈Zd Au,∞. We say that a large outbreak or
percolation occurs if P

SHEM(Au,∞) > 0 or, equivalently, P
SHEM(A∞) = 1 (see the proof of

Theorem 2.1 below), and does not if such probabilities are 0. We are interested in the set of
parameters d, α, z, ρ, and p for which a large outbreak or percolation occurs.

In Section 5, by fairly standard arguments, we prove the following theorem.

Theorem 2.1. For every d ≥ 2, z ≥ 2, α ≥ 1, and ρ ∈ [0, 1], there exists a value pc(α, ρ) =
pc(d, z, α, ρ) such that, for all u ∈ Z

d , P
SHEM
z,α,ρ,p(Au,∞) > 0 for all p > pc(α, ρ) and

P
SHEM
z,α,ρ,p(Au,∞) = 0 for all p < pc(α, ρ).

In terms of epidemics, when pc(α, ρ) > 0 no large outbreak occurs for small p, i.e. for
small values of the transmission parameter λ0, while a large outbreak occurs for large p, i.e. for
large transmission rates λ0. On the other hand, if pc(α, ρ) = 0 then there is a large outbreak
no matter how small the transmission rates are.

In Section 5 we obtain the main result of this paper by determining the entire phase diagram
of a SIR epidemic on the hypercubic lattice nested SHEM. We show that both regimes can
occur, depending on the relation among the remaining four parameters, as stated in the next
theorem.

Theorem 2.2. For α ∈ [1, zd ],

pc(α, ρ)

{
= 0 if ρ > α/zd,

> 0 if ρ < α/zd .

For α > zd , we have pc(α, ρ) > 0 for all ρ ∈ [0, 1].
As a final remark, let us mention that a third possible regime, namely pc(α, ρ) = 1 never

occurs: since nearest-neighbor edges are included, pc(α, ρ) ≤ pc(d) < 1, where pc(d) is the
critical point for independent edge percolation in Z

d .
Before proving these results, we explore in Section 3 the connectivity network. This is

just the random graph determined by spatial and community relations, and amounts to taking
ρ = p = 1 in the SHEM. It is described by the probability distribution P

CN = P
CN
z,α = P

SHEM
z,α,1,1
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on H . The random network is then GCN = (Zd , B
CN), where B

CN = B
CN
z,α = B

SHEM
z,α,1,1 is the

random set of 1s in a configuration η ∈ H distributed according to P
CN. To realize such a

distribution we can take X̄CN = N
Z

d
,

φCN
z (x){u,v} = 1{there exists k∈N : dH (u,v)≤k≤min(xu,xv) or d(u,v)=1},

and μCN = μCN
α = μα , the same distribution used in the SHEM as one of the marginals in the

definition of μSHEM.
The main result about the connectivity network concerns the asymptotic behavior of the

distribution of the degree Du = Du(η) = |{v ∈ Z
d | {u, v} ∈ B

CN}|.
Theorem 2.3. For all α, z such that 1 ≤ α < zd ,

(
zd − 1

zd − α

)γ−1

≥ lim sup
h→∞

P
CN
z,α(Du > h)hγ−1

≥ lim inf
h→∞ P

CN
z,α(Du > h)hγ−1

≥ 1

α

(
zd − 1

zd − α

)γ−1

for all u ∈ Z
d ,

where γ − 1 = logz α/(d − logz α).

By Theorem 2.3, for large h, P
CN(D = h) ≈ h−γ with γ as above. Thus, the connectivity

network GCN is scale-free for each α ∈ (1, zd). The typical degree of most realistic networks
is obtained for 2 ≤ γ ≤ 3, which is zd/2 ≤ α ≤ z2d/3. The relation with overlap is also quite
satisfactory: for d = 2 and z = 2, the typical scale-free range is [2, 24/3] which has nonempty
intersection with the region [ 5

4 , 10
4 ] where the overlap is realistic.

From the combined analysis of epidemics and of the connectivity network, the transition
between absence to nontriviality of a critical threshold emerges, as discussed in the introduction,
even in the scale-free parameter region.

3. Relation with other models

Before commencing with formal proofs we comment on the diversity of models appearing
in this work and on the relation with other models appearing in the literature. There are three
reasons behind this diversity:

(a) while we focus here on a well-determined construction, it is a richness of the model that
the general scheme of the SHEM can be detailed in many different ways;

(b) several steps in our proofs end up comparing a SIR epidemic on the hypercubic lattice
nested SHEM to modified (sometimes unrealistic) models; note that, signalling a likely
scarce influence of specific details, some of the results and proofs shown here hold for
some other of these models as well;

(c) it turns out that hypercubic lattice nested SHEM reproduces, for limiting values of its
parameters, several other models appearing in the literature, either exactly or approxi-
mately. Thus, although the frequent change of model burdens notation and reduces the
clarity of exposition, it is actually a strength of this work.
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We now briefly review the relation to other models, in particular, with those obtained as limits
as mentioned in (c) above. Parameters used by the cited papers are indexed by the initials of
the authors of each paper, in order to avoid confusing them with the parameters used here.

(c1) For ρ = 0, we simply obtain the classic nearest-neighbor edge percolation on Z
d (see,

for example, [22]), in which only the parameter p remains.

(c2) The α = 1 case is such that Su = N and each individual u belongs to all communities
containing the vertex u. Except for the nearest-neighbor edges, this is exactly the long-
range percolation (LRP) model on the hierarchical lattice studied in [27], with their
pKMT,k1 = (1 − exp(−αKMT/β

k1
KMT)) = 1 −∏

h≥k1
(1 −pρh). Since the right-hand side

is approximately (k2p/(1 − ρk2))ρk1 for some k2 (see (7.2), (7.3), and (7.7) below) and
1 − exp(−αKMT/β

k1
KMT) ≈ αKMT/β

k1
KMT, our parameters p and ρ play the role of αKMT

and β−1
KMT, respectively, while their NKMT is equal to our zd . Koval et al. [27] determined

three phases in terms of the critical αKMT,c (= pc(α, ρ)); the first has αKMT,c = 0 for
βKMT ≤ NKMT, which corresponds to our ρ ≥ z−d (= αz−d for α = 1), and the second
has αKMT,c > 0 for NKMT ≤ βKMT ≤ N2

KMT, which corresponds to our z−2d ≤ ρ ≤ z−d .
The third phase has αKMT,c = ∞ (which would be pc = 1), but our model does not
exhibit such a phase as we have included all nearest-neighbor edges so that pc(α, ρ) < 1.
There is an analogous relation with the results in [13] which are for α = 1 and NDG =
NKMT = zd → ∞, and with those in [14] which are for α = 1, and pDG,k =
cDG,k/N

k(1+δDG)
DG ≈ (k2p/(1 − ρ)k2)ρk for k = dH (u, v)), so that N

(1+δDG)
DG plays the

role of our ρ with δDG the relevant parameter. We point out, however, that the formulation
of [14, Theorem 3.1] considers large enough cDG,k (which plays the role of our p) and
thus the transition at their δDG = 0 (which amounts to our ρ = z−d ) goes unnoticed in
that paper.

(c3) For ρ = p = 1, in which case we are merely observing the connectivity network, the SIR
epidemic on the hypercubic lattice nested SHEM compares to the Yukich model [40],
which describes a model with two parameters sY and δY: {Uv}v∈Zd are independent and
identically distributed (i.i.d.) uniform [0, 1] random variables and u, v are connected
if and only if d(u, v) ≤ δY min(U

−sY
u , U

−sY
v ). It is actually possible to show that for

any increasing event A concerning edge connections, such as {Dv > h}, the probability
of A in the SIR epidemic on the hypercubic lattice-nested SHEM with parameters d, z, α

(and ρ = p = 1) is bounded by the probability of the same event in the Yukich model
with parameters sY = (logz α)−1 and δY = √

d. Since Yukich [40] computed the exact
asymptotic degree distribution, we used those results to state a proof of Theorem 2.3.
The proof has now been improved upon, as a result of a referee’s suggestion, and the
comparison with Yukich’s network is no longer needed.

