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GENERALIZED MARKOV BRANCHING TREES

HARRY CRANE,∗ Rutgers University

Abstract

Motivated by the gene tree/species tree problem from statistical phylogenetics, we
extend the class of Markov branching trees to a parametric family of distributions on
fragmentation trees that satisfies a generalized Markov branching property. The main
theorems establish important statistical properties of this model, specifically necessary
and sufficient conditions under which a family of trees can be constructed consistently
as sample size grows. We also consider the question of attaching random edge lengths to
these trees.
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1. Introduction

In this paper we establish basic properties for the broad class of generalized Markov branch-
ing tree models introduced below. In particular, the main theorems characterize conditions under
which generalized Markov branching tree models exhibit the properties of label equivariance
and consistency under subsampling, which ensure that model-based inferences can be extended
beyond the sample and are unaffected by arbitrary choices of labeling and sample size.

The proposed model is primarily motivated by phylogenetics applications, for which it
incorporates a tree parameter in a natural and explicit way; see Figure 1.The model has further
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Figure 1: DNA sequence data for species labeled 1, 2, 3, 4. Mutations (marked by ∗) occur on each site
specific tree and cause the resulting DNA configuration at that site. In applications, the array of DNA is

observed, while the tree-valued sequence and its mutations are unobserved.
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potential in hidden Markov modeling and tree search algorithms, as discussed in [19]. As a
proper discussion requires substantial computational and scientific treatment, we leave these
applications to future work. For consistency, we phrase the discussion in terms of a concrete
problem in statistical phylogenetics; see Section 1.2.

1.1. Random tree models

Within probability, combinatorial stochastic process theory [27] establishes deep connections
among classical population genetics [18], [23], coagulation and fragmentation processes [8],
and Lévy processes [7]. In population genetics and phylogenetics applications, coalescent and
fragmentation processes are among the most popular models [19]. Previous authors [1], [3],
[4], [16], [17] have studied tree-valued Markov chains with different dynamics, but specifying
an explicit data generating process on infinite phylogenetic trees is rarely the focus. See Evans’s
lecture notes [16] for a recent overview.

1.2. Phylogenetics motivation

In statistical phylogenetics, random tree models are most attractive among the many tools
for inferring unknown hierarchical relationships in a population [19]. There are numerous
competing approaches, such as the neighbor joining algorithm, but explicit probabilistic models
for genetic variation offer additional benefits for interpreting perceived anomalies and estimating
important quantities.

We assume there is one true evolutionary tree, called the species tree, which represents the
relationships of all species to one another. Genetic data, e.g. mitochondrial DNA sequences,
contain information about the species tree. Differences between DNA sequences reflect the
species tree, but the relationship between genetic sequence data and the unknown species tree
is obscured by recombination, migration between populations, and genetic drift [28], factors
that cause the phylogenetic tree governing a particular site or gene to differ from the species
tree. We call the tree associated to a given site or gene a gene tree.

As a consequence of biological processes such as recombination, each site along the chro-
mosome corresponds to a gene tree. The observed DNA sequences are generated by mutations
that occur on these gene trees. See Figure 1 for an illustration.

Previous authors [22], [28] note the discrepancy between gene and species trees and its effect
on inference. In particular, McVean and Cardin [25] detailed the difficulty of approximating
the coalescent under the influence of recombination; see [29] for recent developments. Because
the authors modeled the relationship among the species tree, gene trees, and DNA sequences,
likelihood-based methods are among the most attractive, but computational complexity remains
a hindrance to their use in practice; see [19, Chapter 28].

1.3. Generalized Markov branching trees

We propose a probabilistic model for the latent gene tree sequence. Generalized Markov
branching trees extend the theory of Markov branching trees [2], [10], [20], [21], [24] to
a parametric model for phylogenetic inference. At a minimum, the proposed models have
an interpretable, closed form density function, which remedies McVean and Cardin’s issue.
Special cases relate to classical theory of exchangeable random partitions [15], [18], [26] and
coalescent processes [23].

In addition to the computational issues mentioned above, many tree models are devised
without deference to basic logical properties of probabilistic models. In the main theorems
below we establish necessary and sufficient conditions under which the generalized Markov
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branching tree model is

• label equivariant, invariant under arbitrary relabeling of species, and

• consistent under subsampling, the gene tree for a subsample [m] ⊂ [n] of m ≤ n

species depends on the species tree only through its restriction to species labeled [m] :=
{1, . . . , m}.

These properties coincide with the phylogenetic modeling axioms set forth by Aldous [2].

1.4. Outline

The paper is organized as follows. In Section 2 we give an informal description of the
modeling framework and summarize the main theorems. Section 3 contains preliminary
definitions and notation. In Section 4 we introduce generalized Markov branching tree models.
In Section 5 we consider attaching random edge lengths.

2. Probabilistic framework

We now give an informal description of the main conclusions. A more formal discussion
begins in Section 3. All figures show trees with binary splits, but the general treatment covers
fragmentations with arbitrarily many children at each branch point.

Consider a collection of five species, labeled 1, 2, 3, 4, 5, which are related by the tree in
Figure 2. This tree is interpreted from the bottom up: the bottom leaves are labeled by the
species and any point where branches meet is labeled by the set of species below that point. In
particular, from the tree in Figure 2 we see that species 1 and 2 are more closely related to each
other than to species 3, 4, and 5, and that species 3 and 4 are more closely related to each other
than to species 5. The root of the tree represents the ancestor of all species, called eve.

The principle of exchangeability prevails when modeling such a tree, that is, the probability of
observing the tree in Figure 2 should not depend on arbitrary assignments of labels to species.
The principle of consistency states that the tree governing the subsample {1, 2, 3, 4} should
agree with the tree in Figure 2, meaning the tree for species 1, 2, 3, 4 is just that tree obtained
by deleting species 5, as in Figure 3. The consistency property permits the interpretation of the
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{1,2}

{1} {2} {3} {4}

{3,4} {5}

Figure 2.
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Figure 3.
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Generalized Markov branching trees 111

model as a data generating process for a larger population, from which the observed species
have been sampled. Without knowledge to the contrary, we assume the population is infinite in
size and labeled by the positive integers N := {1, 2, . . . }.

