
Adv. Appl. Prob. 48, 235–254 (2016)
doi:10.1017/apr.2015.15

© Applied Probability Trust 2016

MARKOV-MODULATED
ORNSTEIN–UHLENBECK PROCESSES

G. HUANG,∗ ∗∗ University of Amsterdam

H. M. JANSEN,∗ ∗∗∗ University of Amsterdam and Ghent University

M. MANDJES,∗ ∗∗∗∗ University of Amsterdam, CWI and EURANDOM

P. SPREIJ,∗ ∗∗∗∗∗ University of Amsterdam

K. DE TURCK,∗∗∗∗∗∗ Ghent University

Abstract

In this paper we consider an Ornstein–Uhlenbeck (OU) process (M(t))t≥0 whose
parameters are determined by an external Markov process (X(t))t≥0 on a finite state
space {1, . . . , d}; this process is usually referred to as Markov-modulated Ornstein–
Uhlenbeck. We use stochastic integration theory to determine explicit expressions for
the mean and variance of M(t). Then we establish a system of partial differential
equations (PDEs) for the Laplace transform of M(t) and the state X(t) of the background
process, jointly for time epochs t = t1, . . . , tK . Then we use this PDE to set up a
recursion that yields all moments of M(t) and its stationary counterpart; we also find an
expression for the covariance between M(t) and M(t +u). We then establish a functional
central limit theorem for M(t) for the situation that certain parameters of the underlying
OU processes are scaled, in combination with the modulating Markov process being
accelerated; interestingly, specific scalings lead to drastically different limiting processes.
We conclude the paper by considering the situation of a single Markov process modulating
multiple OU processes.

Keywords: Ornstein–Uhlenbeck process; Markov modulation; regime switching; central
limit theorems; martingale techniques

2010 Mathematics Subject Classification: Primary 60K25
Secondary 60G44; 60G15

1. Introduction

The Ornstein–Uhlenbeck (OU) process is a stationary Markov–Gauss process, with the
additional feature that it eventually reverts to its long-term mean; see the seminal paper [37], as
well as [26] for a historic account. Having originated from physics, the process has now found
widespread use in a broad range of other application domains: finance, population dynamics,
climate modeling, etc. In addition, it plays an important role in queueing theory, as it can
be seen as the limiting process of specific classes of infinite-server queues under a certain
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scaling [34]. The OU process is characterized by three parameters (which we call α, γ , and σ 2

throughout this paper), which relate to the process mean, convergence speed towards the mean,
and variance, respectively.

The probabilistic properties of the OU process have been thoroughly studied. One of the
key results is that its value at a given time t has a normal distribution, with a mean and variance
that can be expressed explicitly in terms of the parameters α, γ , and σ 2 of the underlying OU
process; see, e.g. [26, Equation (2)]. In addition, various other quantities have been analyzed,
such as the distribution of first-passage times or the maximum value attained in an interval of
given length; see, e.g. [1] and the references therein.

The concept of regime switching (or Markov modulation, as it is usually referred to in
the operations research literature) has become increasingly important over the past decades.
In regime switching, the parameters of the underlying stochastic process are determined by
an external background process (or modulating process) that is typically assumed to evolve
independently of the stochastic process under consideration. Often the background process is
assumed to be a Markov chain defined on a finite state space, say {1, . . . , d}; in the context of
a Markov-modulated OU (MMOU), this means that when this Markov chain is in state i, the
process locally behaves as an OU process with parameters αi , γi , and σ 2

i .

Owing to its various attractive features, regime switching has become an increasingly popular
concept. In a broad spectrum of application domains it offers a natural framework for modeling
situations in which the stochastic process under study reacts to an autonomously evolving
environment. In finance, one could identify the background process with the ‘state of the
economy’, for instance as a two-state process (that is, alternating between a ‘good’ and a ‘bad’
state) to which, e.g. asset prices react. Likewise, in wireless networks the concept can be used
to model the channel conditions that vary in time, and to which users react.

In the operations research literature there is a sizeable body of work on Markov-modulated
queues; see, e.g. [4, Chapter XI] and [31], while Markov modulation has also been intensively
used in insurance and risk theory [5]. In the financial economics literature the use of regime
switching dates back to at least the late 1980s [22]; various specific models have been considered
since then; see, e.g. [3], [15], and [16].

In this paper we present a set of new results in the context of the analysis of MMOU. Here,
and in the sequel, we let M(t) denote the position of the MMOU process at time t , whereas M

denotes its stationary counterpart (the existence of which follows from [39, Theorem 3.1]). In
the first place we derive explicit equations for the mean and variance of M(t) and M , jointly with
the state of the background process, relying on standard machinery from stochastic integration
theory. In various special cases the resulting equations simplify drastically (for instance, when
it is assumed that the background process starts off in equilibrium at time 0, or when the
parameters γi are assumed uniform across the states i ∈ {1, . . . , d}).

The second contribution concerns the derivation of a system of PDEs for the Laplace
transform of M(t); when equating to 0 the partial derivative with respect to time we obtain
a system of ordinary differential equations for the Laplace transform of M . This result is
directly related to [39, Theorem 3.2], with the differences being that there the focus was on
just stationary behavior, and that the system considered there had the additional feature of
reflection at a lower boundary (to avoid the process attaining negative values). We set up a
recursive procedure that generates all moments of M(t); in each iteration a nonhomogeneous
system of differential equations needs to be solved. This procedure complements the recursion
for the moments of the steady-state quantity M , as presented in [39, Corollary 3.1] (in which
each recursion step amounts to solving a system of linear equations). In addition, we also
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set up a system of PDEs for the Laplace transform associated with the joint distribution of
M(t1), . . . , M(tK), and determine the covariance cov(M(t, t + u)).

A third contribution concerns the behavior of the MMOU process under certain parameter
scalings.

• A first scaling that we consider concerns speeding up the jumps of the background process
by a factor N . Using the system of PDEs that we derived earlier, it is shown that the
limiting process, obtained by sending N → ∞, is an ordinary (that is, nonmodulated)
OU process, with parameters that are time averages of the individual αi , γi , and σ 2

i .

• A second regime that we consider scales the transition rates of the Markovian background
process by N , while the αi and σ 2

i are inflated by a factor Nh for some h > 0; the
resulting process we call M [N,h](t). We then center (subtract the mean, which is roughly
proportional to Nh) and normalize M [N,h](t), with the goal of establishing a central limit
theorem (CLT). Interestingly, the appropriate normalization depends on the value of h.
If h < 1 the variance of M [N,h](t) is roughly proportional to the ‘scale’ at which the
modulated OU process operates, namely Nh, and as a consequence the normalization
looks like Nh/2; at an intuitive level, the timescale of the background process is so fast
that the process essentially looks like an OU process with time-averaged parameters. If,
on the contrary, h > 1 then the variance of M [N,h](t) grows like N2h−1, which is faster
than Nh; as a consequence, the proper normalization looks like Nh−1/2; in this case the
variance that appears in the CLT is directly related to the deviation matrix [13] associated
with the background process. Importantly, we do not just prove normality for a given
value of t > 0, but rather weak convergence (at the process level, that is) to the solution
of a specific limiting stochastic differential equation.