(c4) Still, the random disk model, which we introduce in order to prove Lemma 7.1 below, is
very close to a modified version ofYukich’s network in which each connection inYukich’s
network is independently removed with a probability depending on the distance. From
our results it is not difficult to extract some information about the phase diagram of such
a weakened version of Yukich’s network, but this seems of no interest here.

(c5) The scale-free percolation model in [15] is also based on i.i.d. random variables, denoted
by Wu, with distribution satisfying F(w) ≈ 1 − w−(τDHH−1), and the probabilities of
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connection are of the form

pDHH,u,v = pDHH(Wu, Wv, d(u, v)) = 1 − exp

(
−λDHH

(
WuWv

d(u, v)αDHH

))
.

There is a correspondence with our parameterization as λDHH plays the same role as our p,
αDHH −2 plays the same role as our − logz ρ, Wu corresponds to

√
dzXu so that τDHH −1

corresponds to logz α. However, the formulation in [15] and our use of dH (u, v) instead
of d(u, v) determine different behaviors of percolation in the two models. In particular,
Deijfen et al. [15] showed that the critical λDHH,c is nonzero if and only if the degree
distribution of any vertex (which is independent of λDHH) has a finite second moment.
Such phenomenon does not occur in our case: we compute the asymptotic of the degree
distribution only for the connectivity graph (which is for ρ = p = 1), but already in that
case percolation occurs only for α > zd by Theorem 2.2, when the degree distribution
has all moments.

(c6) It is also interesting to simultaneously compare the hypercubic lattice SHEM to [8], [15],
and [27]. In [8] a very general family of inhomogeneous random graphs was proposed,
based on i.i.d. random variables like our Xu, such that the connection probability, when
just the first n vertices are considered, is of the form pu,v = p(Xu, Xv, n); [15] general-
izes it to a graph which can be immediately infinite and pu,v = p(Xu, Xv, d(u, v)).
On the other hand, Koval et al. [27] considered the hierarchical structure and sets
pDHH,u,v = p(dH (u, v)). In this perspective, our work is developing the most general
case in which pu,v = p(Xu, Xv, d(u, v), dH (u, v)).

(c7) As α → ∞, the SIR epidemic on the hypercubic lattice-nested SHEM tends again to
nearest-neighbor bond percolation in Z

d , and already for α > zd we expect that the model
has the same overall characteristics in terms of the percolation-large outbreak transition.

Finally, we comment on the stochastic properties of P
SHEM.

(d) Under P
SHEM the η variables, indicating effective disease transmission, are such that

if {ui, vi} ∩ {uj , vj } = ∅ for i �= j , then the η{ui ,vi }, i = 1, . . . , n, are collectively
independent. This is the edge analogy of the property of a Bernoulli random field with
a dependency graph or one-dependent process ([20] and [36]). From this point of view,
P

SHEM is a Bernoulli random field with a dependency hypergraph HG; more precisely,
vertices of HG correspond to the edges B

d and hyperedges of HG correspond to the
vertices of Z

d .

For a Bernoulli random field P one finds, under some conditions, a Bernoulli indepen-
dent distribution, called Shearer’s measure, which stochastically bounds P and has the same
marginals; see [34] and [36]. In our proof we also end up bounding P

SHEM with a Bernoulli
independent distribution, see P

DRD in Section 7 below, which is optimal in some sense (at least
in the sense that it captures the precise phase transition diagram). This somehow suggests that
P

DRD could be some sort of generalized Shearer’s measure. There are too many differences,
however, to draw direct conclusions from the theory of Bernoulli random fields; for instance,
the use of a hypergraph instead of a graph, and the fact that P

DRD is on variables attached to
directed edges (a concept which is absent for the vertex variables of a one-dependent process).
But at least this relation hints as to why the seemingly inaccurate bounds of Section 7 end up
capturing the phase diagram completely.
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4. Degree distribution of the connectivity network

The probability P
CN is not stationary and the distribution of Du depends on u, but the

dependency is very weak. The hierarchical part is, in fact, stationary as vertices u lie in
identical sequences of 	z,k(wk,u) for suitable wk,u; only the nearest-neighbor relations in the
SHEM do not match the hierarchical structure exactly, due to the nonequivalence of d(u, v) and
dH (u, v). Since in the connectivity network each vertex has 2d nearest neighbors, the number
of nearest neighbors which are added to the set of neighbors observed via the communities can
vary from 0 to 2d at most. Hence, for all u, v ∈ Z

d and h > 0,

P
CN(Du ≥ h + 2d) ≤ P

CN(Dv ≥ h) ≤ P
CN(Du ≥ h − 2d). (4.1)

In order to prove Theorem 2.3, we first compute the expected degree D = D0, with 0 being the
origin of Z

d , for each fixed value k of X0.

Lemma 4.1. For all α ∈ (1, zd), it holds that

Ek := μCN
α (D | X0 = k) = c1(d, z, α)

(
zd

α

)k

+c2(d, z, α),

where c1(d, z, α) = (zd − 1)/(zd − α) and c2(d, z, α) is such that

− zd − 1

zd − α
≤ c2(d, z, α) ≤ − zd − 1

zd − α
+ 2d.

Proof. Consider the boxes 	z,
(0), 
 ∈ N. Then

Ek =
k∑


=1

∑
v∈	z,
(0)\	z,
−1(0)

μCN
α (Xv ≥ 
) +

∑
v : d(0,v)=1

(1{Xv<dH (0,v)≤k} + 1{k<dH (0,v)})

=
k∑


=1

zd
 − zd(
−1)

α

+ c3(k, α)

= zd − 1

zd − α

zd·k − αk

αk
+ c3(k, α)

= zd − 1

zd − α

(
zd

α

)k

− zd − 1

zd − α
+ c3(k, α)

= c1(d, z, α)

(
zd

α

)k

+ c2(d, z, α),

where 0 ≤ c3(k, α) ≤ 2d , so that c1 and c2 are as claimed. �

Proof of Theorem 2.3. For α = 1 the result is trivial, as all terms equal 1. For α > 1, in view
of (4.1), it is enough to consider u = 0. For h > 0, let k̄(h) = max{k : c1(z

d/α)k + c2 ≤ h},
and, for ε > 0, consider k1(h) = k̄(h − h1/2+ε − 4d) and k2(h) = k̄(h + h1/2+ε + 6d). Note
that k2(h) − k1(h) ≤ 1 for large h, but can actually be 1.

Denote E� = μCN
α (

∑k

=1

∑
v∈	z,
(0)\	z,
−1(0) 1{Xv≥
}); the random variables appearing in

the sum are binary and independent, hence, their maximum value is 1 and E� is also the sum

https://doi.org/10.1017/apr.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.10


SIR epidemics on a scale-free network 147

of their second moments. Note also that |E� − Ek| ≤ 2d. By the Bernstein inequality, for all
k ≤ k1(h), we have

μCN
α (D > h | X0 = k) ≤ μCN

α

(( k∑

=1

∑
v∈	z,
(0)\	z,
−1(0)

1{Xv≥
}

+
∑

v : d(0,v)=1

(1{Xv<dH (0,v)≤k} + 1{k<dH (0,v)}
)

> h

)

≤ μCN
α

( k∑

=1

∑
v∈	z,
(0)\	z,
−1(0)

1{Xv≥
} −E� > h − 4d − Ek

)

≤ exp

(
− (h − 4d − Ek)

2/2

E� + (h − 4d − Ek)/3

)

≤ exp

(
− (h1/2+ε)2/2

4h/3

)

≤ exp

(−3h2ε

8

)

since for k ≤ k1(h), h−Ek−4d ≥ h1/2+ε, and E� ≤ Ek+2d ≤ h. Thus, as k1(h) ≤ c4 log (h),

∑
k≤k1(h)

μCN(D > h | X0 = k)μCN(X0 = k)hγ−1 ≤ k1(h) exp

(−3h2ε

8

)
hγ−1

→ 0 as h → ∞.