Aldous [2] set forth the axioms of exchangeability and sampling consistency in phylogenetic
modeling. In addition to these axioms, Aldous introduced the class of Markov branching trees,
which are exchangeable, consistent random trees satisfying the Markov branching property, by
which the branching below any vertex is conditionally independent of the rest of the tree. This
property is natural in evolutionary modeling as it assumes that disjoint ancestral lines evolve
independently of one another.

In Figure 1, we wish to model the latent tree sequence based on the true species tree,
denoted t . For this, we modify the family of Markov branching trees to a family of conditional
probability distributionsQ(·; t) on the space of phylogenetic trees, given the true species tree t .
In this case, the notions of exchangeability and sampling consistency give way to the conditions
of label equivariance and lack of interference, respectively. Label equivariance implies that
the distribution Q(·; t) does not depend on the assignment of labels to species, as long as the
species are labeled consistently in both t and the realization T ∼ Q(·; t). Lack of interference
works in accord with the assumption that missing observations occur completely at random,
so that the observed gene tree for a subsample [n] = {1, . . . , n} depends on the species tree t

of the population N only through its restriction to the sample [n] ⊂ N. We also modify
the Markov branching property to the conditional Markov branching property, whereby the
branching below each vertex is conditionally independent of the rest of the tree, given the
species tree parameter t .

The Markov branching property reduces much of the theory of Markov branching trees to
a study of the associated splitting rule, which governs the branching below each point in the
tree through a family of distributions on set partitions. We aim for the same mathematical and
statistical tractability by specializing to a class of models for which the conditional distribution
Q(·; t) depends on t through a (possibly random) sufficient statistic, which we take to be
a random partition whose distribution depends on t . In this way, the generalized Markov
branching tree model is determined by a family of conditional splitting rules.

The expression ofQ(·; t) in terms of a sufficient partition statistic strikes a balance between
mathematical tractability and practical utility as well as connects our model to previous work
on random trees. In the main theorems we establish necessary and sufficient conditions for
constructing a phylogenetic tree model subject to the conditions of label equivariance, lack
of interference, and the generalized Markov branching property. We also consider the task
of consistently attaching edge lengths to these random trees, which incorporates the notion of
evolutionary time into the model. We discuss practical issues for models of this kind in other
related work [13], [14].

3. Preliminaries

3.1. Set partitions

Writing A ⊂f N to denote that A is a finite subset of N, a partition πA of A is a collection
{B1, . . . , Br} of nonoverlapping, nonempty subsets for which

⋃r
i=1 Bi = A. For any πA =

{B1, . . . , Br}, B1, . . . , Br are called blocks and #πA = r denotes the number of blocks. We
write PA for the collection of all partitions of A.
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For any partition π ∈ PA and permutation σ : A → A, we write πσ to denote the relabeling
of π by σ , where

(P) i and j are in the same block of πσ if and only if σ−1(i) and σ−1(j) are in the same
block of π .

For A′ ⊆ A ⊂f N, we define the restriction of π ∈ PA to PA′ by

π|A′ := {A′ ∩ b : b ∈ π} \ {∅}. (3.1)

We sometimes write DA′,A : PA → PA′ to denote the deletion map π �→ π|A′ . WhenA′ = [m]
and A = [n], m ≤ n, we write Dm,n = D[m],[n]. For example, with π = {{1, 3, 4}, {2, 6}, {5}}
and permutation σ = (123)(456), in cycle notation, we have

πσ = {{1, 2, 5}, {3, 4}, {6}} and π|[4] = {{1, 3, 4}, {2}}.
The collection PN of partitions of N consists of sequences (πn, n ∈ N) of finite partitions

for which πn ∈ P[n] and πm = Dm,nπn for every m ≤ n, for all n ∈ N. For π = (πn) ∈ PN,
we write Dnπ = πn to denote the restriction map PN → P[n], for each n ∈ N. We equip PN

with the σ -field σ 〈Dn, n ∈ N〉 generated by these restriction maps.

3.2. Fragmentation trees

A fragmentation tA of A is a collection of subsets satisfying

(F1) A ∈ tA and

(F2) if #A ≥ 2, then there is a partition πA = {A1, . . . , Ar} of A such that

tA = {A} ∪ tA1 ∪ · · · ∪ tAr ,

where tAi is a fragmentation of Ai for each i = 1, . . . , r .

We initialize the recursive definitions (F1) and (F2) by putting t{i} := {{i},∅} for every i ∈ N.
We may call tA a fragmentation, fragmentation tree, or tree. We write TA to denote the set of
fragmentations of A.

We can also regard a fragmentation t of A ⊂f N as a tree with a distinguished vertex
‘ROOT’ and leaves labeled by A. (For technical reasons, we identify ROOT with the empty
set in the above definition.) By tracing the ancestral lineage from any leaf to ROOT, we label
each internal vertex uniquely by the subset of leaves whose ancestral line passes through that
vertex. Alternatively, if we begin at ROOT, we obtain a recursive fragmentation of the set of
leaves. Below any vertex labeledA′ ⊆ A is a subtree t|A′ with leaves labeled inA′. In Figure 2
we see the leaf labeled tree corresponding to the fragmentation

{∅, {1, 2, 3, 4, 5}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4}, {5}}.
For any A′ ⊆ A ⊂f N, the restriction, or reduced subtree, of t ∈ TA to A′ is defined by

t|A′ := RA′,At := {b ∩ A′ : b ∈ t}. (3.2)

For integers 1 ≤ m ≤ n, we write Rm,n to denote the restriction map T[n] → T[m]. Through
these restriction maps, we can define an infinite fragmentation of N as a compatible sequence of
finite trees (tn, n ∈ N), that is, tn ∈ T[n] and Rm,ntn = tm for all m ≤ n, for every n ∈ N. For
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{1,2,3,4,5}
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t R4,5(t) = t|[4]

Figure 4.

eachn ∈ N, we denote the restriction of t := (tn, n ∈ N) ∈ TN toT[n] byRnt := tn. We indicate
this space of infinite trees by TN, which we equip with the σ -algebra σ 〈Rn, n ∈ N〉 that makes
the restriction maps measurable. In Figure 4 we demonstrate the action of R4,5 : T[5] → T[4]
by removing species 5.

