Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-06T13:00:22.298Z Has data issue: false hasContentIssue false

Generalized Markov branching trees

Published online by Cambridge University Press:  17 March 2017

Harry Crane*
Affiliation:
Rutgers University
*
* Postal address: Department of Statistics and Biostatistics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA. Email address: hcrane@stat.rutgers.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Motivated by the gene tree/species tree problem from statistical phylogenetics, we extend the class of Markov branching trees to a parametric family of distributions on fragmentation trees that satisfies a generalized Markov branching property. The main theorems establish important statistical properties of this model, specifically necessary and sufficient conditions under which a family of trees can be constructed consistently as sample size grows. We also consider the question of attaching random edge lengths to these trees.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

References

[1] Abraham, R.,Delmas, J.-F. and He, H. (2012).Pruning Galton‒Watson trees and tree-valued Markov processes.Ann. Inst. H. Poincaré Prob. Statist.48,688705.Google Scholar
[2] Aldous, D. (1996).Probability distributions on cladograms.In Random Discrete Structures(IMA Vol. Math. Appl. 76),Springer,New York,pp.118.Google Scholar
[3] Aldous, D. (1998).Tree-valued Markov chains and Poisson Galton‒Watson distributions.In Microsurveys in Discrete Probability(DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 41),American Mathematical Society,Providence, RI,pp.120.Google Scholar
[4] Aldous, D. and Pitman, J. (1998).Tree-valued Markov chains derived from Galton‒Watson processes.Ann. Inst. H. Poincaré Statist. 34,637686.Google Scholar
[5] Aldous, D.,Krikun, M. and Popovic, L. (2008).Stochastic models for phylogenetic trees on higher-order taxa.J. Math. Biol. 56,525557.Google Scholar
[6] Berestycki, N. and Pitman, J. (2007).Gibbs distributions for random partitions generated by a fragmentation process.J. Statist. Phys. 127,381418.CrossRefGoogle Scholar
[7] Bertoin, J. (1996).Lévy Processes.Cambridge University Press.Google Scholar
[8] Bertoin, J. (2006).Random Fragmentation and Coagulation Processes(Camb. Stud. Adv. Math. 102).Cambridge University Press.CrossRefGoogle Scholar
[9] Burke, C. J. and Rosenblatt, M. (1958).A Markovian function of a Markov chain.Ann. Math. Statist. 29,11121122.Google Scholar
[10] Crane, H. (2013).Consistent Markov branching trees with discrete edge lengths.Electron. Commun. Prob. 18,14pp.Google Scholar
[11] Crane, H. (2013).Some algebraic identities for the α-permanent.Linear Algebra Appl. 439,34453459.Google Scholar
[12] Crane, H. (2014).The cut-and-paste process.Ann. Prob. 42,19521979.Google Scholar
[13] Crane, H. (2015).Clustering from categorical data sequences.J. Amer. Statist. Assoc. 110,810823.Google Scholar
[14] Crane, H. (2015).Generalized Ewens‒Pitman model for Bayesian clustering.Biometrika 102,231238.Google Scholar
[15] Crane, H. (2016).The ubiquitous Ewens sampling formula.Statist. Sci. 31,119.(Rejoinder: 31,3739.)Google Scholar
[16] Evans, S. N. (2008).Probability and Real Trees(Lecture Notes Math. 1920).Springer,Berlin.CrossRefGoogle Scholar
[17] Evans, S. N. and Winter, A. (2006).Subtree prune and regraft: a reversible real tree-valued Markov process.Ann. Prob. 34,918961.Google Scholar
[18] Ewens, W. J. (1972).The sampling theory of selectively neutral alleles.Theoret. Pop. Biol. 3,87112.Google Scholar
[19] Felsenstein, J. (2004).Inferring Phylogenies.Sinauer,Sunderland.Google Scholar
[20] Haas, B. and Miermont, G. (2012).Scaling limits of Markov branching trees with applications to Galton‒Watson and random unordered trees.Ann. Prob. 40,25892666.CrossRefGoogle Scholar
[21] Haas, B.,Miermont, G.,Pitman, J. and Winkel, M. (2008).Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models.Ann. Prob. 36,17901837.Google Scholar
[22] Hudson, R. (1983).Properties of a neutral allele model with intragenic recombination.Theoret. Pop. Biol. 23,183201.CrossRefGoogle ScholarPubMed
[23] Kingman, J. F. C. (1982).The coalescent.Stoch. Process. Appl. 13,235248.Google Scholar
[24] McCullagh, P.,Pitman, J. and Winkel, M. (2008).Gibbs fragmentation trees.Bernoulli 14,9881002.Google Scholar
[25] McVean, G. and Cardin, N. (2005).Approximating the coalescent with recombination.Phil. Trans. R. Soc. London 360,13871393.Google Scholar
[26] Pitman, J. (1995).Exchangeable and partially exchangeable random partitions.Prob. Theory Relat. Fields 102,145158.Google Scholar
[27] Pitman, J. (2006).Combinatorial Stochastic Processes(Lecture Notes Math. 1875).Springer,Berlin.Google Scholar
[28] Tajima, F. (1983).Evolutionary relationship of DNA sequences in finite populations.Genetics 105,437460.Google Scholar
[29] Wang, Y. et al. (2014).A new method for modeling coalescent processes with recombination.BMC Bioinformatics 15,12pp.Google Scholar