Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-06T04:57:08.676Z Has data issue: false hasContentIssue false

Markov-modulated Ornstein–Uhlenbeck processes

Published online by Cambridge University Press:  24 March 2016

G. Huang*
Affiliation:
University of Amsterdam
H. M. Jansen*
Affiliation:
University of Amsterdam and Ghent University
M. Mandjes*
Affiliation:
University of Amsterdam, CWI and EURANDOM
P. Spreij*
Affiliation:
University of Amsterdam
K. De Turck*
Affiliation:
Ghent University
*
* Postal address: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
* Postal address: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
* Postal address: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
* Postal address: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
****** Postal address: TELIN, Ghent University, St.-Pietersnieuwstraat 41, B9000 Gent, Belgium. Email address: kdeturck@telin.ugent.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider an Ornstein–Uhlenbeck (OU) process (M(t))t≥0 whose parameters are determined by an external Markov process (X(t))t≥0 on a finite state space {1, . . ., d}; this process is usually referred to as Markov-modulated Ornstein–Uhlenbeck. We use stochastic integration theory to determine explicit expressions for the mean and variance of M(t). Then we establish a system of partial differential equations (PDEs) for the Laplace transform of M(t) and the state X(t) of the background process, jointly for time epochs t = t1, . . ., tK. Then we use this PDE to set up a recursion that yields all moments of M(t) and its stationary counterpart; we also find an expression for the covariance between M(t) and M(t + u). We then establish a functional central limit theorem for M(t) for the situation that certain parameters of the underlying OU processes are scaled, in combination with the modulating Markov process being accelerated; interestingly, specific scalings lead to drastically different limiting processes. We conclude the paper by considering the situation of a single Markov process modulating multiple OU processes.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

References

[1]Alili, L., Patie, P. and Pedersen, J. L. (2005). Representations of the first hitting time density of an Ornstein–Uhlenbeck process. Stoch. Models 21, 967980. Google Scholar
[2]Anderson, D., Blom, J., Mandjes, M., Thorsdottir, H. and De Turck, K. (2014). A functional central limit theorem for a Markov-modulated infinite-server queue. To appear in Methodology Comput. Appl. Prob.Google Scholar
[3]Ang, A. and Bekaert, G. (2002). Regime switches in interest rates. J. Business Econom. Statist. 20, 163182. CrossRefGoogle Scholar
[4]Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York. Google Scholar
[5]Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn. World Scientific, Hackensack, NJ. CrossRefGoogle Scholar
[6]Banachewicz, K., Lucas, A. and van der Vaart, A. (2008). Modelling portfolio defaults using hidden Markov models with covariates. Econometrics J. 11, 155171. Google Scholar
[7]Blom, J. and Mandjes, M. (2013). A large-deviations analysis of Markov-modulated inifinite-server queues. Operat. Res. Lett. 41, 220225. Google Scholar
[8]Blom, J., De Turck, K. and Mandjes, M. (2013). Rare event analysis of Markov-modulated infinite-server queues: a Poisson limit. Stoch. Models 29, 463474. Google Scholar
[9]Blom, J., De Turck, K. and Mandjes, M. (2015). Analysis of Markov-modulated infinite-server queues in the central-limit regime. Prob. Eng. Inf. Sci. 29, 433459. Google Scholar
[10]Blom, J., Mandjes, M. and Thorsdottir, H. (2013). Time-scaling limits for Markov-modulated infinite-server queues. Stoch. Models 29, 112127. CrossRefGoogle Scholar
[11]Blom, J., De Turck, K., Kella, O. and Mandjes, M. (2014). Tail asymptotics of a Markov-modulated infinite-server queue. Queueing Systems 78, 337357. CrossRefGoogle Scholar
[12]Blom, J., Kella, O., Mandjes, M. and Thorsdottir, H. (2014). Markov-modulated infinite-server queues with general service times. Queueing Systems 76, 403424. CrossRefGoogle Scholar
[13]Coolen-Schrijner, P. and van Doorn, E. A. (2002). The deviation matrix of a continuous-time Markov chain. Prob. Eng. Inf. Sci. 16, 351366. Google Scholar
[14]D'Auria, B. (2008). M/M/∞ queues in semi-Markovian random environment. Queueing Systems 58, 221237. Google Scholar
[15]Elliott, R. J. and Mamon, R. S. (2002). An interest rate model with a Markovian mean reverting level. Quant. Finance 2, 454458. CrossRefGoogle Scholar
[16]Elliott, R. J. and Siu, T. K. (2009). On Markov-modulated exponential-affine bond price formulae. Appl. Math. Finance 16, 115. Google Scholar
[17]Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence. John Wiley, New York. CrossRefGoogle Scholar
[18]Fralix, B. H. and Adan, I. J. B. F. (2009). An infinite-server queue influenced by a semi-Markovian environment. Queueing Systems 61, 6584. CrossRefGoogle Scholar
[19]Giampieri, G., Davis, M. and Crowder, M. (2005). Analysis of default data using hidden Markov models. Quant. Finance 5, 2734. Google Scholar
[20]Guyon, X., Iovleff, S. and Yao, J.-F. (2004). Linear diffusion with stationary switching regime. ESAIM Prob. Statist. 8, 2535. CrossRefGoogle Scholar
[21]Hale, J. K. (1980). Ordinary Differential Equations, 2nd edn. Krieger, Huntington, NY. Google Scholar
[22]Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357384. CrossRefGoogle Scholar
[23]Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press. CrossRefGoogle Scholar
[24]Huang, G., Mandjes, M. and Spreij, P. (2014). Weak convergence of Markov-modulated diffusion processes with rapid switching. Statist. Prob. Lett. 86, 7479. CrossRefGoogle Scholar
[25]Huang, G.et al. (2014). Markov-modulated Ornstein–Uhlenbeck processes. Preprint. Available at http://arxiv.org/abs/1412.7952v1. Google Scholar
[26]Jacobsen, M. (1996). Laplace and the origin of the Ornstein–Uhlenbeck process. Bernoulli 2, 271286. Google Scholar
[27]Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin. Google Scholar
[28]Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York. Google Scholar
[29]Keilson, J. (1979). Markov Chain Models—Rarity and Exponentiality. Springer, New York. Google Scholar
[30]Kemeny, J. G. and Snell, J. L. (1960). Finite Markov Chains. Van Nostrand, Princeton, NJ. Google Scholar
[31]Neuts, M. F. (1981). Matrix–Geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins University Press, Baltimore, MD. Google Scholar
[32]O'Cinneide, C. A. and Purdue, P. (1986). The M/M/∞ queue in a random environment. J. Appl. Prob. 23, 175184. Google Scholar
[33]Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin. Google Scholar
[34]Robert, P. (2003). Stochastic Networks and Queues. Springer, Berlin. CrossRefGoogle Scholar
[35]Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales, Vol. 2, Itô Calculus, 2nd edn. Cambridge University Press. Google Scholar
[36]Syski, R. (1978). Ergodic potential. Stoch. Process. Appl. 7, 311336. Google Scholar
[37]Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of Brownian motion. Phys. Rev. 36, 823841. Google Scholar
[38]Williams, D. (1991). Probability with Martingales. Cambridge University Press. Google Scholar
[39]Xing, X., Zhang, W. and Wang, Y. (2009). The stationary distributions of two classes of reflected Ornstein–Uhlenbeck processes. J. Appl. Prob. 46, 709720. Google Scholar
[40]Yuan, C. and Mao, X. (2003). Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 103, 277291. Google Scholar