We mostly study exchangeable random fragmentations, which are invariant under relabeling
of the leaves of the tree. In particular, the relabeling of t = {b} ∈ T[n] by any permutation
σ : [n] → [n] is defined by tσ := {bσ , b ∈ t}, where bσ := {σ(i), i ∈ b}.
3.2.1. Phylogenetic terminology. For clarity we phrase much of our discussion in terms of
the phylogenetics application in Figure 1. Let t ∈ TA be a fragmentation of A ⊂f N. In
phylogenetic terms, we call any b ∈ t an ancestor of a ∈ t if a ⊂ b. Therefore, A is the unique
element of tA ∈ TA that is ancestral to all species, the so-called most recent common ancestor
MRCA(tA) = A. For a /∈ {A,∅}, the nonempty interval (a,MRCA(t)] := {b ∈ t : a ⊂ b}
has a unique minimal element PA(a) := ⋂

a⊂b⊆A b, called the parent of a. Conversely, except
for singletons, every nonempty a ∈ t is the parent of some collection of nonempty subsets of t ,
called the children of a and denoted CHt (a) := PA−1

t (a). Specifically, for any A′ ∈ tA, the
blocks of the partitionπA′ in (F2) are the children ofA′. We call the children ofA = MRCA(tA)
the root partition, which we assign the special notation �tA := CHtA(MRCA(tA)).

3.3. Markov branching trees

A Markov branching tree with n leaves is a random fragmentation T of [n] whose dis-
tribution satisfies the Markov branching property, i.e. for every b ∈ T with #b ≥ 2, the
conditional distribution of CHT (b), given b ∈ T , is independent of T|[n]\b. In other words, any
collection {T1, . . . ,Tr} of nonoverlapping subtrees in T is conditionally independent given the
nonoverlapping subsets {B1, . . . , Br} labeling the leaves of each subtree. By this description, it
is sufficient to specify a family (pb, b ⊆ [n]) of splitting rules, where each pb is a probability
distribution on the children of each possible parent in T . In particular, each pb is a probability
measure on Pb \ {1b}, partitions of b with the one block partition 1b removed.

A collection p := (pb, b ⊆ [n]) of splitting rules determines a Markov branching distribu-
tion Q[n]

p on T[n] as follows. To generate T ∈ T[n], we first generate its root partition �T from
p[n]. Given �T = π , we iterate independently for each child b ∈ π , generating the children
of each b ∈ π from pb. We repeat this procedure in subtrees until we reach the configuration
of singletons. By conditional independence, Q[n]

p has the product form

Q[n]
p (t) =

∏
{b∈t : #b≥2}

pb(CHt (b)), t ∈ T[n]. (3.3)

Since we deal exclusively with exchangeable models, it is sufficient to specify a collection
p := (pm, 2 ≤ m ≤ n) of splitting rules indexed by {2, . . . , n}. For m = 2, . . . , n, pm
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determines a splitting rule on P[m] \ {1[m]} and, by exchangeability, Pb \ {1b} for every b ⊆ [n]
with #b = m. To avoid unnecessary notation, we write pb to denote the splitting rule induced
by p#b on Pb \ {1b} through exchangeability.

A Markov branching model is a probability measure Qp on TN whose finite-dimensional
distributions (Q[n]

p , n ≥ 1) have the form (3.3). Alternatively, we specify Qp from its finite-
dimensional distributions (Q[n]

p )n≥1, provided these are consistent under subsampling, i.e.

Q[m]
p := Q[n]

p R−1
m,n for all m ≤ n, (3.4)

where Rm,n : T[n] → T[m] is the restriction map defined in (3.2). Since the finite-dimensional
distributions only depend on p := (pn, n ≥ 2), (Q[n]

p , n ≥ 1) satisfies (3.4) if and only if

pn(π) = pn+1(D
−1
n,n+1(π))+ pn+1(e

(n+1)
n+1 )pn(π) for all π ∈ P[n], (3.5)

where e
(n)
n := {{1, . . . , n− 1}, {n}} for every n ≥ 2. In words, (3.5) reflects all possible ways

to construct the root partition for a fragmentation t ofn+1 elements, given the root partitionπ of
its restriction t|[n] to n elements. The first term reflects the probability that the root partitions are
compatible, i.e. Dn,n+1(�t ) = �t|[n] , while the second term reflects the possibility that the new
element n+ 1 branches from [n] immediately, i.e. �t = {[n], {n+ 1}}, and then [n] branches
into π in the subtree t|[n]. The model below extends the class of Markov branching trees to
incorporate a tree parameter t ∈ TN, which represents the species tree for the population N.

4. Generalized Markov branching trees

For n ∈ N, let pn(·;π) be a probability distribution on P[n] \ {1[n]} for every π ∈ P[n]. We
call pn := (pn(·;π), π ∈ P[n]) a conditional splitting rule on P[n]. Recalling the relabeling
operation for partitions (P), we call a conditional splitting rule pn exchangeable if

pn(π
′;π) = pn(π

′σ ;πσ ) for all π ∈ P[n], π ′ ∈ P[n] \ {1[n]} (4.1)

for every permutation σ : [n] → [n]. As long as pn is exchangeable, we can uniquely define a
conditional splitting rule pb, for every b ⊂ N with #b = n.