The last contribution focuses on the situation that a single Markovian background process
modulates multiple OU processes. This, for instance, models the situation in which different
asset prices react to the same ‘external circumstances’ (that is, state of the economy), or the
situation in which different users of a wireless network react to the same channel conditions.
The probabilistic behavior of the system is captured through a system of PDEs. It is also pointed
out how the corresponding moments can be found.

Importantly, there is a strong similarity between the results presented in the framework of
this paper and corresponding results for Markov-modulated infinite-server queues. In these
systems the background process modulates an M/M/∞ queue, meaning that we consider an
M/M/∞ queue of which the arrival rate and service rate are determined by the state of the
background process [14], [18]. For these systems, the counterparts of our MMOU results have
been established: the mean and variance have been computed in, e.g. [12], [32], (partial)
differential equations for the Laplace transform of M(t), as well as recursions for higher
moments can be found in [9], [12], [32], whereas parameter scaling results are given in [9],
[12], and, for a slightly different model, in [10]. Roughly speaking, any property that can be
handled explicitly for the Markov-modulated infinite-server queue can be explicitly addressed
for MMOU as well, and vice versa.

This paper is organized as follows. In Section 2 we define the model and present preliminary
results. Then Section 3 deals with the system’s transient behavior in terms of a recursive
scheme that yields all moments of M(t), with explicit expressions for the mean and variance.
In Section 4 we present a system of PDEs for the Laplace transform of M(t). In Section 5 the
parameter scalings mentioned above are applied (resulting in a process M(N)(t)), leading to
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a functional CLT for an appropriately centered and normalized version of M(N)(t). The last
section considers the setting of a single background process modulating multiple OU processes.

2. Model and preliminaries

We start by giving a detailed model description of the MMOU process. We are given a
probability space (�, F , P) on which a random variable M0, a standard Brownian motion
(B(t))t≥0, and an irreducible continuous-time Markov process (X(t))t≥0 with finite state space
are defined. It is assumed that M0, X, and B are independent. The process X is the so-called
background process; its state space is denoted by {1, . . . , d}.

The idea behind MMOU is that the background process X(·) modulates an OU process.
Intuitively, this means that while X(·) is in state i ∈ {1, . . . , d}, the MMOU process (M(t))t≥0
behaves as an Ornstein–Uhlenbeck process Ui(·) with parameters αi , γi, and σi , which evolves
independently of the background process X(·); it is assumed that for all i, σi > 0, and γi ≥ 0
(with at least for one i a strict inequality). More formally, M(·) obeys the stochastic differential
equation (SDE)

dM(t) = (αX(t) − γX(t)M(t)) dt + σX(t) dB(t). (2.1)

We call a stochastic process (M(t))t≥0 an MMOU process with initial condition M(0) = M0
if

M(t) = M0 +
∫ t

0
(αX(s) − γX(s)M(s)) ds +

∫ t

0
σX(s) dB(s).

The following theorem provides basic facts about the existence, uniqueness, and distribution
of an MMOU process. For proofs and additional details; see [25, Section A]. As mentioned in
the introduction, specific aspects of MMOU have been studied earlier in the literature; see, e.g.
[39].

Theorem 2.1. Define �(t) := ∫ t

0 γX(s) ds. Then the stochastic process (M(t))t≥0 given by

M(t) = M0e−�(t) +
∫ t

0
e−(�(t)−�(s))αX(s) ds +

∫ t

0
e−(�(t)−�(s))σX(s) dB(s)

is the unique MMOU process with initial condition M0. Conditional on the process X, the
random variable M(t) has a normal distribution with random mean

μ(t) = M0 exp(−�(t)) +
∫ t

0
exp(−(�(t) − �(s)))αX(s) ds

and random variance

v(t) =
∫ t

0
exp(−2(�(t) − �(s)))σ 2

X(s) ds.

This result is analogous with the corresponding result for the Markov-modulated infinite-
server queue in [12] and [14]: there it was shown that the number of jobs in the system has a
Poisson distribution with random parameter.

For later use, we now recall some concepts pertaining to the theory of deviation matrices of
Markov processes. For an introduction to this topic, we refer the reader to standard texts such
as [29], [30], and [36]. For a compact survey, see [13]. Let the transition rates corresponding
to the continuous-time Markov chain (X(t))t≥0 be given by qij ≥ 0 for i �= j and qi :=
−qii := ∑

j �=i qij ; they define the intensity matrix or generator Q. The (unique) invariant
distribution corresponding to Q is denoted by (the column vector) π , that is, it obeys π�Q = 0
and e�π = 1, where e is a d-dimensional all-1s vector.
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Let � := eπ� denote the ergodic matrix. Then the fundamental matrix is given by F :=
(� − Q)−1, whereas the deviation matrix is defined by D := F − �. Standard identities are
QF = FQ = �−I , as well as�D = D� = 0 (here 0 is to be read as an all-0sd×d matrix) and
F e = e. The (i, j)th entry of the deviation matrix, with i, j ∈ {1, . . . , d}, can be alternatively
computed as Dij = ∫ ∞

0 (pij (t) − πj ) dt, where pij (t) := P(X(t) = j | X(0) = i), which in
matrix form can be expressed as

D =
∫ ∞

0
(exp(Qt) − eπ�) dt.

3. Transient behavior: moments

In this section we analyze the moments of M(t) using stochastic integration theory. First
considering the mean and variance in the general situation, we then concentrate on more specific
cases in which the expressions simplify greatly (that is, equal γis with X(t) starting off in
equilibrium at time 0, and in the steady-state regime). The section is completed by deriving
an expression for the covariance between M(t) and M(t + u) (for t, u ≥ 0), and an Itô-based
recursive procedure to determine all moments.

3.1. Mean and variance: general case

Let Z(t) ∈ {0, 1}d be the vector of indicator functions associated with the Markov chain
(X(t))t≥0, that is, we let Zi(t) = 1 if X(t) = i and 0 otherwise. Let pt denote the vector of
transient probabilities of the background process, that is, (P(X(t) = 1), . . . , P(X(t) = d))�
(where we have not specified the distribution of the initial state X(0) yet). We subsequently
find expressions for the mean μt := EM(t) and variance vt := var M(t).

• The mean can be computed as follows. We consider the mean of M(t) jointly with the
state of the background process at time t . To this end, we define Y (t) := Z(t)M(t), and
νt := EY (t). It is clear that

dZ(t) = Q�Z(t) dt + dK(t) (3.1)

for a d-dimensional martingale K(t). With Itô’s rule we obtain, with the strictly diag-
onally dominant, and hence invertible [23, Theorem 6.2.27]), matrix Q̄γ defined by
Q� − diag{γ },
dY (t) = M(t)(Q�Z(t) dt + dK(t)) + Z(t)((α�Z(t) − γ �Y (t)) dt + σ�Z(t) dB(t))

= (Q̄γ Y (t) + diag(α)Z(t)) dt + diag{σ }Z(t) dB(t) + M(t) dK(t); (3.2)

here we use identities such as Z(t)γ �Y (t) = diag{γ }Y (t) and Z(t)σ�Z(t) =
diag{σ }Z(t), which follow due to Zi(t) = (Zi(t))

2 and Zi(t)Zj (t) = 0 for i �= j .
Taking expectations of both sides in (3.2), we obtain the system ν′

t = Q̄γ νt +diag{α}pt .