From the definition of k1(h), we have

k1(h) + 1 ≥ log

(
h − h1/2+ε + 4d − c2

c1

)
1

log (zd/α)
;

therefore, as P = μ(φ−1),

P
CN
z,α(D > h)hγ−1

= hγ−1
∞∑

k=k1(h)

μCN
α ((φCN

z )−1(D > h) | X0 = k)μCN
α (X0 = k) + o(h)

≤ hγ−1α−(k1(h)+1) + o(h)

≤ hγ−1 exp

(
−log α log

(
h − h1/2+ε + 4d − c2

c1

)
1

log (zd/α)

)
+ o(h)

≤ hγ−1c
(logz α/(d−logz α))

1 exp

(
− logz α

d − logz α
log (h − h1/2+ε + 4d − c2)

)
+ o(h)

≤ hγ−1c
γ−1
1

1

(h − h1/2+ε + 4d − c2)γ−1 + o(h)

→ c
γ−1
1 as h → ∞.
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Proceeding in the same way, if k ≥ k2(h) + 1, we have

μCN
α (D ≤ h | X0 = k) ≤ μCN

α

(
E� −

k∑

=1

∑
v∈	z,
(0)\	z,
−1(0)

1{Xv≥
} > Ek − 4d − h

)

≤ exp

(
− (Ek − 6d − h)2/2

E� + (Ek − 6d − h)/3

)

≤ exp

(
−3

8
(Ek)

ε

)

since E� ≤ Ek + 2d and Ek ≥ h + h1/2+ε imply that

(Ek − 6d − h)2/2

E� + (Ek − 6d − h)/3
≥ (Ek − 6d − h)2/2

Ek + Ek/3
≥ 3

8
(Ek)

ε

for large h (depending on ε). Hence,

P
CN
z,α(D > h)hγ−1

≥ hγ−1
∞∑

k=k2(h)+1

μCN(D > h | X0 = k)μα(X0 = k)

≥ hγ−1
( ∞∑

k=k2(h)

μα(X0 = k) −
∞∑

k=k2(h)+1

exp

(
−3

8
E

ε
k

)
α−k(α − 1)

)

≥ hγ−1
(

α−(k2(h)+1) −
∞∑

k=k2(h)+1

exp

(
−3

8

(
c1

(
zd

α

)k

+ c2

)ε)
α−k(α − 1)

)

since c1(z
d/α)k2(h) + c2 ≥ h + h1/2+ε + 6d ≥ h. The second term is bounded by

hγ−1 exp

(
−3

8

(
c1

(
zd

α

)(k2(h)+1)

+ c2

)ε)
α−k2(h) ≤ hγ−1 exp

(
−3

8
hε

)
αlog((h−c2)/c1)1/log(zd/α)

≤ exp

(
−3

8
hε

)(
h − c2

c1

)γ−1

hγ−1

→ 0 as h → ∞.

From the definition of k2(h), we have k2(h) ≤ log((h + h1/2+ε − c2)/c1)1/log (zd/α); so,
finally, the first term above satisfies

hγ−1α−(k2(h)+1) ≥ hγ−1 1

α
exp

(
−log α log

(
h + h1/2+ε + 4d − c2

c1

)
1

log (zd/α)

)

≥ hγ−1 1

α
c
γ−1
1

1

(h + h1/2ε + 4d − c2)γ−1

→ 1

α
c
γ−1
1 as h → ∞.

This concludes the proof as c1 = (zd − 1)/(zd − α). �
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5. Epidemics: existence of a threshold

Lemma 5.1. Fix d, z, α, and ρ. For μSHEM
α,ρ,p -almost all xZd ∈ X̄Zd , μSHEM

α,ρ,p (φ−1
z (A∞) | xZd ) ∈

{0, 1} and is nondecreasing in p; therefore, there exists pc = pc(d, z, xZd , ρ) such that
P

SHEM(A∞) = 0 for p < pc and P
SHEM(A∞) = 1 for p > pc. Furthermore, the random

variable pc(d, z, xZd , ρ) is constant for μα-almost all xZd ∈ N
Z

d
.

Proof. We have

μSHEM
α,ρ,p (φ−1

z (A∞) | xZd ) = μ′
ρ,p × μ′′

p(ABd×N,B1
(xZd )),

where, for xZd ∈ N
Z

d
, ABd×N,B1

(xZd ) = {xBd×N,B1
∈ {0, 1}B

d×N × {0, 1}B1 : φz(xZd ×
xBd×N,B1

) ∈ A∞}; note that μ′
ρ,p × μ′′

p is Bernoulli. The event ABd×N,B1
(xZd ) does not

depend on any finite set of ({u, v}, k) in B
d × N and {u, v} in B1, so it is a tail event and its

probability is in {0, 1}. Moreover, for each xZd the event ABd×N,B1
(xZd ) is monotone in the

semiorder of {0, 1}B
d×N × {0, 1}B1 , and for p′ > p μ′

ρ,p′ × μ′′
p′ dominates in the Fortuin–

Kasteleyn–Ginibre (FKG) sense μ′
ρ,p × μ′′

p. This shows the existence of pc as claimed.

Next, the random variable pc(d, z, xZd , ρ) is in the tail σ -algebra of N
Z

d
, as changes of a

finite number of xu do not affect the set ABd×N,B1
(xZd ) hence the value of pc, and μSHEM

α is
Bernoulli. �

Proof of Theorem 2.1. If p < pc(α, ρ) then P
SHEM
z,α,ρ,p(A∞) = 0; hence, PSHEM

z,α,ρ,p(Au,∞) = 0.
If p > pc(α, ρ) then P

SHEM
z,α,ρ,p(A∞) > 0. By σ -additivity there is a vertex v ∈ Z

d such that
P

SHEM
z,α,ρ,p(Av,∞) > 0; for another fixed u ∈ Z

d , the event B that Xu, Xv > dH (u, v) and
X{u,v},k = 1 for some k > dH (u, v) is an increasing event in the semiorder in X̄ and has
P

SHEM(B) > 0, so by FKG, P
SHEM
z,α,ρ,p(Au,∞) ≥ P

SHEM(Av,∞)PSHEM(B) > 0. �

6. Parameter region with trivial threshold

Lemma 6.1. For α ∈ [1, zd) and ρ > α/zd , we have pc(α, ρ) = 0.

Proof. We begin with a dynamic construction of P
SHEM. Starting from the origin 0, consider

the sequence of boxes 	z,k = 	z,k(0); recall that 	z,0 = {0} and let 	z,k′ = ∅ for k′ < 0; for
k = 0, . . . , sequentially generate the following variables:

…

(ka) Xv, v ∈ 	z,k \ 	z,k−1;

(kb) X{v,u},j , u, v ∈ 	z,k−1 \ 	z,k−2, j = 1, . . . , k − 1, u �= v;

(kc) X{v,u},k, u ∈ 	z,k−1, v ∈ 	z,k;

…

(Last) X{u,v},0 for all nearest-neighbor pairs {u, v}.
Note the following.

(i) In every step we generate variables which were not generated in the previous steps: this
is clear for Xu and X{u,v},0, while for X{v,u},k we need to verify that three pairs of sets
are disjoint.
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• First, for k �= 
, {({v, u}, j) | u, v ∈ 	z,k−1 \ 	z,k−2, j = 1, . . . , k − 1} ∩
{({v, u}, j) | u, v ∈ 	z,
−1 \ 	z,
−2, j = 1, . . . , 
 − 1} = ∅ as the sets of bonds
are disjoint.

• Second, for k �= 
, {({v, u}, k), u ∈ 	z,k−1, v ∈ 	z,k} ∩ {({v, u}, 
), u ∈ 	z,
−1,

v ∈ 	z,
} = ∅ as the community levels are different.

• Finally, for all k and 
, {({v, u}, j) | u, v ∈ 	z,k−1 \ 	z,k−2, j = 1, . . . , k − 1} ∩
{({v, u}, 
), u ∈ 	z,
−1, v ∈ 	z,
} = ∅ since, for 
 ≤ k − 1, bonds are different
(this should be checked with care for 
 = k − 1, as in that case the second set
has v ∈ 	z,k−1, but then u ∈ 	z,k−2); and, for all 
 ≥ k, community levels are
different.

(ii) The last step can be performed at any time, possibly subdivided into several steps.

(iii) All the generated variables are measurable with respect to X̄ = X̄Zd ,Bd×N,B1
.

(iv) As a side remark, although unnecessary for the current proof but potentially useful in
simulations, observe that all relevant variables are generated; in fact, if u′ ∈ 	z,k \	z,k−1
and v′ ∈ 	z,k+r \	z,k+r−1, r ≥ 1, then x{v′,u′},j for j = 1, . . . , k+r−1 is not generated
but it is also not relevant in the process.