For a collectionp := (pm, 2 ≤ m ≤ n) of conditional splitting rules, we define a conditional
Markov branching distribution on T[n] by

Q[n]
p (t;π) :=

∏
{b∈t : #b≥2}

pb(CHt (b);π|b), t ∈ T[n], π ∈ P[n]. (4.2)

In words, Q[n]
p (·;π) incorporates a partition parameter into (3.3) by generating the children

of each b ∈ T ∼ Q
[n]
p (·;π) from the conditional splitting rule that depends on the restriction

of π to b. The connection between the conditional Markov branching distribution and Markov
branching trees should be clear by comparing (3.3) and (4.2). Specifically, if the conditional
splitting rules depend trivially on the partition parameter, i.e. pb(·;π) = pb(·;π ′) for all
π, π ′ ∈ Pb and all b ⊆ [n], then (4.2) reduces to (3.3).

In our phylogenetic model, the dependence ofQ[n]
p (·;π) on π simplifies the dependence of

the gene trees on the latent species tree t . In terms of Figure 1, t is the species tree and each
of the site specific gene trees is modeled by a distribution that depends on t by mixing with
respect to the sufficient partition statistic, as in (4.3) below. We point out that the sufficient
partition statistic has no tangible role in the data in Figure 1. Its only role is that it permits us
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to incorporate dependence of a random tree on the latent species tree t in a mathematically and
computationally tractable way.

To connect the distribution in (4.2) to a species tree t ∈ T[n], we specify a sufficiency measure
μn(· | t), which is a conditional probability distribution on the space of partitions of [n], given
t ∈ T[n]. To model dependence of a random tree on a species tree t , we define the (μ, p)-Markov
branching distribution Q[n]

μ,p on T[n] by mixing Q[n]
p in (4.2) with respect to μn,

Q[n]
μ,p(t

′; t) :=
∑
π∈P[n]

Q[n]
p (t

′;π)μn(π | t), t, t ′ ∈ T[n]. (4.3)

We say that π ∼ μn(· | t) is sufficient for t in the sense that the conditional distribution of
T ∼ Q

[n]
μ,p(·; t), given π ∼ μn(· | t), depends only on π and not on t .

After conditioning on the realization of � ∼ μn(· | t), T ∼ Q
[n]
μ,p(·; t) depends only on a

sufficient statistic, which is easier to handle than the more complicated structure of t . After
mixing with respect to μn(· | t), the unconditional distribution of T depends on the entire
species tree, and so our model establishes a direct link between the parameter of interest t and
the latent gene tree sequence. In practice, the choice of sufficiency measure determines the
nature of the random tree T ∼ Q

[n]
μ,p(·; t). We discuss aspects of the choice of sufficiency

measure in Section 4.1.

Remark 4.1. Though in some sense arbitrary, the decision to study models of the form (4.3)
is natural from the perspective of both theory and applications. Without such a condition, the
conditional distributions Qp(·; t) can exhibit complicated dependence on t that is difficult to
study rigorously.

To specify a statistical model for the latent tree sequence, we must specify a probability distri-
bution for every finite sample size n = 1, 2, . . . , and so we define a family μ = (μn(· | t), n ∈
N) of finite-dimensional sufficiency measures. To ensure a model (Qμ,p(·; t), t ∈ TN) for trees
labeled by N, the finite-dimensional sufficiency measures must exhibit lack of interference, i.e.

μm(π
′ | Rm,nt) = μn(D

−1
m,n(π

′) | t) for all π ′ ∈ P[m] and t ∈ T[n],

for all m ≤ n. Under this condition, the collection (μn(· | t), n ∈ N) of finite-dimensional
sufficiency measures determines a unique sufficiency measure μ(· | t) on infinite partitions
of N, given t ∈ TN.

Hypothesis 4.1. Throughout the paper, we assume that the sufficiency measure μ(· | t), t ∈
TN, is label equivariant, i.e.

μ(dπ | t) = μ(dπσ | tσ ), π ∈ PN, t ∈ TN,

for all permutations σ : N → N fixing all but finitely many elements of N, and has the lack of
interference property,

μ(D−1
n (π) | t) = μ(D−1

n (π) | t∗) for all t, t∗ ∈ TN for which Rnt = Rnt
∗,

for all π ∈ P[n], for all n ∈ N.

Alternatively, we can viewQ
[n]
μ,p(·; t) as a transition probability for a Markov chain on T[n].

The collection (Q[n]
μ,p, n ∈ N) determines a unique transition probability measure on TN if and

only if

Q[n]
μ,p(t

′; Rn,n+1t
∗) = Q[n+1]

μ,p (R−1
n,n+1(t

′); t∗), for all t∗ ∈ T[n+1], t ′ ∈ T[n], (4.4)
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for all n ≥ 1 [9]. In this case, (4.3) can be expressed as

Qμ,p(dt ′; t) :=
∫

PN

Qp(dt ′;π)μ(dπ | t), t, t ′ ∈ TN, (4.5)

which we call a generalized Markov branching model, or (μ, p)-Markov branching model. We
call any random tree T with distribution in (4.5) a generalized Markov branching tree.

In Theorem 4.2, we show that (4.4) holds for (Q[n]
μ,p, n ≥ 1) if and only if its conditional

splitting rules p satisfy

pn(π
′;π) = pn+1(D

−1
n,n+1(π

′);π∗)+ pn+1(e
(n+1)
n+1 ;π∗)pn(π ′;π), π, π ′ ∈ P[n], (4.6)

for all π∗ ∈ D−1
n,n+1(π), for all n ∈ N. Intuitively, (4.6) is the Markovian extension of condition

(3.5) for ordinary splitting rules.

4.1. Choice of sufficiency measure

Suitable choices of the sufficiency measure vary by application. We mention only a few
natural choices for illustration.