This is a nonhomogeneous linear system of differential equations that is solved by

νt = eQ̄γ tν0 +
∫ t

0
eQ̄γ (t−s)diag{α}ps ds;

then μt = e�νt . Realize that ν0 = m0p0, as we assumed that M(0) equals m0.

The equations simplify drastically if the background process starts off in equilibrium
at time 0; then evidently pt = π for all t ≥ 0. As a result, we find that νt =
eQ̄γ tν0 − Q̄−1

γ (I − eQ̄γ t )diag{α}π .
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We now consider the steady-state regime (that is, t → ∞). From the above expressions,
it immediately follows that

ν∞ = −Q̄−1
γ diag{α}π , μ∞ = e�ν∞ = −e�Q̄−1

γ diag{α}π .

We further note that γ = −(Q−diag{γ })e, and, hence, γ �Q̄−1
γ = −e�, so that γ �ν∞ =

π�α.

• The variance can be found in a similar way. Define Ȳ (t) := Z(t)M2(t), and wt := EȲ (t).

Now our starting point is the relation

d(M(t) − μt) = (α�(Z(t) − pt ) − γ �(Y (t) − νt )) dt + σ�Z(t) dB(t),

so that

d(M(t) − μt)
2 = 2(M(t) − μt)(α

�(Z(t) − pt ) − γ �(Y (t) − νt )) dt

+ 2(M(t) − μt)σ
�Z(t) dB(t) + σ�diag{Z(t)}σ dt.

Taking expectations of both sides, we obtain

v′
t = 2α�νt − 2μtα

�pt − 2γ �wt + 2μtγ
�νt + σ�diag{pt }σ .

Clearly, to evaluate this expression, we first need to identify wt . To this end, we set up
an equation for dȲ (t) as before, take expectations so as to obtain

w′
t = Q̄2γ wt + 2diag{α}νt + diag{σ 2}pt ;

here σ 2 is the vector (σ 2
1 , . . . , σ 2

d )�. This leads to

wt = eQ̄2γ tw0 +
∫ t

0
eQ̄2γ (t−s)(2 diag{α}νs + diag{σ 2}ps) ds, (3.3)

so that vt = e�wt − μ2
t . Observe that w0 = m2

0p0.

Again, simplifications can be made if p0 = π (and hence pt = π for all t ≥ 0). In
that case, we had already found an expression for νs above, and as a result (3.3) can be
explicitly evaluated.
For the stationary situation (t → ∞, that is), we obtain

w∞ = −Q̄−1
2γ (2diag{α}ν∞ + diag{σ 2}π), v∞ = e�w∞ − μ2∞.

We consider now an even more special case: γi ≡ γ for all i (in addition to pt = π ;
we let t ≥ 0). It is directly seen that μ∞ = π�α/γ. Since γ �Q̄−1

γ = −e� implies that
e�Q̄−1

δe = −δ−1e� for any δ > 0, it follows that

v∞ = e�w∞ − μ2∞

= e�diag{α}ν∞
γ

+ π�σ 2

2γ
−

(
π�α

γ

)2

= −e�diag{α}Q̄−1
γ e diag{α}π

γ
+ π�σ 2

2γ
−

(
π�α

γ

)2

.
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Now observe that, with Ďij (γ ) := ∫ ∞
0 pij (v)e−γ v dv for γ > 0, integration by parts yields

QĎ(γ ) =
∫ ∞

0
QP(v)e−γ v dv

=
∫ ∞

0
P ′(v)e−γ v dv

= −I +
∫ ∞

0
γP (v)e−γ v dv

= −I + γ Ď(γ ).

As a consequence, −(Q − γ I)Ď(γ ) = I, so that

v∞ = π�σ 2

2γ
+ 1

γ
α�diag{π}Ď(γ )α =

(
π�α

γ

)2 π�σ 2

2γ
+ 1

γ
α�diag{π}D(γ )α, (3.4)

using Dij (γ ) := ∫ ∞
0 (pij (v) − πj )e−γ v dv = Ďij (γ ) − πj/γ . In the next section we further

study the case in which the γis are equal, that is, γi ≡ γ , and the background process is in a
steady state at time 0, that is, and pt = π . As it turns out, under these conditions the mean and
variance can also be found by an alternative elementary, insightful argument.

3.2. Mean and variance: special case of equal γ , starting in equilibrium

We now consider the special case γi ≡ γ for all i, while X(t) is assumed to start off in
equilibrium at time 0 (that is, P(X(t) = i) = P(X(0) = i) = πi for all t ≥ 0), allowing an
explicit evaluation of μt and vt , particularly when specific scalings are imposed (one of which
plays a key role later in the paper).

We first concentrate on computing the transient mean μt . We denote by X the path (X(s), s ∈
[0, t]). Now using the representation of Theorem 2.1 and recalling the standard fact that μt

can be written as E(E(M(t) | X)), it is immediately seen that μt can be written as a convex
mixture of m0 and π�α/γ :

μt = m0e−γ t + e−γ t

∫ t

0
eγ s ds

( d∑
i=1

πiαi

)
= m0e−γ t + π�α

γ
(1 − e−γ t );

using the fact that (X(t))t≥0 started off in equilibrium at time 0. This expression converges as
t → ∞, to the stationary mean π�α/γ , as expected.

The variance vt can be computed similarly, relying on the so-called law of total variance,
which says that var M(t) = E(var(M(t) | X)) + var(E(M(t) | X)). Regarding the first term,
it is seen that Theorem 2.1 directly yields that E(var(M(t) | X)) can be expressed as

E

(∫ t

0
e−2γ (t−s)σ 2

X(s) ds

)
=

∫ t

0
e−2γ (t−s)

E(σ 2
X(s)) ds =

d∑
i=1

πiσ
2
i

(
1 − e−2γ t

2γ

)
.

Along similar lines, var(E(M(t) | X)) can be expressed as

var

(∫ t

0
e−γ (t−s)αX(s) ds

)
=

∫ t

0

∫ t

0
cov(e−γ (t−s)αX(s), e−γ (t−u)αX(u)) du ds

= e−2γ t

∫ t

0

∫ t

0
eγ (s+u) cov(αX(s), αX(u)) du ds.
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The latter integral expression can be made more explicit. Using the fact that X(0) has
distribution π , we have

2e−2γ t

∫ t

0

∫ s

0
eγ (s+u) cov(αX(s), αX(u)) du ds

= 2e−2γ t

∫ t

0

∫ s

0
eγ (s+u)

d∑
i=1

d∑
j=1

αiαjπi(pij (s − u) − πj ) du ds

= 1

γ

d∑
i=1

d∑
j=1

αiαj

∫ t

0
(e−γ v − e−γ (2t−v))πi(pij (v) − πj ) dv

(where the last equation follows after changing the order of integration and some elementary
calculus). We have thus found that

vt =
d∑

i=1

πiσ
2
i

(
1 − e−2γ t

2γ

)
+

d∑
i=1

d∑
j=1

αiαj

∫ t

0

(
e−γ v − e−γ (2t−v)

γ

)
πi(pij (v) − πj ) dv.