Following this construction we can show that for α ∈ (1, zd), ρ > α/zd , and any p > 0 there
is an infinite cluster. We generate a sequence ik, k ∈ N, of either vertices in 	z,k \ 	z,k−1 or
empty sets with the following procedure, in which the definition of ik depends on three events
which may occur depending on the status of ik−1.

Step 1. If x0 ≥ 1 then i0 = 0, else i0 = ∅;

• if ik−1 ∈ 	z,k−1 \ 	z,k−2 then

• if there exists v ∈ 	z,k \ 	z,k−1 such that xv ≥ k + 1 and x{ik−1,v},k = 1, then ik
equals one of such vertices v (the first in some fixed order);

• if there exists v ∈ 	z,k \	z,k−1 : xv ≥ k +1 but for all such v x{ik−1,v},k = 0, then
ik equals one of vertices v with the first property (the first in some fixed order);

• if for all v ∈ 	z,k \ 	z,k−1, we have xv < k + 1 then ik = ∅;

• if ik−1 = ∅ then

• if there exists v ∈ 	z,k \ 	z,k−1 : xv ≥ k + 1 then ik equals one of such vertices v

(the first in some fixed order);

• if for all v ∈ 	z,k \ 	z,k−1, we have xv < k + 1 then ik = ∅.

Given the vertices iks, we can define the following events:

• Ak = {there exists v ∈ 	z,k \ 	z,k−1 : xv ≥ k + 1, x{ik−1,v}, k = 1}
• Ck = {there exists v ∈ 	z,k \ 	z,k−1 : xv ≥ k + 1 but either ik−1 = ∅ or for all such vs

x{ik−1,v},k = 0}
• Fk = {for all v ∈ 	z,k \ 	z,k−1, it holds that xv < k + 1},

where clearly Ak is not defined if ik−1 = ∅. Note that all the events Ak, Ck , and Fk are
defined in terms of the variables at steps (ka) and (kc) of the construction outlined above.
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This implies that such events are defined in terms of variables which, once ik−1 is given, are
independent from those involved in defining Ai, Ci , and Fi for i = 1, . . . , k − 1. Moreover,
for each k the three events form a partition of the probability space. Therefore, the sequence
Zk = ak(ck, fk, respectively) if Ak(Ck, Fk, respectively) occurs, is a (nonhomogeneous)
Markov chain, whose transition matrix can be estimated in terms of the x variables. In fact,

P
SHEM(Zk = ak | Zk−1 = ak−1) = P

SHEM(Zk = ak | Zk−1 = ck−1)

= 1 −
(

1 − pρk

αk+1

)zdk−zd(k−1)

≥ 1 − exp

(
−pρk(zdk − zd(k−1))

αk+1

)
,

P
SHEM(Zk = ck | Zk−1 = fk−1) = 1 −

(
1 − 1

αk+1

)zdk−zd(k−1)

≥ 1 − exp

(
− (zdk − zd(k−1))

αk+1

)
,

and all other conditional probabilities are smaller than exp(−pρk(zdk − zd(k−1))/αk+1) if
Zk−1 = ak−1 or Zk−1 = ck−1, and smaller than exp(−(zdk − zd(k−1))/αk+1) if Zk−1 = fk−1.

Since p, ρ ≤ 1, we have

P
SHEM(Zk = fk) =

∑
z∈{ak−1,ck−1,fk−1}

P
SHEM(Zk = fk | Zk−1 = z)PSHEM(Zk−1 = z)

≤ exp

(
−pρk(zdk − zd(k−1))

αk+1

)

and, similarly,

P
SHEM(Zk = ck) ≤ exp

(
−zdk − zd(k−1)

αk+1

)
+ exp

(
−pρk−1(zd(k−1) − zd(k−2))

αk+1

)
,

so that if ρ > α/zd , both
∑∞

k=1P
SHEM(Zk = fk) < ∞ and

∑∞
k=1P

SHEM(Zk = ck) < ∞.

By the first Borel–Cantelli lemma, Fk and Ck occur only a finite number of times, so that with
probability 1 the sequence terminates with one Ck and then Ah for h > k. In such a case, the
vertex ik is connected to an infinite cluster containing all vertices ih for h > k. Since there
are countably many vertices there must be one k and one vertex v ∈ 	z,k \ 	z,k−1 which is
the starting vertex of an infinite cluster with probability c1 > 0. Note that the infinite cluster
is using edges in communities at a level of at least k. Such a vertex can be connected to the
origin using nearest-neighbor edges, which are independent from the previous construction as
they were involved only in the last step of the dynamic joint generation of graph and epidemic,
with some probability c2 > 0. In the end, the probability of percolation from the origin is at
least c1c2 > 0. �

7. Parameter region with nontrivial threshold

To identify the region with nontrivial threshold we are going to give an upper bound to the
probability P

SHEM(Au,∞) in terms of the corresponding probability in a sequence of models.
The three main ones are the random disks (RD) probability P

RD, the directed random disks
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(DRD) probability P
DRD, and a long range percolation (LRP) probability P

LRP. The first two
are probably of little relevance elsewhere; the last one is well known in the literature; see [33].
In addition, we introduce an infinite sequence of interpolating models between the RD and the
DRD; they are called the h-directed random disks (h-DRD) models, with their distributions
denoted by P

h-DRD, h ∈ N.
In the proofs of this section nearest-neighbor edge variables are just a nuisance. Therefore,

we are going to fix one realization x̄B1 of the variables in B1 such that percolation does not
occur in (Zd , B1), as can be done with probability 1 for small enough p; x̄ = x̄B1 is kept fixed
for the whole section except in the proof of Theorem 2.2. Let us denote by B

∗
1 the set of edges

{u, v} such that d(u, v) = 1 and x̄{u,v} = 1; we will always have η{u,v} = 1. We then consider
P

SHEM
x̄B1

= P
SHEM
z,α,ρ,p,x̄B1

= φSHEM
z,x̄B1

(μSHEM
α,ρ,p ), where φSHEM

x̄B1
: X̄SHEM → H is such that

(φSHEM
x̄B1

(x)){u,v} = 1{there exists k∈N : dH (u,v)≤k≤min(xu,xv) and x{u,v},k=1, or {u,v}∈B
∗
1} .

Similarly to the general SHEM construction, now GSHEM
x̄B1

= (Zd , B
SHEM
x̄B1

), where B
SHEM
x̄B1

is the set of edges where φSHEM
x̄B1

= 1; B
SHEM has distribution P

SHEM
x̄B1

= P
SHEM
z,α,ρ,p,x̄B1

=
φSHEM

x̄B1
(μSHEM

α,ρ,p ).

Note that, equivalently, P
SHEM
α,ρ,p,x̄B1

= φSHEM(μSHEM
α,ρ,p (· | x̄B1)), where μSHEM(· | x̄B1) is just

μ = μSHEM conditioned to the fixed configuration on B1; μSHEM(· | x̄B1) is then a distribution
on N

Z
d × {0, 1}B

d×N; and

μSHEM =
∫

{0,1}B1
μSHEM(· | x̄B1)μ

SHEM(dx̄B1);

hence,

P
SHEM =

∫
{0,1}B1

P
SHEM
x̄B1

μSHEM(dx̄B1). (7.1)

The models used to bound the percolation probability are also defined in terms of the given x̄B1

following the general scheme discussed in Section 2; each will depend on various parameters.
We prove that for suitable choices of the parameters and h ≥ 1,

P
SHEM
α,ρ,p,x̄B1

(Au,∞) ≤ P
RD(Au,∞)

≤ P
(h−1)-DRD(Au,∞)

≤ P
h-DRD(Au,∞)

≤ P
DRD(Au,∞)

≤ P
LRP(Au,∞),

where we have not yet explicitly indicated the parameters of the other distributions. In the end,
we easily identify the parameter region with a nontrivial threshold for the long-range model,
and translate it back into a parameter region for the SHEM. It is somewhat surprising that we
obtain the complete description of the phase space with this procedure, in particular, as the
inequality between RD and DRD requires a choice of parameters which does not seem optimal
at first sight.