In general, as long as the sufficiency measure is nondegenerate, it incorporates an inherently
Bayesian feature into the model. For example, since Kingman’s coalescent is a natural objective
prior for t , we can append edge lengths to t according to the law of a coalescent tree conditioned
to have topology t . Given the resulting tree with edge lengths t◦, we let� be the partition in t◦
observed at some random time T ∗. Alternatively, we can append discrete edge lengths to t , as
in [10]. Denoting this tree by t•, we can sample the partition in t• at any random integer-valued
time, as above, or we can pick a meaningful fixed time. For example, sampling t• at time 1
gives the root partition of t•, which affords the model a straightforward interpretation in terms
of higher-order taxonomy.

Because the choice of sufficiency measure depends heavily on the application, we always
leave μ unspecified, subject to Hypothesis 4.1. We focus instead on the conditional splitting
rules and their implications for the model.

4.2. Examples of conditional splitting rules

In Section 4.3 we describe a simple class of conditional splitting rules by exploiting their
relationship to partition-valued Markov chains. We now give a more concrete example that
relates to previous work on Markov branching trees.

Gibbs measures play a special role in the study of fragmentation processes [6], [24]. For
ordinary Markov branching trees, a Gibbs splitting rule has the form

pn(π) ∝ a#π

∏
b∈π

ψ#b, π ∈ P[n] \ {1[n]},

for nonnegative sequences {ψn, n ≥ 1} and {an, n ≥ 1}, where #π denotes the number of
blocks of π . Our general description of Markov branching trees and their generalization puts
no restriction on the number of children of each parent, but, in practice, we commonly assume
only one speciation event can occur at any given time, which restricts the number of children
to exactly two. This leads to the study of binary Gibbs fragmentation trees, which McCullagh
et al. [24] characterized by Aldous’s beta splitting rules [2],

pβn (π) := �(β + #b1 + 1)�(β + #b2 + 1)

�(2β + n+ 2)Z(n)
, π = {b1, b2} ∈ P[n] \ {1[n]},

where �(·) is the gamma function, Z(n) is a normalizing constant, and −2 ≤ β ≤ ∞.

https://doi.org/10.1017/apr.2016.81 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.81


Generalized Markov branching trees 117

Extending these ideas, we consider Gibbs conditional splitting rules with the form

pn(π
′;π) ∝ a#π ′

∏
b∈π∧π ′

ψ#b, π ∈ P[n], π ′ ∈ P[n] \ {1[n]},

where π ∧ π ′ denotes the meet of π and π ′ in the partition lattice. In Theorem 4.3 below, we
study these Gibbs conditional splitting rules in further detail and show that

pβn (π
′;π) = 2

∏
b∈π∧π ′ β↑#b∏

b∈π (2β)↑#b − 2
∏
b∈π β↑#b , π ∈ P[n], π ′ ∈ P[n] \ {1[n]}, β > 0,

(4.7)
where β↑j := β(β + 1) · · · (β + j − 1), characterizes the class of exchangeable, consistent,
binary Gibbs conditional splitting rules for the generalized Markov branching model.

The family in (4.7) is the analog of Aldous’s beta splitting model to generalized Markov
branching trees. By construction (4.11) below, these conditional splitting rules arise from the
transition probabilities of the Ewens Markov chain [12].

4.3. Induced conditional splitting rules

An easy and natural way to specify a family of conditional splitting rules (pn, n ≥ 2) is
by the kernel of an exchangeable, consistent Markov chain on PN. Let (Pn, n ≥ 2) be the
finite-dimensional transition laws of an exchangeable, consistent, nondegenerate Markov chain
on PN, that is, Pn(π ′;π) is the probability of a transition from π to π ′ in P[n], for each n ∈ N,
and (Pn, n ≥ 2) satisfy

P2(1[2];π) < 1 for all π ∈ P[2], (4.8)

Pm(π
′; Dm,nπ

∗) = Pn(D
−1
m,n(π

′);π∗), π ′ ∈ P[m] for every π∗ ∈ P[n], (4.9)

and

Pn(π
′σ ;πσ ) = Pn(π

′;π), π, π ′ ∈ P[n] for all permutations σ : [n] → [n]. (4.10)

From any such family, we can define conditional splitting rules p := (pn, n ≥ 2) by condi-
tioning a draw from Pn(·;π) to have at least two blocks, i.e.

pn(π
′;π) := Pn(π

′;π)
1 − Pn(1[n];π), π ∈ P[n], π ′ ∈ P[n] \ {1[n]}. (4.11)

Note that (4.9) is just the requirement that (Pn, n ≥ 2) is consistent under subsampling and
thus determines the transition probabilities of a Markov chain on PN.

Proposition 4.1. Let (Pn, n ∈ N) be finite-dimensional transition probability measures that
satisfy (4.8)–(4.10). Then the conditional splitting rules (pn, n ≥ 2) defined in (4.11) satisfy
(4.6).

Proof. Together, (4.8) and (4.9) imply that

Pn(1[n];π) ≤ P2(1[2]; D2,nπ) < 1, for every n ∈ N and π ∈ P[n],

and pn(·;π) defined in (4.11) is a probability measure on P[n] \ {1[n]}. Condition (4.6) follows
easily from (4.9), i.e.

pn+1(D
−1
n,n+1(π

′);π∗)+ pn+1(e
(n+1)
n+1 ;π∗)pn(π ′; Dn,n+1π

∗)

= Pn+1(D
−1
n,n+1(π

′);π∗)
1 − Pn+1(1[n+1];π∗)

+ Pn+1(e
(n+1)
n+1 ;π∗)

1 − Pn+1(1[n+1];π∗)
Pn(π

′; Dn,n+1π
∗)

1 − Pn(1[n]; Dn,n+1π∗)
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= Pn(π
′; Dn,n+1π

∗)
1 − Pn(1[n]; Dn,n+1π∗)

[
1 − Pn(1[n]; Dn,n+1π

∗)+ Pn+1(e
(n+1)
n+1 ;π∗)

1 − Pn+1(1[n+1];π∗)

]
= pn(π

′; Dn,n+1π
∗),

for every π∗ ∈ P[n+1] and π ′ ∈ P[n], for all n ∈ N. �
Conditional splitting rules constructed by Markov chains on PN play a special role in our

theory; see Theorems 4.1 and 5.2 and the discussion of root partitions in the next section.