We conclude this section by considering two specific limiting regimes, to which we return
in Section 5, where we will derive limit distributions under parameter scalings.

• Specializing to the situation that t → ∞, we recover, after some algebra, (3.4).

• Scale α �→ Nhα, σ 2 �→ Nhσ 2, and Q �→ NQ for some h ≥ 0. We find that var M(t)

can be expressed as

Nh
d∑

i=1

πiσ
2
i

(
1 − e−2γ t

2γ

)

+ N2h
d∑

i=1

d∑
j=1

αiαj

∫ t

0

(
e−γ v − e−γ (2t−v)

γ

)
πi(pij (vN) − πj ) dv,

which for large N behaves as, with D := D(0), the deviation matrix introduced in
Section 2, (

1 − e−2γ t

2γ

)(
Nh

d∑
i=1

πiσ
2
i + 2N2h−1

d∑
i=1

d∑
j=1

αiαjπiDij

)

=
(

1 − e−2γ t

2γ

)
(Nhπ�σ 2 + 2N2h−1α�diag{π}Dα). (3.5)

We observe an interesting dichotomy: for h < 1 the variance is essentially linear in the
‘scale’ of the OU processes Nh, while for h > 1 it behaves superlinearly in Nh (more
specifically, proportionally to N2h−1). It is this dichotomy that also featured in an earlier
work on Markov-modulated infinite-server queues [2], [9], and that we further explore
in Section 5.
The intuition behind the dichotomy is the following. If h < 1 then the timescale of
the background process systematically exceeds that of the d underlying OU processes
(that is, the background process is ‘faster’). As a result, the system essentially behaves
as an ordinary (that is, nonmodulated) OU process with ‘time-averaged’ parameters
α∞ := π�α, γ , and σ 2∞ := π�σ 2. If h > 1, on the contrary the background process
jumps at a slow rate, relative to the typical timescale of the OU processes; as a result, the
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process (M(t))t≥0 moves between multiple local limits (where the individual ‘variance
coefficients’ σ 2

i do not play a role).

Note that it follows from (3.5) that diag{π}D is a nonnegative definite matrix, although
singular and nonsymmetric in general; more precisely, it is a consequence of the fact that (3.5)
is a variance and hence nonnegative, in conjunction with the fact the we can pick σ 2 = 0.
Below we state and prove the nonnegativity by independent arguments; cf. [2, Proposition 3.2].

Proposition 3.1. The matrix D�diag{π} + diag{π}D is symmetric and nonnegative definite.

Proof. First we prove the claim that the matrix Q�diag{π} + diag{π}Q is (symmetric and)
nonpositive definite. To that end we start from the semimartingale decomposition (3.1) for Z.
By the product rule we obtain, collecting all the martingale terms in dM(t),

d(Z(t)Z(t)�) = Q�Z(t)Z(t)� dt + Z(t)Z(t)�Q dt + d〈Z〉t + dM(t).

As the predictable quadratic variation of Z is absolutely continuous and increasing, we can
write d〈Z〉t = Pt dt , where Pt is a nonnegative definite matrix. Next we make the obvious
observation that Z(t)Z(t)� = diag{Z(t)}. Hence, by combining (3.1) and the above display,
we have

diag{Q�Z(t)} = Q�diag{Z(t)} + diag{Z(t)}Q + Pt .

Taking expectations with respect to the stationary distribution of Zt and using Q�π = 0, we
obtain 0 = Q�diag{π}+diag{π}Q+EPt , from which it follows that Q�diag{π}+diag{π}Q
is (symmetric and) nonpositive definite.

This in turn implies that −D�(Q�diag{π} + diag{π}Q)D is symmetric and nonnegative
definite. Recall now that FQ = � − I and, hence, DQ = � − I . Then D�Q�diag{π}D =
−(diag{π} − ππ�)D. But π�D = 0, so D�Q�diag{π}D = −diag{π}D. The result now
follows. �
3.3. Covariances

In this section we point out how to compute the covariance c(t, u) := cov (M(t), M(t +u))

for t, u ≥ 0. To this end, we observe that by applying a time shift, we first assume in the
computations to follow that t = 0, and we consider c(t) := cov(M(t), M(0)). Below we make
frequent use of the additional quantities C(t) = cov(Y (t), M(0)) and B(t) = cov(Z(t), M(0)).
Note that c(t) = e�C(t). Multiplying (3.1) and (3.2) by M(0), we obtain upon taking expec-
tation the following system of ODEs, with initial conditions B(0) = cov(Z(0), M(0)) and
C(0) = cov(Y (0), M(0)):

(
B ′(t)
C′(t)

)
= R

(
B(t)

C(t)

)
, where R :=

(
Q� 0

diag{α} Q̄γ

) (
B(t)

C(t)

)
.

In a more compact and obvious notation, we write A′(t) = RA(t), and hence A(t) =
exp(Rt)A(0). Likewise, we can compute

A(t, u) :=
(

cov(Z(t + u), M(t))

cov(Y (t + u), M(t))

)
= exp(Ru)

(
cov(Z(t), M(t))

cov(Y (t), M(t))

)
.

It remains to derive an expression for the last covariances. For cov(Z(t), M(t)) we need
EM(t)Z(t) = EY (t), EM(t), and EZ(t). For cov(Y (t), M(t)) we need EM(t)Y (t) =
EM(t)2Z(t), EY (t), and EM(t). All these quantities were obtained in Section 3.1.
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3.4. Recursive scheme for higher-order moments

The objective of this section is to set up a recursive scheme to generate all transient moments,
that is, the expected value of M(t)k for any k ∈ {1, 2, . . .}, jointly with the indicator function
1{X(t)=i}. To that end we consider the expectation of (M(t))kZ(t). First we recast (2.1) in
the form dM(t) = (α�Z(t) − γ �Z(t)X(t)) dt + σ�Z(t) dB(t). Applying Itô’s lemma to this
SDE, we obtain

d(M(t))k = k(M(t))k−1(α�Z(t) − γ �Z(t)X(t)) dt + k(M(t))k−1σ�Z(t) dB(t)

+ 1
2k(k − 1)(M(t))k−2σ�diag{Z(t)}σ dt.

Then we apply the product rule to M(t)kZ(t), together with the just obtained equation and (3.1)
to obtain

d((M(t))kZ(t)) = k(M(t))k−1(diag{α}Z(t) − diag{γ }Z(t)M(t)) dt

+ k(M(t))k−1diag{σ }Z(t) dB(t) + 1
2k(k − 1)(M(t))k−2diag{σ 2}Z(t) dt

+ (M(t))k(Q�Z(t) dt + dK(t)).

All martingale terms on the right-hand side are genuine martingales and thus have expectation 0.
Putting Hk(t) := EM(t)kZ(t), we obtain the following recursion in ODE form:

d

dt
Hk(t) = kdiag{α}Hk−1(t) − kdiag{γ }Hk(t) + 1

2
k(k − 1)diag{σ 2}Hk−2(t) + Q�Hk(t)

= Q̄kγ Hk(t) + kdiag{α}Hk−1(t) + 1
2k(k − 1)diag{σ 2}Hk−2(t).