We begin by introducing the RD model. It is based on random variables Xu with the same
distribution as the corresponding ones in SHEM, but now the connectivity graph is based just
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on distances. Let X̄RD = N
Z

d × {0, 1}B
d
. For α ≥ 1 and ξ : B

d → [0, 1], with ξ{u,v} = 1
for {u, v} ∈ B∗

1 , let μRD = μRD
α,ξ = μα × μξ , where μα is like in the SHEM and μξ is

inhomogeneous Bernoulli, i.e. μξ = ∏
{u,v}∈Bd μξ,{u,v} with μξ,{u,v}(x{u,v} = 1) = ξ{u,v} =

1 − μξ,{u,v}(x{u,v} = 0). Then, let φRD = φRD
z,δ,x̄B1

: X̄RD → H be such that

φRD
z,δ (x){u,v} = 1{δzxu ,δzxv ≥d(u,v) and x{u,v}=1, or {u,v}∈B

∗
1)},

and P
RD = P

RD
z,α,δ,ξ = φRD

z,δ (μRD
α,ξ ) which is the distribution of GRD = GRD

z,α,δ,ξ = (Zd , B
RD).

For fixed p and ρ, let

k2(ρ, p) = min

{
k′

2 ≥ 1 : k′
2 is odd and

pρk′
2

(1 − ρ)k
′
2+1

≤ 1

2

}
(7.2)

and for u, v ∈ Z
d and δ > 1, define

k1,δ(u, v) = min{k′
1 ≥ 1 : δzk′

1 ≥ d(u, v)}. (7.3)

Lemma 7.1. If, for {u, v} /∈ B∗
1 ,

ξ{u,v}(δ, p, ρ) = k2(ρ, p)p

(1 − ρ)k2(ρ,p)
ρk1,δ(u,v) ∧ 1, (7.4)

then for all increasing events A ⊆ H , P
SHEM
z,α,ρ,p,x̄B1

(A) ≤ P
RD
z,α,

√
d,ξ(

√
d,p,ρ)

(A).

Proof. Now let xZd ∈ N
Z

d
be fixed and consider the conditional distributions

μSHEM
α,ρ,p,x̄B1

(· | xZd ), μRD
α,ξ(

√
d,p,ρ)

(· | xZd ).

Under these distributions, the events that η{u,v} = 1 are independent by construction, and for
{u, v} /∈ B

∗
1, μSHEM

α,ρ,p,x̄B1
((φSHEM)−1(η{u,v} = 1 | xZd )) = 1 − ∏

k∈Ix
Zd (u,v)

(1 − pρk), where

Ix
Zd

(u, v) = {k ≥ 1 | there exists w ∈ Z
d : u, v ∈ 	k,z(w) and xu, xv ≥ k};

and μRD
α,ξ ((φ

RD
α,

√
d
)−1(η{u,v} = 1 | xZd )) = ξ{u,v}(

√
d, ρ, p) 1{√dzxu ,

√
dzxv ≥d(u,v)} . For all k ∈

Ix
Zd

(u, v) u, v ∈ 	k,z(w), and xu, xv ≥ k which yields

d(u, v) ≤ √
dzk ≤ √

dzxu,
√

dzxv ; (7.5)

the first inequality implies that k1,
√

d(u, v) ≤ min Ix
Zd

(u, v) and, hence, Ix
Zd

(u, v) ⊂ {k1,
√

d(u,

v), k1,
√

d(u, v) + 1, . . . , min(xu, xv)}. We then have

1 −
∏

k∈Ix
Zd

(u,v)

(1 − pρk) ≤ 1 −
∏

k≥k1,
√

d
(u,v)

(1 − pρk)

= p
∑

k≥k1,
√

d
(u,v)

ρk − p2
∑

h>k≥k1,
√

d
(u,v)

ρk+h + · · ·

=
∞∑

j=1

(−1)j+1 pjρ
jk1,

√
d
(u,v)+j (j−1)/2∏j

i=1(1 − ρi)

=:
∞∑

j=1


j . (7.6)
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If j > k2(ρ, p), ∣∣∣∣
j+1


j

∣∣∣∣ = pρ
k1,

√
d
(u,v)+j

(1 − ρj+1)
≤ pρj

(1 − ρj+1)
≤ 1

2
;

thus, the 
j s are decreasing geometrically with a ratio smaller than or equal to 1
2 for j >

k2(ρ, p), with alternating signs, starting from a negative term as k2(ρ, p)+1 is even; it follows
that the remainder is nonpositive. Hence, since μSHEM

α,ρ,p,x̄B1
(· | xZd ) is a probability,

∞∑
j=1


j ≤
k2(ρ,p)∑

j=1

|
j | ∧ 1 ≤ k2(ρ, p) max
j=1,...,k2(p,ρ)

pjρ
jk1,

√
d
(u,v)+j (j−1)/2∏j

i=1(1 − ρi)
∧ 1

≤ k2(ρ, p)
maxj=1,...,k2(p,ρ) pjρ

jk1,
√

d
(u,v)+j (j−1)/2

minj=1,...,k2(p,ρ)

∏j
i=1(1 − ρi)

∧ 1

≤ k2(ρ, p)p

(1 − ρ)k2(ρ,p)
ρ

k1,
√

d
(u,v) ∧ 1

≤ ξ(u,v)(
√

d, ρ, p), (7.7)

where the inequality before the last one holds since ρ, p ∈ [0, 1] and, thus,
∏k2

i=1(1−ρi) ≤ (1−
ρ)k2 . The second inequality in (7.5) implies that if Ix

Zd
(u, v) �= ∅ then 1{√dzxu ,

√
dzxu≥d(u,v)} =

1. Together with (7.6), (7.7), and the fact that the distributions coincide on {u, v} ∈ B
∗
1, this

implies that

μSHEM
α,ρ,p,x̄B1

((φSHEM
z )−1(η{u,v} = 1) | xZd ) ≤ μRD

α,ξ(
√

d,p,ρ)
((φRD

z,
√

d
)−1(η{u,v} = 1 | xZd ))

and μRD
α,ξ(

√
d,p,ρ)

((φRD
z,

√
d
)−1(·) | xZd ) dominates in the FKG sense

μSHEM
α,ρ,p,x̄B1

((φSHEM
z )−1(·) | xZd ).

It follows that, if A ⊆ H is increasing then

P
SHEM
z,α,ρ,p,x̄B1

(A) = μSHEM
α,ρ,p ((φSHEM

z )−1(A))

=
∫

X
Zd

μSHEM
α,ρ,p,x̄B1

((φSHEM
z )−1(A) | xZd )μα(dxZd )

≤
∫

X
Zd

μRD
α,ξ(

√
d,p,ρ)

((φRD
z,

√
d
)−1(A) | xZd )μα(dxZd )

= P
RD
z,α,

√
d,ξ(

√
d,p,ρ)

(A). �

Next, we introduce the DRD model. This is the trickier part, as we now want to remove the
dependency between ηu,v and ηu,v′ ; such dependency is due to the common variable Xu, so
we substitute it by independent random variables X(u,v), one for each directed edge (u, v). It
is still possible to have an inequality concerning the interesting events (like percolation) if the
probabilities for X(u,v) are ‘square roots’of those for Xu, in the sense that the scale parameter α

is replaced by β = √
α, as described below.

Let 
Bd = {(u, v) | u, v ∈ Z
d}, β ≥ 1 and ξ be as before. Then, let X̄DRD = N


Bd × {0, 1}B
d
,

μDRD = μDRD
β,ξ = μβ × μξ , where μβ = ∏

(u,v)∈
Bd μβ,(u,v) with μβ,(u,v)(x(u,v) ≥ k) = 1/βk .
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Moreover, for δ > 1, let φDRD = φDRD
z,δ : X̄RD → H be such that

φDRD
z,δ (x){u,v} = 1{δzx(v,u) ,δz

x(u,v)≥d(u,v) and x{u,v}=1, or {u,v}∈B
∗
1},

and let P
DRD = P

DRD
z,β,δ,ξ = φDRD

z,δ (μDRD
β,ξ ) be the distribution of GDRD = GDRD

z,β,δ,ξ = (Zd , B
DRD).