4.4. Root partitions

The root partition of a phylogenetic tree is the initial branching of the most recent common
ancestor. It reflects the coarsest classification of species according to higher-order taxonomy.
Aldous et al. [5] previously studied the problem of inferring higher-order taxa. In our study
of Markov branching trees, root partitions play an important role because they determine the
law of the branching below each vertex in the tree. We can also associate the existence of a
root partition with special properties of the corresponding generalized Markov branching tree
model, as we see in Theorem 5.2.

Formally, we say that t = (tn, n ∈ N) ∈ TN possesses a root partition if there exists N ≥ 1
for which (�tn , n ≥ N) is a compatible sequence of finite partitions, i.e. Dn,n+1�tn+1 = �tn

for all n ≥ N . In this case, we write�t := limn→∞�tn to denote the root partition of t . Every
finite tree possesses a root partition, but an infinite tree need not.

Example 4.1. (Nonexistence of a root partition.) The infinite comb c is defined by the collection
c := (cn)n≥2, where �cn = e

(n)
n := {[n− 1], n} for every n ≥ 2. In this case, the sequence of

finite root partitions is (e(n)n )n≥2, for which Dm,ne
(n)
n = 1[m] �= e

(m)
m for every m < n; hence,

limn→∞�cn does not exist.

In the following lemma, we define, for any Boolean statement S,

1(S) :=
{

1, S holds,

0 otherwise.

Lemma 4.1. A fragmentation t = (tn, n ∈ N) of N possesses a root partition if and only if∑∞
n=2 1(�tn = e

(n)
n ) < ∞.

Proof. For fixed t = (tn, n ∈ N) ∈ TN and any n ≥ 2, �tn and �tn+1 are compatible
unless�tn+1 = e

(n+1)
n+1 . By the projective construction of PN, limn→∞�tn exists if and only if

(�tn , n ≥ N) is a compatible sequence of partitions for some N < ∞, in which case

∞∑
n=2

1(�tn = e(n)n ) ≤ N < ∞. �

In the following theorem, let Qμ,p be the transition law of a (μ, p)-Markov branching
model with conditional splitting rules (pn, n ≥ 2) and sufficiency measure μ satisfying
Hypothesis 4.1.

Theorem 4.1. Let (pn, n ≥ 2) be a family of conditional splitting rules satisfying (4.1) and
(4.6). Then (pn, n ≥ 2) corresponds to transition probabilities (Pn, n ∈ N) satisfying (4.8),
(4.9), and (4.10) on (P[n], n ∈ N), through (4.11), if and only if

• for every t ∈ TN, Qμ,p(·; t)-almost every t ′ ∈ TN possesses a root partition and
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• for every n ≥ 2, there exists a function τ∞ : PN → (0, 1] such that, for all n ≥ 2,

τ∞(π∗)Z(n, π∗) = τ∞(π∗∗)Z(n, π∗∗), (4.12)

for all π∗, π∗∗ ∈ PN such that Dnπ
∗ = Dnπ

∗∗, where

Z(n, π) :=
∞∏
j=1

(1 − pn+j (e(n+j)n+j ; Dn+jπ)), π ∈ PN, n ≥ 2.

Proof. (i) In the ‘only if’ direction. Assume that (pn, n ≥ 2) is given by (4.11) for some
family (Pn, n ∈ N) satisfying (4.8), (4.9), and (4.10). Then (4.1) is plainly satisfied. With
e
(n)
n := {[n− 1], n}, we also have

1 − pn(e
(n)
n ;π) = 1 − Pn−1(1[n−1]; Dn−1,nπ)

1 − Pn(1[n];π) , (4.13)

for every π ∈ P[n], for all n ≥ 2. By (4.9) and Kolmogorov’s extension theorem, (Pn, n ∈ N)

is determined by a unique Markov kernel P∞ on PN such that

Pn(π
′; Dnπ

∗) = P∞(D−1
n (π ′);π∗), π ′ ∈ P[n], (4.14)

for all π∗ ∈ PN, for all n ∈ N. Together with (4.8), (4.14) implies that

P∞(1N;π) ≤ P2(1[2]; D2π) < 1 for every π ∈ PN.

We define
τ∞(π) := 1 − P∞(1N;π), π ∈ PN, (4.15)

which is everywhere positive. For every π ∈ PN, (4.13) and (4.15) imply

Z(n, π) :=
∞∏
j=1

(1 − pn+j (e(n+j)n+j ; Dn+jπ))

= 1 − Pn(1[n]; Dnπ)

1 − P∞(1N;π)
= 1 − Pn(1[n]; Dnπ)

τ∞(π)
> 0;

and we observe (4.12).
We now take any t ∈ TN and fix π ∈ PN. For every n ∈ N, (4.8) implies the existence of

some π∗∗ ∈ P[n] \ {1[n]} for which pn(π∗∗; Dnπ) > 0; whence,

P{�T ′ ∈ D−1
n (π∗∗)} = pn(π∗∗; Dnπ)Z(n, π) = Pn(π∗∗; Dnπ)

τ∞(π)
> 0.