Stacking H0(t), . . . ,Hn(t) into a single vector H̄n(t), we obtain dH̄n(t)/ dt = AnH̄n(t), with
An ∈ R

(n+1)d×(n+1)d denoting a lower block triangular matrix whose solution is Hn(t) =
exp(Ant)Hn(0). Then hk(t) := EM(t)k = e�Hk(t). For k = 1, 2 the results of Section 3.1
can be recovered.

For the stationary version M , the above procedure becomes a normal recursion; existence
of all moments can be established as in [39].

4. Transient behavior: PDEs

The goal of this section is to characterize, for a given vector t ∈ R
K (with K ∈ N) such that

0 ≤ t1 ≤ · · · ≤ tK , the Laplace transform of (M(t + t1), . . . , M(t + tK)) (together with the
state of the background process at these time instances). More specifically, we set up a system
of PDEs for

gi(ϑ, t) := Ee−(ϑ1M(t1+t)+···+ϑKM(tK+t)) 1{X(t1+t)=i1,...,X(tK+t)=iK };
here t ≥ 0, i ∈ {1, . . . , d}K, and ϑ ∈ R

K. The system of PDEs is with respect to t and ϑ1 up
to ϑK. We first point out the line of reasoning for the K = 1 case, and then present the PDE for
K = 2. The K ∈ {3, 4, . . .} cases can be dealt with fully analogously, but lead to notational
inconveniences and are therefore left out.

It is noted that the stationary version of the result below (that is, t → ∞) for the special case
K = 1 has appeared in [39] (where we remark that in [39] the additional issue of reflection
at 0 was incorporated). For K = 1, the object of interest is gi(ϑ, t) := Ee−ϑM(t)Zi(t) for
i = 1, . . . , d; realize that, without loss of generality, we have taken t1 = 0. For a more compact
notation we stack the gi in a single vector g, so g(ϑ, t) = Ee−ϑM(t)Z(t). Replacing in this
expression ϑ by −ıu for u ∈ R gives the characteristic function of M(t) jointly with Z(t).
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Theorem 4.1. Consider the case K = 1 and t1 = 0. The Laplace transforms g(ϑ, t) satisfy
the following system of PDEs:

∂

∂t
g(ϑ, t) =

(
Q� − ϑdiag{α} + 1

2
ϑ2diag{σ 2}

)
g(ϑ, t) − ϑdiag{γ } ∂

∂ϑ
g(ϑ, t). (4.1)

The corresponding initial conditions are g(0, t) = pt and g(ϑ, 0) = e−ϑm0p0.

Proof. The proof mimics the procedure used in Section 3.4 to determine the moments
of M(t). Letting f (ϑ, t) := e−ϑM(t), applying Itô’s formula to

dM(t) = (α�Z(t) − γ �Z(t)X(t)) dt + σ�Z(t) dB(t)

yields
df (ϑ, t) = −ϑf (ϑ, t)((α�Z(t) − γ �Z(t)M(t)) dt + σ�Z(t) dB(t))

+ 1
2ϑ2f (ϑ, t)diag{σ 2}Z(t) dt.

We then apply the product rule to f (ϑ, t)Z(t), using the just obtained equation in combination
with (3.1). This leads to

d(f (ϑ, t)Z(t)) = −ϑf (ϑ, t)((diag{α}Z(t) − diag{γ }Z(t)M(t)) dt + diag{σ }Z(t) dB(t))

+ 1
2ϑ2f (ϑ, t)diag{σ 2}Z(t) dt + f (ϑ, t)(Q�Z(t) dt + dK(t)).

Taking expectations, recalling that g(ϑ, t) = Ef (ϑ, t)Z(t) and that the martingale terms have
expectation 0, we obtain (4.1); realize that ∂g/∂ϑ = −E(f (ϑ, t)M(t)Z(t)). �

In [25, Section 4.2] we have included explicit expressions relating to the case K = 1 and
d = 2.

It is remarked that the above system (4.1) of PDEs coincides for t → ∞, with the stationary
result of [39] (where it is mentioned that in [39] the feature of reflection at 0 was incorporated).
In addition, it is noted that this system can be converted into a system of ordinary differential
equations, as follows. Let T be exponentially distributed with mean τ−1, independent of all
other random features involved in the model. Define g(ϑ) := Ee−ϑM(T )Z(t). Now multiply the
PDE featuring in Theorem 4.1 by τe−τ t and integrate over t ∈ [0, ∞) to obtain (use integration
by parts for the left-hand side)

λ(g(ϑ) − e−ϑm0p0) = Q�g(ϑ) − (
ϑdiag{α} − 1

2ϑ2diag{σ 2})g(ϑ) − ϑdiag{γ } ∂

∂ϑ
g(ϑ).

All the above results are related to the K = 1 case. For higher values of K the same
procedure can be followed; as announced we now present the result for K = 2. Let i, k be
elements of {1, . . . , d}, and ϑ ≡ (ϑ1, ϑ2) ∈ R

2. We obtain the following system of PDEs:

∂

∂t
gi,k(ϑ, t) =

d∑
j=1

qji gj,k(ϑ, t) +
d∑

�=1

q�kgi,�(ϑ, t)

−
(

ϑ1αi + ϑ2αk − 1

2
ϑ2

1 σ 2
i − 1

2
ϑ2

2 σ 2
k

)
gi,k(ϑ, t) − ϑ1γi

∂

∂ϑ1
gi,k(ϑ, t)

− ϑ2γk

∂

∂ϑ2
gi,k(ϑ, t),
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or in self-evident matrix notation, suppressing the arguments ϑ and t ,

∂G

∂t
= Q�G + GQ − ϑ1diag{α}G − ϑ2Gdiag{α}

+ 1

2
ϑ2

1 diag{σ 2}G + 1

2
ϑ2

2 Gdiag{σ 2} − ϑ1diag{γ } ∂G

∂ϑ1
− ϑ2

∂G

∂ϑ2
diag{γ }.

The initial conditions follow directly from the K = 1 case; taking without loss of generality
t1 = 0, we have that the (i, k)th entry of G(0, t) equals P(X(t) = i, X(t + t2) = k), whereas
the (i, k)th entry of G(ϑ, 0) equals e−ϑ1m0Ee−ϑ2M(t2) 1{X(0)=i,X(t2)=k} .

This matrix-valued system of PDEs can be converted into its vector-valued counterpart.
Define the d2-dimensional vector ǧ(ϑ, t) := vec(G(ϑ, t)). Recall the definitions of the Kro-
necker sum (denoted by ‘⊕’) and the Kronecker product (denoted by ‘⊗’). Using the relations
vec(ABC) = (C� ⊗ A)vec(B) and A ⊕ B = A ⊗ I + I ⊗ B, for matrices A, B, and C of
appropriate dimensions, we obtain the vector-valued PDE, again suppressing the arguments ϑ

and t ,

∂ǧ

∂t
= (Q� ⊕ Q�)ǧ − ϑ1(I ⊗ diag{α})ǧ − ϑ2(diag{α} ⊗ I )ǧ + ϑ2

1

2
(I ⊗ diag{σ 2})ǧ

+ ϑ2
2

2
(diag{σ 2} ⊗ I )ǧ − ϑ1(I ⊗ diag{γ }) ∂ǧ

∂ϑ1
− ϑ2(diag{γ } ⊗ I )

∂ǧ

∂ϑ2
.