We now introduce the sequence of models interpolating between RD and DRD. First, we
introduce boxes of more general form than was done to determine the partitions. In general, let

	n =
{
v = (u1, . . . , ud) ∈ Z

d : −
⌊

n

2

⌋
≤ uj ≤

⌊
n

2

⌋
for all j = 1, . . . , d

}
.

Then we select an ordering of Z
d = {u1, u2, . . . } and, for h = 0, 1, . . . , we consider the

sequence of sets U(0) = ∅, . . . , U(h) = {u1, . . . , uh}. For later purposes we take the order
such that U(h) ⊆ 	n for all h ≤ nd and U(nd) = 	n, so the boxes are filled up sequentially.

For a fixed h ∈ N, let X̄h-DRD = N
Z

d\U(h) × N
(U(h)×Z

d )\{(u,u),u∈U(h)} × {0, 1}B
d
; then for

α, β > 1, ξ as before, let μh-DRD = μh-DRD
α,β,ξ = μ

(h)
α,β ×μξ , where μ

(h)
α,β = ∏

u∈Zd\U(h) μ
(h)
α,β,u ×∏

(u,v)∈U(h)×Zd\{(u,u),u∈Zd } μ
(h)
α,β,(u,v), μ

(h)
α,β,u is as μα,u in RD (or SHEM), and μ

(h)
α,β,(u,v) is as

μβ,(u,v) in DRD. Then let φh-DRD = φh-DRD
z,δ : X̄RD → H be such that

φh-DRD
z,δ (x){u,v} = 1{δzxt (v,u) ,δz

xt (v,u)≥d(u,v) and x{u,v}=1, or {u,v}∈B
∗
1},

where t (u, v) = u if u ∈ Z
d \ U(h) and t (u, v) = (u, v) if u ∈ U(h).

Finally, P
h-DRD = P

h-DRD
z,α,β,δ,ξ = φh-DRD

z,δ (μh-DRD
α,β,ξ ) is the distribution of Gh-DRD = Gh-DRD

z,β,δ,ξ =
(Zd , B

h-DRD).
Given a box 	n ⊆ Z

d , let B
(	n) = {{v, u} : v, u ∈ 	n ∩ Z

d} be the set of unordered edges
having both endpoints in 	n. To show that P

h-DRD interpolates between P
RD and P

DRD we
consider, for h ≤ nd so that U(h) ⊆ 	n, the set

Mn,h = {	n \ U(h)} ∪ (U(h) × 	n \ {(v, v), v ∈ 	n}) ∪ B
(	n). (7.8)

Note that Mn,0 = 	n ∪ B
(	n) and Mn,nd = (	n × 	n \ {(v, v), v ∈ 	n}) ∪ B

(	n). For
x ∈ X̄h-DRD, we have that xMn,h

is the restriction to Mn,h of a configuration of X̄RD if h = 0,
while it is the restriction to Mn,h of a configuration of X̄DRD if h ≥ nd . By definition,
μh-DRD

α,β,ξ (xMn,0) = μRD
α,ξ (xMn,h

) and φ0-DRD
z,δ = φRD

z,δ , so that P
0-DRD
z,α,β,δ,ξ = P

RD
z,α,δ,ξ . On the other

hand, if h ≥ nd then μh-DRD
α,β,ξ (xMn,h

) = μDRD
β,ξ (xMn,h

) and (φh-DRD
z,δ (x)){u,v} = (φDRD

z,δ (x)){u,v}
for all {u, v} ∈ B

(	n). So P
h-DRD(A) = P

DRD(A) for all A depending only on B
(	n). Since

B
(	n) ↑ B

d , this implies that P
h-DRD
z,α,β,δ,ξ converges weakly to P

DRD
z,β,δ,ξ as h diverges. In this sense,

P
h-DRD interpolates between P

RD and P
DRD.

Given a box 	n ⊆ Z
d and a fixed u ∈ 	n, let B

(	n,u) = {{v, u} : v ∈ 	n ∩Z
d} be the set of

unordered edges in 	n having u as an end point. Consider a subset A ⊆ B
(	n,u); note that A can

be identified either by its edges or by the endpoint different from u of each edge: we occasionally
use both ways. For such an A we indicate by ZA = {η : η{v,u} = 0 for all {v, u} ∈ A} ⊆ H the
event that none of the edges of A are open.

To state the next result we introduce some sets, each a union of vertices, directed edges, and
undirected edges, as already was the case in (7.8). Let

ME

h = (Zd \ U(h)) ∪ ((U(h − 1) × Z
d) \ {(v, v), v ∈ Z

d})) ∪ (Bd \ B
(	n,uh)), (7.9)

ME

n,h = (	n \ U(h)) ∪ ((U(h − 1) × 	n) \ {(v, v), v ∈ 	n}) ∪ (B(	n) \ B
(	n,uh)), (7.10)

M IS
n,h = {uh} ∪ B

(	n,uh), M IM
n,h = ((uh × 	n) \ {(uh, uh)}) ∪ B

(	n,uh).
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Note that ME

n,h ∪ M IS
n,h = Mn,h−1 and ME

n,h ∪ M IM
n,h = Mn,h. Note also that each configuration

xME

n,h
is at the same time the restriction of a configuration of X̄(h−1)-DRD or X̄h-DRD to ME

n,h.

The extension of [29, Theorem 3.1] that we are going to prove uses the following inequality
in which we use β2 = α.

Lemma 7.2. For all n, h ≤ nd and for all xME

n,h
∈ X̄ME

n,h
,

μ
(h−1)-DRD
α,

√
α,ξ

((φ
(h−1)-DRD
z,δ )−1(ZA ∪ ZB) | xME

n,h
)) ≥ μh-DRD

α,
√

α,ξ
((φh-DRD

z,δ )−1(ZA ∪ ZB) | xME

n,h
))

for all pairs of (possibly empty) sets A, B ⊆ B
(	n,u).

Proof. For fixed 	n ⊂ Z
d and u = uh ∈ 	n, and given xME

n,h
∈ X̄ME

n,h
, if A ⊆ B

(	n,u)

then (φh-DRD
z,δ )−1(ZA) depends only on the variables in M IS

n,h, and (φ
(h−1)-DRD
z,δ )−1(ZA) depends

only on the variables in M IM
n,h.

Note that, given x = xME

n,h
, to prove the statement it is actually enough to consider the edges

in

B
(	n,u,x) =

{
{u, v} ∈ B

(	n,u) : xv ≥ logz

(
d(u, v)√

d

)
if v > u in the fixed order,

or x(v,u) ≥ logz

(
d(u, v)√

d

)
if v < u

}

as all other edges {u, v′} are such that η{u,v′} = 0 for both the (h − 1)- and h-DRD models.
We adopt this assumption from now on. Next, let A, B ⊆ B

(	n,u,x), disjoint, with |A| = r

and |B| = m; and recall that we identify each edge in A or B by its endpoint different from u.
We then let A ∪ B = (u1, u2, . . . , um+r ) indicate such vertices which are endpoints (different
from u) of edges in A ∪ B, ordered according to the distance of the endpoint from u, so that
d(v, ui) ≤ d(u, ui+1). We also indicate A = {v1, v2, . . . , vr} and B = {w1, w2, . . . , wm}
ordered in the same way. For simplicity of notation, denote by dui

= d(u, ui) the distance
from u to ui ; moreover, let αui

= μα(Xu ≥ logz(dui
/
√

d)) = α−�logz(du1/
√

d)�, and the same
with α replaced by β. Note that if β = √

α then αui
= (βui

)2. Next, let qui
= ξ{u,ui } with

ξ : B
d → [0, 1] (regardless of h), and let P1 = μ

(h−1)-DRD
α,

√
α,ξ

((φ
(h−1)-DRD
z,δ )−1(·) | xME

n,h
); let P2

indicate the same probability with h − 1 replaced by h. We want to prove that P1(ZA ∪ ZB) ≥
P2(ZA ∪ ZB).

We proceed by induction on the cardinality of A and B. Note that if |A| = 0 or |B| = 0,
then P1(ZA ∪ ZB) = P2(ZA ∪ ZB) = 1.