But {�T ′ exists} is a tail event with respect to the σ -field generated by the independent sequence
(1{�T ′|[n] = e

(n)
n })n≥1. By Kolmogorov’s 0-1 law together with

P({�T ′ exists}) = P

(⋃
n∈N

⋃
π ′ �=1[n]

{�T ′ ∈ D−1
n (π ′)}

)
≥ P{�T ′ ∈ D−1

n (π∗∗)} > 0,

�T ′ exists Qμ,p(·; t)-almost surely.
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(ii) In the ‘if’direction. Suppose that (4.12) holds and, for every t ∈ TN,Qμ,p(·; t)-almost every
t ′ ∈ TN has a root partition. Fix t ∈ TN and τ∞ : PN → (0, 1] subject to these assumptions,
and let T ′ ∼ Qμ,p(·; t). For each n = 2, 3, . . ., define En := {�RnT ′ = e

(n)
n }, the event that

the root partition of the reduced subtree RnT
′ is e

(n)
n . (Note that the occurrence of En signifies

the regeneration of the root partition at stage n; that is, on En, the root partition of T ′ (if it
exists) cannot be in the set D−1

n (P[n] \ {1[n]}).) By Lemma 4.1,
∑
n≥2 1(En) < ∞ almost

surely and

∞ > E

(∑
n≥2

1(En)

)
=

∑
n≥2

P(En). (4.16)

For everyπ ∈ PN, the sequence (Z(n+1, π), n ∈ N) is monotonically increasing and bounded
above by 1. (In fact, limn→∞ Z(n, π) = 1.) It remains to show that Z(n, π) > 0 for all n ≥ 2.
For fixed π ∈ PN,

0 < Z(2, π) = exp

{ ∞∑
n=2

log(1 − P(En))

}
⇐⇒

∞∑
n=2

log(1 − P(En)) > −∞.

From (4.16), P(En) → 0 as n → ∞ and, by Taylor’s theorem, we can write

log(1 − P(En)) = −P(En)+ o(P(En)) as n → ∞.

We conclude that

∞∑
n=2

log(1 − P(En)) ≥ −
N∑
n=2

P(En)+ o(P(En)) > −∞. (4.17)

Conditions (4.12) and (4.17) allow us to define τn : P[n] → [0, 1] for each n ∈ N: for every
π ∈ P[n], we can choose any π∗ ∈ D−1

n (π) and set

τn(π) := τ∞(π∗)Z(n, π∗) > 0.

For every n ≥ 2 and π ∈ P[n+1], the family (τn, n ≥ 2) satisfies

τn(Dn,n+1π) = τn+1(π)(1 − pn+1(e
(n+1)
n+1 ;π)).

From (τn, n ≥ 2) and the conditional splitting rules (pn, n ≥ 2), we define Markov kernels
(Pn, n ∈ N) on (P[n], n ∈ N) by P1 ≡ 1 and, for n ≥ 2,

Pn(π
′;π) :=

{
τn(π)pn(π

′;π), π ′ �= 1[n],
1 − τn(π), π ′ = 1[n],

for each π ∈ P[n].

Directly from its definition, (Pn, n ∈ N) satisfies (4.8) and is exchangeable. To verify (4.9),
we fix n ∈ N and π∗ ∈ P[n+1]: for π ′ �= 1[n],

Pn+1(D
−1
n,n+1(π

′);π∗) = τn+1(π
∗)pn+1(D

−1
n,n+1(π

′);π∗)

= τn(Dn,n+1π
∗)
pn+1(D

−1
n,n+1(π

′);π∗)

1 − pn+1(e
(n+1)
n+1 ;π∗)

= Pn(π
′; Dn,n+1π

∗);
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otherwise,

Pn+1(D
−1
n,n+1(1[n]);π∗) = 1 − τn+1(π

∗)(1 − pn+1(e
(n+1)
n+1 ;π∗)) = Pn(1[n]; Dn,n+1π

∗).

Finally, the conditional splitting rules defined from (Pn, n ∈ N) through (4.11) coincide with
the conditional splitting rules (pn, n ≥ 2), completing the proof. �

Theorem 4.1 comes into play in Section 5.4 when we consider attaching discrete edge lengths
to generalized Markov branching trees. In that case, we establish a correspondence between
generalized Markov branching trees with integer-valued edge lengths and exchangeable, con-
sistent Markov chains on PN.

4.5. Characterization of exchangeable generalized Markov branching trees

Theorem 4.2. Let μ = (μn, n ∈ N) be any sufficiency measure satisfying Hypothesis 4.1.
Then an exchangeable collection (Q[n]

μ,p, n ∈ N) of generalized Markov branching distribu-
tions determines the law of an exchangeable generalized Markov branching tree on TN with
distribution as in (4.5) if and only if p satisfies (4.1) and (4.6).

Proof of the ‘if’ statement. Suppose p satisfies (4.1) and (4.6). Then exchangeability of
Q

[n]
μ,p, for each n ∈ N, is clear. To establish consistency, we must verify (4.4). Let t2 denote

the unique element of T[2] and π2 = {{1}, {2}} = 1
2 denote the unique element of P[2] \ {1[2]}.

For any π ∈ P[2], we observe that

Q[2]
μ,p(t2; t2) = p2(π2;π) = 1.

By (4.6), we have

1 = Q[3]
μ,p(T[3];π)

= Q[3]
μ,p(R

−1
2,3(t2);π)

= p3(D
−1
2,3(

1
2 );π)+ p3(

12
3 ;π)p2(

1
2 ;π|[2])

= p2(π2;π) for any π ∈ P[3].