It is clear how this procedure should be extended to K ∈ {3, 4, . . .}, but, as indicated, we do
not include this because of the cumbersome notation needed; the initial conditions follow from
the K = 1 case.

5. Parameter scaling

So far we have characterized the distribution of M(t) in terms of an algorithm to determine
moments and a PDE for the Fourier–Laplace transform. In other words, so far we have not
presented any explicit results on the distribution of M(t) itself. In this section we consider
asymptotic regimes in which this is possible; these regimes can be interpreted as parameter
scalings.

More specifically, in this section we consider the following two scaled versions of the MMOU
model.

• In the first we (linearly) speed up the background process (that is, we replace Q �→ NQ

or, equivalently, X(t) �→ X(Nt)). Our main result is that, as N → ∞, the MMOU
essentially experiences the time-averaged parameters, that is, α∞ := π�α, γ∞ := π�γ ,

and σ 2∞ := π�σ 2. As a consequence, it behaves as an OU process with these parameters.

• The second regime considered concerns a simultaneous scaling of the background process
and the OU processes. This is done as in Section 3.2: Q on the one hand, and α and σ 2

on the other hand are scaled at different rates: we replace α �→ Nhα and σ 2 �→ Nhσ 2,
but Q �→ NQ for some h ≥ 0). We obtain essentially two regimes, in line with the
observations in Section 3.2.

As mentioned above, we are particularly interested in the limiting behavior in the regime that N
grows large. It is shown that the process M(t), which we now denote as M [N ](t) to stress the
dependence on N , converges to the solution of a specific SDE. Importantly, we establish weak
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convergence, that is, in the sense of convergence at the process level; our result can be seen as
the counterpart of the result for Markov-modulated infinite-server queues in [2].

We consider sequences of MMOU processes, indexed by N , subject to the following scaling:
Q �→ NQ; α �→ Nhα; σ �→ Nh/2σ , where h ≥ 0. Note that by appropriately choosing h

we enter the two regimes described above as we let N grow large (see Corollaries 5.1 and 5.2).
The definitions of M(t), Z(t), and K(t) (the latter two having been defined in Section 3) then
take the following form (where superscripts are being used to make the dependence on N and h

explicit):

dM [N,h](t) = (Nhα − γM [N,h](t))�Z[N ](t) dt + Nh/2σ�Z[N ](t) dB(t),

dZ[N ](t) = NQ�Z[N ](t) dt + dK [N ](t).

We keep the initial condition M [N,h](0) at a fixed level M(0). Let, with the definitions
of α∞, γ∞, and σ 2∞ given above, the ‘average path’ �(t) be defined by d�(t) = (α∞ −
γ∞�(t)) dt with �(0) = 1{h=0} M(0), such that �(t) = e−γ∞t �(0) + (α∞/γ∞) (1 − e−γ∞t ).

It is possible to show that �(t) coincides with limN→∞ N−h
EM [N,h](t); in particular �(0) =

limN→∞ N−h
EM(0) = 1{h=0} M(0).

We can now state the main theorem of this section.

Theorem 5.1. Under the scaling Q �→ NQ; α �→ Nhα; σ �→ Nh/2σ , it follows that the
scaled and centered process M̂ [N,h](t), as defined through

M̂ [N,h](t) := N−β(M [N,h](t) − Nh�(t)),

converges weakly to the solution of the following SDE:

dM̂(t) = −γ∞M̂(t) dt +
√

σ 2∞ 1{h≤1} +V ′(t) 1{h≥1} dB(t), M̂(0) = 0,

where β := max{h/2, h − 1
2 }, B a Brownian motion, and

V (t) :=
∫ t

0
(α − γ�(s))�(diag{π}D + D�diag{π})(α − γ�(s)) ds. (5.1)

Before proving this result, we observe that the above theorem provides us with the limiting
behavior in the two regimes described at the beginning of this section. In the first corollary we
simply take h = 0.

Corollary 5.1. Under the scaling Q �→ NQ, with α and σ kept at their original values, it
follows that M [N,0](t) converges weakly to a process M1(t), which is an (ordinary, that is,
nonmodulated) OU process with parameters (α∞, γ∞, σ∞), defined through the SDE

dM1(t) = (α∞ − γ∞M1(t)) dt + σ∞ dB(t).

The second corollary describes the situation in which both the background process and the
OU process are scaled, but at different rates. As it turns out, there are three regimes.

Corollary 5.2. Under the scaling Q �→ NQ; α �→ Nhα; σ �→ Nh/2σ , it follows that
M̂ [N,h](t) converges weakly to a process M2(t), defined through one of the following SDEs:
if 0 < h < 1 then

dM2(t) = −γ∞M2(t) dt + σ∞ dB(t);
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if h = 1 then

dM2(t) = −γ∞M2(t) dt +
√

σ 2∞ + V ′(t) dB(t);
if h > 1 then

dM2(t) = −γ∞M2(t) dt + √
V ′(t) dB(t).

These corollaries are trivial consequences of Theorem 5.1, and therefore we direct our
attention to the proof of this main theorem itself. We remark that Corollary 5.2 confirms an
observation we made in Section 3. For h < 1 the system essentially behaves as a nonmodulated
OU process, while for h > 1 the background process plays a role through its deviation matrix D.

In the proof of Theorem 5.1 we need an auxiliary result, which we present first.

Lemma 5.1. Let the d-dimensional row vectors �[N ] be a sequence of predictable processes
such that �[N ](t) → �(t) in probability uniformly on compact sets, that is, as N → ∞,

sup
t≤T

|�[N ](t) − �(t)| → 0

in probability for every T > 0; here � is deterministic, satisfying
∫ t

0 �(s)�(s)� ds < ∞
for every t > 0. Furthermore, let X[N ] be continuous semimartingales that converge weakly
to a d-dimensional scaled Brownian motion B with quadratic variation 〈B〉t = Ct (where
C ∈ R

d×d ). Then, as N → ∞, the stochastic integrals

∫ ·

0
�[N ](s) dX[N ](s)

converge weakly to the time-inhomogeneous Brownian motion B� := ∫ ·
0 �(s) dB(s) with

quadratic variation

〈B�〉t =
∫ t

0
�(s)C�(s)� ds.

The claim of Lemma 5.1 essentially follows from [27, Theorem VI.6.22]. To check the
condition of the cited theorem, one needs weak convergence of the pair (�[N ], X[N ]), but this
is guaranteed by the uniform convergence in probability of the �[N ](t).

We now proceed with the proof of Theorem 5.1.

Proof of Theorem 5.1. The proof consists of four steps.
Step 1. We describe the dynamics of the process M̂ [N,h](t) through

dM̂ [N,h](t) = Nh−β(α − ρ(t)γ )�(Z[N ](t) − π) dt + Nh/2−βσ�Z
[N ]
t dB(t)

− γ �Z
[N ]
t M̂ [N,h](t) dt

=: Nh−β−1/2 dG[N ](t) + Nh/2−β dB̂[N ](t) − γ �Z
[N ]
t M̂ [N,h](t) dt.