(i) Suppose that A = {v}, B = {w}. By symmetry we can assume that dw < dv; then
βw ≥ βv . Taking complements and using independence under P2 we easily see that
P1(ZA ∪ ZB) = 1 − αvqvqw and P2(ZA ∪ ZB) = 1 − βvqv βwqw. Since βw ≥ βv , then
βvβw ≥ β2

v = αv . The inequality holds, with equality if dv = dw.

(ii) Now consider {u1, u2, . . . , um+r} = {v1, v2, . . . , vr}∪{w1, w2, . . . , wm} = A∪B such
that du1 ≤ du2 ≤ · · · ≤ dum+r . As before, consider the probability of ZA ∪ ZB . With
respect to P1, if Xu < logz(dv1/

√
d) then ZA occurs. Instead, if logz(dvj

/
√

d) ≤ Xu <

logz(dvj+1/
√

d) then there exist j connections in the connectivity network and ZA occurs
if all j of them are closed. Analogously for ZB and ZA∩ZB . Thus, P1(ZA) = (1−αv1)+∑r−1

j=1(αvj
− αvj+1)

∏j
i=1(1 − qvi

) + αvr

∏r
i=1(1 − qvi

). Analogous expressions hold
for P1(ZB) with vi replaced by wi and the index running through m, and for P1(ZA∩ZB),
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with vi replaced by wi and the index running through r + m. With respect to P2, since
X(u,ui ) and X(u,uj ) are independent for i �= j , we have P2(ZA) = ∏r

i=1(1 − βvi
qvi

).
An analogous expression holds for P2(ZB) with vi replaced by wi and the index running
through m, while P2(ZA ∩ ZB) = P2(ZA)P2(ZB).

We proceed by induction on m + r . We show that if P1(ZA ∪ ZB) ≥ P2(ZA ∪ ZB)

holds for m + r − 1 then it also holds for m + r . The vertex um+r can be either in A or
in B and we assume with no loss of generality that um+r = vr ∈ A. Then we show that if
P1(ZA′ ∪ZB) ≥ P2(ZA′ ∪ZB) with |A′| = r −1, |B| = m then P1(ZA ∪ZB) ≥ P2(ZA ∪ZB)

with A = A′ ∪ {vr} and, thus, |A| = r , |B| = m. It is sufficient to show that

P1(ZA ∪ ZB) − P1(ZA′ ∪ ZB) ≥ P2(ZA ∪ ZB) − P2(ZA′ ∪ ZB). (7.11)

By elementary calculation, using the fact that for any probability P(ZA ∪ ZB) = P(ZA) +
P(ZB) − P(ZA ∩ ZB), and that P1(ZB) = P1(ZB ′), we have

P1(ZA ∪ ZB) − P1(ZA′ ∪ ZB) = −αvr qvr

r−1∏
i=1

(1 − qvi
)

[
1 −

m∏
j=1

(1 − qwj
)

]
.

Similarly,

P2(ZA ∪ ZB) − P2(ZA′ ∪ ZB) = −βvr qvr

r−1∏
i=1

(1 − βvi
qvi

)

[
1 −

m∏
j=1

(1 − βwj
qwj

)

]
.

Since αvr = β2
vr

, (7.11) is equivalent to

βvr

r−1∏
i=1

(1 − qvi
)

[
1 −

m∏
j=1

(1 − qwj
)

]
≤

r−1∏
i=1

(1 − βvi
qvi

)

[
1 −

m∏
j=1

(1 − βwj
qwj

)

]
.

As βwi
≤ 1, it is enough to show that

βvr

[
1 −

m∏
j=1

(1 − qwj
)

]
≤

[
1 −

m∏
j=1

(1 − βwj
qwj

)

]
, (7.12)

which can be easily performed by induction on m. If m = 1 then βvr qw ≤ βwqw because vr

is the vertex at maximal distance from u, so that βvr ≤ βw. Then, taking again the differences
between the increments between the values in m − 1 and m of both sides of (7.12), it is enough
to show that

βwmqwm

m−1∏
j=1

(1 − βwj
qwj

) ≥ βvr qwm

m−1∏
j=1

(1 − qwj
),

which is easily seen to hold as βwi
≤ 1 and βvr ≤ βwm .

There remains to check the case when one of A or B is empty. By symmetry, we need to
check one case only, and we thus assume that B = ∅ and A = {v1, v2, . . . , vr}. Note that
P1(ZA) and P2(ZA) are as above.

https://doi.org/10.1017/apr.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.10


158 A. GANDOLFI AND L. CECCONI

If r = 1 then P1(ZA) = (1 − αv1) + αv1(1 − qv1) = 1 − αv1qv1 ≥ 1 − βv1qv1 = P2(ZA).
For general r , using induction as before, and recalling that αv = β2

v ≤ 1, we have

P1(ZA) − P1(ZA′) = −αvr qvr

r−1∏
i=1

(1 − qvi
)

≥ −βvr qvr

r−1∏
i=1

(1 − βvi
qvi

)

= P2(ZA) − P2(ZA′). �

We now want to follow Meester and Trapman’s work [29] and we need to recall some
definitions in order to make this presentation self-contained. An ordered set of edges of the
form ξ = ((v0, v1), (v1, v2), . . . , (vn−1, vn)) in some G ⊆ 
Bd is a directed path from v0 to
vn; sometimes, to simplify notation, a path is indicated by ξ = (v0v1, v1v2, . . . , vn−1vn).
A path ξ = (v0v1, v1v2, . . . , vn−1vn, . . . ) with infinitely many different edges is an infinite
path. A path goes through v if for some i, vi = v. Given a finite or infinite path ξ =
((v0, v1), (v1, v2), . . . , (vn−1, vn)), we indicate the truncation after k edges as ξ s(k) = (v0v1,

v1v2, . . . , vk−1vk) and the tail starting after k edges as ξ t (k) = (vkvk+1, . . . ); for two paths
ξ1 = (v0v1, v1v2, . . . , vn−1vn) and ξ2 = (vnvn+1, . . . ) we denote the conjunction by (ξ1, ξ2) =
(v0v1, v1v2, . . . , vn−1vn, vnvn+1, . . . ). Next, let � be a collection of paths. If G(n) is the
collection of the first n directed edges of G according to some given enumeration of G, then
we indicate by �n the set of finite paths of � of which all the edges are in G(n) together with
all the infinite paths of � truncated at the first instance they leave G(n). In this definition, taken
from [29], finite paths are considered but not truncated to be able to handle collections � such
as the set of all paths connecting to vertices; for the purposes of this paper we actually need
only infinite paths and their truncations. The complete statement of the result would be needed
to investigate issues like the individual to individual transmission.

Furthermore, given a configuration η ∈ 
H = {0, 1}G, we say that ξ is open in η if for all
edges (vk, vk+1) we have η(vk,vk+1) = 1. Given a collection � of paths, we indicate by A� the
event that at least one path in � is open. We say that � is hoppable if

• for any v ∈ Z
d and any two paths ξ and φ of � going through v, where v is the end vertex

of the ith edge of ξ and the starting vertex of the j th edge of φ, then (ξ s(i), φt (j)) ∈ �;

• the following limit exists: limn A�n = A�.

If � is the collection of all infinite paths starting from the origin, which is the only case
considered here, then A�n is decreasing in n and, hence, limn A�n = ⋂

n A�n exists. By a
standard percolation argument, saying that out of infinitely many longer and longer finite paths
from a vertex one can extract an infinite one, we have

⋂
n A�n = A�.

Lemma 7.3. For every z, α, δ, ξ , every hoppable collection of paths � in B
d , and h ≥ 1,

P
RD
z,α,δ,ξ (A

�) ≤ P
(h−1)-DRD
z,α,

√
α,δ,ξ

(A�) ≤ P
h-DRD
z,α,

√
α,δ,ξ

(A�) ≤ P
DRD
z,

√
α,δ,ξ

(A�).

Proof. We mimic the proof of [29, Theorem 3.1], dividing the argument into three steps.