Defining ζ [N ](t) := ∫ t

0 Z[N ](s) ds and Y [N,h](t) := eγ �ζ [N ](t)M̂ [N,h](t), we obtain

dY [N,h](t) = Nh−β−1/2eγ �ζ
[N ]
t dG[N ](t) + Nh/2−βeγ �ζ

[N ]
t dB̂[N ](t). (5.2)

In the next two steps we analyze the two terms in the right-hand side of (5.2).
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Step 2. We first consider the first term on the right-hand side of (5.2). To analyze it, we need
the functional CLT for the martingale K

[N ]◦ := K [N ]/
√

N. From the proof of Proposition 3.1,
we know that

1

N
〈K [N ]◦ 〉t =

∫ t

0
(diag{Q�Z[N ](s)} − Q�diag{Z[N ](s)} − diag{Z[N ](s)}Q) ds,

which by the ergodic theorem [4, Section VI.3] converges to −(Q�diag{π} + diag{π}Q)t . As
the jumps of K

[N ]◦ are of order O(1/
√

N), the martingale CLT (see, e.g. [27, TheoremVIII.3.11]
or [17, Theorem 7.1.4]) gives the weak convergence of K

[N ]◦ to a d-dimensional scaled Brownian
motion B◦ with

〈B◦〉t = −(Q�diag{π} + diag{π}Q)t.

Moreover, we then also deduce the weak convergence of the process

Z[N,Q] := √
N

∫ ·

0
Q�Z[N ](s) ds

to −B◦, and, hence, to B◦ as well.

• We first apply Lemma 5.1, with �[N ](t) := −(α − ρ(t)γ )�D� and X[N ] := Z[N,Q], to

G[N ] = √
N

∫ ·

0
(α − ρ(s)γ )�(Z[N ](s) − π) ds

= −√
N

∫ ·

0
(α − ρ(s)γ )�(QD)�Z[N ](s) ds,

where the last equality follows from QD = eπ� − I (see the proof of Proposition 3.1).
Note that �[N ](t) = �(t) for all N , and therefore it is immediate that the weak limit can
be identified as a continuous Gaussian martingale G, where it turns out that 〈G〉t = V (t)

with V (t) defined in (5.1), which again follows from the proof of Proposition 3.1.

• In the next step we consider the processes
∫ ·

0 �[N ](s) dG[N ](s) with �[N ](s) :=
exp(γ �ζ [N ](s)). As these processes are increasing, we have the almost sure convergence
of

sup
s≤T

| exp(γ �ζ [N ](s)) − exp(γ �πs)| → 0 as N → ∞,

by combining the ergodic theorem with [27, Theorem VI.2.15(c)] (which states that
pointwise convergence of increasing functions to a continuous limit implies uniform con-
vergence on compacts). As an immediate consequence of the above and Lemma 5.1, we
obtain the weak convergence of

∫ ·
0 exp(γ �ζ [N ](s)) dG[N ](s) to

∫ ·
0 exp(γ �π s) dG(s) =∫ ·

0 exp(γ∞s) dG(s).

Step 3. We now consider the second term on the right-hand side of (5.2). For the Brownian
term B̂[N ], we have by the martingale CLT weak convergence to the Gaussian martingale B̂ with
quadratic variation 〈B̂〉t = σ 2∞t . The convergence of

∫ ·
0 exp(γ �ζ [N ](s)) dB̂[N ](s) can be han-

dled as above to obtain weak convergence to the Gaussian martingale
∫ ·

0 exp(γ �πs) dB̂(s) =∫ ·
0 exp(γ∞s) dB̂(s).

Step 4. In order to finally obtain the weak limit of Y [N,h], we use

h − β − 1

2
= 1

2
min{h − 1, 0}, h

2
− β = 1

2
min{1 − h, 0}.
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Clearly, for h < 1 we have convergence of Y [N,h] to
∫ ·

0 exp(γ �πs) dB̂(s), whereas for h > 1
we have convergence to

∫ ·
0 exp(γ �πs) dG(s). For h = 1, we obtain weak convergence to the

sum of these. To see this, recall that the weak convergence of the G[N ] was based on properties of
the Markov chain, whereas the convergence of the B[N ] resulted from considerations involving
the Brownian motion B, and these basic processes are independent. Furthermore, note that
Y [N,h](0) = N−βM(0) − Nh−β1{h=0} M(0) → 0. Combining these results, we find that
Y [N,h] converges to a Gaussian martingale Y given by

Y (t) =
∫ t

0
eγ∞s(1{h≤1} dB̂(s) + 1{h≥1} dG(s)),

and hence the M̂ [N,h] converge weakly to the limit M̂ given by M̂(t) = e−γ∞t Y (t), and this
process satisfies the SDE

dM̂(t) = −γ∞M̂(t) dt + (1{h≤1} dB̂(t) + 1{h≥1} dG(t)).

In this equation the (continuous, Gaussian) martingale has quadratic variation 1{h≤1} σ 2∞t +
1{h≥1} V (t). Hence, we can identify its distribution with that of

∫ ·

0

√
1{h≤1} σ 2∞ + 1{h≥1} V ′(s) dB(s),

where B is a standard Brownian motion. This completes the proof. �

6. Multiple MMOU processes driven by the same background process

In this section we consider a single background process X, taking as before values in
{1, . . . , d}, modulating multiple OU processes. Suppose that there are J ∈ N such processes,
with parameters (α(1), γ (1), σ (1)) up to (α(J ), γ (J ), σ (J )). It is further assumed that the OU
processes are driven by independent Brownian motionsB1(·), . . . , BJ (·). Combining the above,
this leads to the J coupled SDEs

dMj(t) = (α
(j)

X(t) − γ
(j)

X(t)Mj (t)) dt + σ
(j)

X(t) dBj (t) for j = 1, . . . , J.

We call the process a J -MMOU process.
Interestingly, this construction yields J components that have common features, as they react

to the same background process, as well as component-specific features, as a consequence of
the fact that the driving Brownian motions are independent. This model is particularly useful
in settings with multidimensional stochastic processes whose components are affected by the
same external factors.

An example of a situation where this idea can be exploited is that of multiple asset prices
reacting to the (same) state of the economy, which could be represented by a background process
(for instance with two states, that is, alternating between a ‘good’ and a ‘bad’ state). In this way
the dependence between the individual components can be naturally modeled. In mathematical
finance, one of the key challenges is to develop models that incorporate the correlation between
the individual components in a sound way. Some proposals were too simplistic, ignoring too
many relevant details, while others correspond with models with overly many parameters, with
its repercussions in terms of the calibration that needs to be performed. Another setting in which
such a coupling may offer a natural modeling framework is that of a wireless network. Channel
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conditions may be modeled as alternating between various levels, and users’ transmission rates
may react in a similar way to these fluctuations.

Many of the results derived in the previous sections covering the J = 1 case, can be
generalized to the situation of J -MMOU processes described above. To avoid unnecessary
repetition, we restrict ourselves to a few of these extensions. In particular, we present

(i) the counterpart of Theorem 2.1, stating that M(t) is, conditionally on the path of the
background process, multivariate normally distributed;

(ii) some explicit calculations for the means and (co-)variances for certain special cases;

(iii) the generalization of the PDE of Theorem 4.1;

(iv) explicit expressions for the steady-state (mixed) moments.

Neither procedures for transient moments nor scaling results (such as a J -dimensional CLT)
are included in this paper, but can be developed as in the single-dimensional case.

Conditional normality. Evidently, conditioning on (X(s), s ∈ [0, t]) the individual compo-
nents of M(t) are independent. The following result describes this setting in greater detail.

Proposition 6.1. Define �(j)(t) := ∫ t

0 γ
(j)

X(s) ds for j = 1, . . . , J. Then the J -dimensional
stochastic process (M(t))t≥0 given by

M(j)(t) = M
(j)
0 e−�(j)(t) +

∫ t

0
e−(�(j)(t)−�(j)(s))α

(j)

X(s) ds +
∫ t

0
e−(�(j)(t)−�(j)(s))σ

(j)

X(s) dB(s)

is the unique J -MMOU process with initial condition M0. Conditional on the process X, the
random vector M(t) has a multivariate normal distribution with, for j = 1, . . . , J , random
mean

μ(j)(t) = M
(j)
0 exp(−�(j)(t)) +

∫ t

0
exp(−(�(j)(t) − �(j)(s)))α

(j)

X(s) ds

and random covariance v(j,k)(t) = 0 if j �= k, and

v(j,j)(t) =
∫ t

0
exp(−2(�(j)(t) − �(j)(s)))(σ

(j)

X(s))
2 ds.

Mean and (co-)variance. The mean and (co-)variance of M(t) for a J -MMOU can be
computed relying on stochastic integration theory, with a procedure similar to the one relied on
in Section 3; we do not include the resulting expressions.

We consider in greater detail the special case that γ
(j)
i ≡ γ (j) for all i ∈ {1, . . . , d} (as

in Section 3.2) because in this situation expressions simplify. The means and variances can
be found as in Proposition 2.1; we now point out how to compute the covariance v

(j,k)
t :=

cov(M(j)(t), M(k)(t)) (with j �= k), relying on the law of total covariance. We write, in
self-evident notation,

v
(j,k)
t = E(cov(M(j)(t), M(k)(t) | X)) + cov(E(M(j)(t) | X), E(M(k)(t) | X)).
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The first term obviously cancels (cf. Proposition 6.1), while the second reads

1

γ (j) + γ (k)

( d∑
i1=1

d∑
i2=1

α
(j)
i1

α
(k)
i2

∫ t

0
(e−γ (k)v − e−(γ (j)+γ (k))t+γ (j)v)πi1(pi1i2(v) − πi2) dv

×
d∑

i1=1

d∑
i2=1

α
(k)
i1

α
(j)
i2

∫ t

0
(e−γ (j)v − e−(γ (k)+γ (j))t+γ (k)v)πi1(pi1i2(v) − πi2) dv

)
.

As before, this expression further simplifies in particular asymptotic regimes, as pointed out
in [25, Section 6.2]; in [25, Example 6.2] the case of d = 2, J = 2 is explicitly analyzed for
t → ∞.

Transient behavior: PDEs. In order to uniquely characterize the joint distribution of M(t),
we now set up a system of PDEs for the objects g(ϑ, t) := E exp(

∑J
j=1 ϑjM

(j)(t))Z(t) with
i ∈ {1, . . . , d}. Relying on the machinery used when establishing the system of PDEs featuring
in Theorem 4.1, we find that ∂g(ϑ, t)/∂t can be expressed as

(
Q� −

J∑
j=1

(
ϑj diag{α(j)} − 1

2
ϑ2

j diag{(σ (j))2}
))

g(ϑ, t) −
J∑

j=1

ϑj diag{γ (j)} ∂

∂ϑj

g(ϑ, t).

Recursive scheme for higher-order moments. The above system of PDEs can be used to
determine all (transient and stationary) moments related to the J -MMOU. We restrict ourselves
to the stationary moments here. Define hk = (h1,k, . . . , hd,k)

�, where

hi,k := E((−1)
∑J

j=1 kj (M(1))k1 · · · (M(J))kJ 1{X=i}).

Observe that h0 = π . With techniques similar to those applied earlier, uj ∈ R
J denoting the

j th unit vector, we obtain the recursion

hk =
(

Q�−
J∑

j=1

kj diag{γ (j)}
)−1( J∑

j=1

kj

(
diag{α(j)}hk−uj

− kj − 1

2
diag{(σ (j))2}hk−2uj

))
.

This procedure allows us to compute all mixed moments, thus facilitating the calculation of
covariances as well. In the situation of J = 2, for instance, we find that, with h0,1 and h1,0 as
in Section 3.4,

EM(1)M(2) = e(Q� − diag{γ (1)} − diag{γ (2)})−1(diag{α(1)}h0,1 + diag{α(2)}h1,0).

Remark 6.1. The model proposed in this section describes a J -dimensional stochastic process
with dependent components. In many situations, the dimension d can be chosen relatively
small (see, e.g. [6], [19]), whereas J tends to be large (e.g. in the context of asset prices).
Importantly, the 1

2J (J +1) = O(J 2) entries of the covariance matrix of M(t) (or its stationary
counterpart M) are endogenously determined by the model and need not be estimated from
data. Instead, this approach requires the calibration of just the d(d −1) entries of the Q-matrix,
as well as the 3dJ parameters of the underlying OU processes, totaling O(J ) parameters. We
conclude that, as a consequence, this framework offers substantial potential advantages.
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7. Discussion and concluding remarks

In this paper we have presented a set of results on MMOU processes, ranging from procedures
to compute moments and a PDE for the Fourier–Laplace transform, to weak convergence results
under specific scalings and a multivariate extension in which multiple MMOUs are modulated
by the same background process. Although a relatively large number of aspects is covered,
there are many issues that still need to be studied. One such area concerns the large-deviations
behavior under specific scalings, so as to obtain the counterparts of the results obtained in, e.g.
[7], [8], and [11], for the Markov-modulated infinite-server queue.

In this paper we have assumed that γi ≥ 0, with strict inequality for at least one i ∈
{1, . . . , d}, so as to make sure the stationary version M exists, but one can actually do with less.
It is sufficient [20] to require γ∞ < 0 (also if X(t) corresponds to a real-valued process); see
also [40, Example 5.1].

It is further remarked that in this paper we looked at an regime-switching version of the OU
process, but of course we could have considered various other processes. One option is the
Markov-modulated version of the so-called Cox–Ingersoll–Ross process:

dM(t) = (αX(t) − γX(t)M(t)) dt + σX(t)

√
M(t) dB(t).

Some results we have established for MMOU processes have their immediate MMCIR coun-
terpart, while for others there are crucial differences. It is relatively straightforward to adapt the
procedure used in [25, SectionA] to set up a system of PDEs for the Fourier–Laplace transforms
(essentially based on Itô’s rule). Interestingly, the recursions needed to generate all moments
are now one-step (rather than two-step) recursions. A further objective would be to see to what
extent the results of our paper generalize to more general classes of diffusions; see, e.g. [24].
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