(i) The first step is to prove the corresponding statement for a fixed �n and a fixed h. To
this purpose recall the definitions of ME

h and ME

n,h from (7.9) and (7.10), respectively,
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and note that X̄
(h−1)-DRD
ME

n,h

= X̄h-DRD
ME

n,h

; the restrictions of μ(h−1)-DRD and μh-DRD to

(the Borel σ -algebra generated by the variables in) ME

n,h also coincide. Recall that we
assume that the enumeration of the vertices is such that boxes 	n are progressively
filling up. Therefore, the difference P

h-DRD
z,α,

√
α,δ,ξ

(A�n) − P
(h−1)-DRD
z,α,

√
α,δ,ξ

(A�n) is the integral

(on (X̄h-DRD
ME

n,h

, B, μ(h−1)-DRD), with B the Borel σ -algebra) of the difference between

μh-DRD((φh-DRD)−1(A�n) | xME

n,h
) and μ(h−1)-DRD((φ(h−1)-DRD)−1(A�n) | xME

n,h
).

Note that there are three possibilities: either (φ(h−1)-DRD)−1(A�n) and (φh-DRD)−1(A�n)

both occur in xME

n,h
regardless of xM IS

n,h
or xM IM

n,h
; or they both do not occur regardless of

xM IS
n,h

or xM IM
n,h

; or, finally, these occurrences depend on xM IS
n,h

or xM IM
n,h

. In the first two

cases the second difference above is 0.
In the third case there are two sets of edges A and B, possibly one of whose is empty,
such that φ−1(A�n)) does not occur in φ−1(ZA∪ZB), while it occurs in the complement.
Denoting, for any event A, ρh(A) = μh-DRD((φh-DRD)−1(A) | xME

n,h
), we obtain

ρh(A
�n) − ρh−1(A

�n) = ρh((ZA ∪ ZB)c) − ρh−1((ZA ∪ ZB)c) ≥ 0

from Lemma 7.2.

(ii) By iteration, as P
RD and P

DRD are obtained for h = 0 and h = nd , respectively,

P
RD
z,α,δ,ξ (A

�n) ≤ P
(h−1)-DRD
z,α,

√
α,δ,ξ

(A�n) ≤ P
h-DRD
z,α,

√
α,δ,ξ

(A�n) ≤ P
DRD
z,

√
α,δ,ξ

(A�n).

(iii) In the last step recall that by definition of a hoppable collection of paths A�n → A�.
Thus, limn→∞ P

RD
z,α,δ,ξ (A

�n) = P
RD
z,α,δ,ξ (A

�). On the other hand, since P
h-DRD converges

weakly to P
DRD and A�n is measurable with respect to a finite number of variables, we

have limn→∞ limh→∞ P
h-DRD
z,α,

√
α,δ,ξ

(A�n) = limn→∞ P
DRD
z,

√
α,δ,ξ

(A�n) = P
DRD
z,

√
α,δ,ξ

(A�).

Using steps (i) and (ii) in (iii) the proof is completed. �

Before using Lemma 7.3, we introduce the last model we need, namely long range percolation
(LRP). Recall that x̄B1 is still fixed. An LRP model does not require any space X̄ or distribution
μ, and we can directly define P

LRP = P
LRP
β,s on (the Borel σ -algebra of) H as a Bernoulli

distribution with P
LRP
β,s (η{u,v} = 1) = β/d(u, v)s ∧ 1 for {u, v} /∈ B

∗
1, and as P

DRD for {u, v} ∈
B

∗
1.

Lemma 7.4. Let ρ < α. When

s = logz

(
α

ρ

)
, β = k2(ρ, p)p

(1 − ρ)k2(ρ,p)

(
α

ρ

)(logz d−1)/2

,

and ξ{u,v} is as in (7.4), it holds that for any event A increasing with respect to the semiorder
of H , P

DRD
z,

√
α,

√
d,ξ

(A) ≤ P
LRP
β,s (A).
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Proof. If s = logz(α/ρ) and β = (k2(ρ, p)p/(1 − ρ)k2(ρ,p))(α/ρ)((logz d)/2)+1, since ρ <

α, then for {u, v} /∈ B
∗
1,

P
DRD
z,

√
α,

√
d,ξ

(η{u,v} = 1) = μDRD√
α,ξ

(x(v,u) ≥ k1,
√

d(u, v), x(u,v) ≥ k1,
√

d(u, v), x{u,v} = 1)

= (
√

α)
−2k1,

√
d
(u,v)

ξ{u,v}

= (
√

α)
−2k1,

√
d
(u,v)

(
k2(ρ, p)pρ

k1,
√

d
(u,v)

(1 − ρ)k2(ρ,p)
∧ 1

)

≤ k2(ρ, p)p

(1 − ρ)k2(ρ,p)

(
ρ

α

)logz(d(u,v)/
√

d)−1

≤ β

(d(u, v))s

= P
LRP
β,s (η{u,v} = 1).

Then P
DRD
z,

√
α,δ,ξ

, which, by construction, P
DRD
z,

√
α,δ,ξ

is also a Bernoulli distribution, is dominated

in the FKG sense by P
LRP
β,s , and the result follows. �

Lemma 7.5. When ρ < α, s = logz(α/ρ) and β = (k2(ρ, p)p/(1 − ρ)k2(ρ,p))(α/ρ)(logz d)/2,
it holds that P

SHEM
z,α,ρ,p,xB1

(A0,∞) ≤ P
LRP
β,s,xB1

(A0,∞).

Proof. Let � be the collection of all infinite paths starting at the origin 0. Then A0,∞ = A�

is both increasing with respect to the semiorder in H and hoppable; see [29] after Definition 1.2
for a detailed argument. With ξ as in (7.4), recalling that the inequalities in Lemmas 7.1,
7.3, and 7.4 are all for the given xB1 , we have P

SHEM
z,α,ρ,p,xB1

(A0,∞) ≤ P
RD
z,α,

√
d,ξ

(A0,∞) ≤
P

DRD
z,

√
α,

√
d,ξ

(A0,∞) ≤ P
LRP
β,s,xB1

(A0,∞). �
Proof of Theorem 2.2. By Lemma 6.1, we need to consider only ρ < α/zd . By Lemma 7.5,

we have P
SHEM
z,α,ρ,p,xB1

(A0,∞) ≤ P
LRP
β,s,xB1

(A0,∞) for each xB1 , when s = logz(α/ρ) and β =
(k2(ρ, p)p/(1 − ρ)k2(ρ,p))(α/ρ)((logz d)/2)−1. Consider now a LRP model P

LRPB in which, in
addition to long-range variables, there are also independent nearest-neighbor variables; these
are then distributed like μSHEM

p restricted to B1. From (7.1), integrating the above inequality
over μSHEM

p (dxB1), we obtain P
SHEM
z,α,ρ,p(A0,∞) ≤ P

LRPB
β,s (A0,∞).

Hence, it is enough to show that for ρ < α/zd and small enough p, P
LRPB
β,s (A0,∞) = 0.

This can be obtained by a simple comparison with a Galton–Watson tree, whose distribution is
indicated by P

GW
β,s , via a stepwise realization of the percolation cluster. In each step, new edges

are added with probability β/d(u, v)s with some constraints; the cluster is then bounded by
that realized in the unconstrained growth of a Galton–Watson tree with the same probabilities,
so that P

LRP
β,s (A0,∞) ≤ P

GW
β,s (A0,∞).

A Galton–Watson random tree is subcritical, i.e. P
GW
β,s (A0,∞) = 0, if the expected number

of descendants, i.e. the expected degree, satisfies P
GW
β,s (D0) < 1. Since k2(ρ, p) ≤ k2(ρ, 1),

we have

P
GW
β,s (D0) = 2dp +

∑
v∈Zd

k2(ρ, p)p

(1 − ρ)k2(ρ,p)

(
α

ρ

)((logz d)/2)−1 1

d(0, v)logz(α/ρ)

≤ 2dp +
∑
k∈N

2dkd−1 k2(ρ, p)p

(1 − ρ)k2(ρ,p)

(
α

ρ

)((logz d)/2)−1 1

klogz(α/ρ)
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≤ 2dp + p
∑
k∈N

2d
k2(ρ, p)p

(1 − ρ)k2(ρ,p)

(
α

ρ

)((logz d)/2)−1

kd−1−logz(α/ρ)

< ∞

if d − 1 − logz(α/ρ) < −1, which is d < logz(α/ρ), i.e. ρ < α/zd . In such a case,
P

GW
β,s (D0) < cp, for some constant c, and for small enough p, we have P

GW
β,s (D0) < 1. �
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