Hence, Q[2]
μ,p(·;π|[2]) and Q[3]

μ,p(·;π) are consistent for all π ∈ P[3].
For our induction hypothesis, we assume that

Q[n]
p (t

′; Dn,n+1π
∗) = Q[n+1]

p (R−1
n,n+1(t

′);π∗) for all π∗ ∈ P[n+1], t ′ ∈ T[n],

holds for some n ≥ 2. We fix t, t ′ ∈ T[n] and t∗ ∈ R−1
n,n+1(t). For t ′′ ∈ R−1

n,n+1(t
′), we write

b∗ ∈ �t ′ to denote the block of �t ′ to which the element n+ 1 must be added to obtain �t ′′ ,
and we write b∗∗ ∈ �t ′′ to denote the block of �t ′′ containing n + 1. We also assume that
π∗ ∈ P[n+1] and π := π∗|[n] are the restrictions of an infinite partition drawn from μ(· | t).
Below, we use the recursive expression

Q[n]
μ,p(t

′; t) =
∑
π∈P[n]

pn(�t ′ ;π)
∏
b∈�t ′

Qb
p(t

′|b;π|b)μn(π | t), t, t ′ ∈ T[n],

and the decomposition

R−1
n,n+1(t

′) =
{ ⋃

{π ′′∈D−1
n,n+1(�t ′ )}

⋃
{t ′′∈R−1

n,n+1(t
′) : �t ′′=π ′′}

{t ′′}
}

∪ {t∗}, (4.18)
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where t∗ is the unique element of R−1
n,n+1(t

′) with �t∗ = e
(n+1)
n+1 . (Note that (4.18) is a disjoint

union obtained by partitioning the elements of R−1
n,n+1(t

′) according to their root partition.)
Conditional on π∗, the induction hypothesis implies that

Q[n+1]
p (R−1

n,n+1(t
′);π∗)

=
∑

t ′′∈R−1
n,n+1(t

′)

Q[n+1]
p (t ′′;π∗)

=
∑

t ′′∈R−1
n,n+1(t

′)

pn+1(�t ′′ ;π∗)
∏
b∈�t ′′

Qb
p(t

′′|b;π∗|b)

=
∑

π ′′∈D−1
n,n+1(�t ′ )

∑
t ′′∈R−1

n,n+1(t
′) : �t ′′=π ′′

pn+1(π
′′;π∗)

×
∏
b∈π ′′

Qb
p(t

′′|b;π∗|b)+ pn+1(e
(n+1)
n+1 ;π∗)Q[n]

p (t
′;π)

=
∑

π ′′∈D−1
n,n+1(�t ′ )

pn+1(π
′′;π∗)

[ ∏
b �=b∗

Qb
p(t

′′|b;π∗|b)
]

×
∑
t ′′∈A

Qb∗∗
p (t ′′;π∗|b∗∗)+ pn+1(e

(n+1)
n+1 ;π∗)Q[n]

p (t
′;π) (4.19)

=
∑

π ′′∈D−1
n,n+1(�t ′ )

pn+1(π
′′;π∗)

∏
b∈�t ′

Qb
p(t

′′|b;π∗|b)+ pn+1(e
(n+1)
n+1 ;π∗)Q[n]

p (t
′;π)

=
∏
b∈�t ′

Qb
p(t

′|b;π∗|b)[pn+1(D
−1
n,n+1(�t ′);π∗)+ pn+1(e

(n+1)
n+1 ;π∗)pn(�t ′ ;π)] (4.20)

= pn(�t ′ ;π)
∏
b∈�t ′

Qb
p(t

′|b;π|b)

= Q[n]
p (t

′;π).

The sum in (4.19) is over the set A := R−1
b∗,b∗∗(t ′|b∗) of all fragmentations t ′′ of b∗∗ whose

restriction to b∗ is t ′|b∗ , which is equal to Qb∗
p (t

′|b∗;π∗|b∗) by the induction hypothesis. By
induction, we conclude that

Q[n]
p (t;π) = Q[n+1]

p (R−1
n,n+1(t);π∗) for all π∗ ∈ D−1

n,n+1(π),

for every n ≥ 1. Hence, there exists a conditional distribution Qp(·;π) on TN for every
π ∈ PN. By the lack of interference property of μ, we conclude (4.4) for (Q[n]

μ,p, n ≥ 1).
Conversely, if (4.4) holds for (Q[n]

μ,p, n ≥ 1), then the above sequence of calculations is valid
through line (4.20) by takingμn(· | t) to be degenerate atπ∗ ∈ P[n+1]. If eitherQ[n]

p (t
′;π) > 0

or Q[n]
p (t

′;π) = 0 but Qb
p(t

′|b;π∗|b) > 0 for all b ∈ �t ′ , then

∏
b∈�t ′

Qb
p(t

′|b;π|b)[pn+1(D
−1
n,n+1(�t ′);π∗)+ pn+1(e

(n+1)
n+1 ;π∗)pn(�t ′ ;π)]

= Q[n+1]
p (R−1

n,n+1(t
′);π∗)
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= Q[n]
p (t

′;π)
= pn(�t ′ ;π)

∏
b∈�t ′

Qb
p(t

′|b;π|b),

which implies (4.6). Since, for any π ′ ∈ P[n] with pn(π ′;π) = 0, we can always choose a
collection of subtrees {t ′

b : b ∈ π ′} such that Qb
p(t

′|b;π|b) > 0 for every b ∈ �t ′ , these two
cases suffice. �

4.6. Conditional Gibbs splitting rules

The conditional beta splitting rule in Section 4.2 specializes the more general class of
conditional Gibbs fragmentation processes. For fixed n ≥ 2, we say that a conditional splitting
rule pn on P[n] \ {1n} is of Gibbs type if, for each π ∈ P[n],

pn(π
′;π) = a(#π ′)

Z(π)

∏
b∈π∧π ′

ψ(#b), π ′ ∈ P[n] \ {1n}, (4.21)

for functions a,ψ : N → R
+ and Z : P[n] → R

+. For binary models, we can put a(2) = 1
and a(j) = 0 for j �= 2. From (4.21), conditional Gibbs rules are exchangeable, but a family
(pn)n≥2 defined from the same a,ψ need not satisfy the consistency condition (4.6).

For fixed k ≥ 2, −1 < β < ∞, and π ∈ P[n], we define the conditional Dirichlet splitting
rule

pn(π
′;π) = k↓#π ′

Zn(π)

∏
b∈π

∏
b′∈π ′ �(β + #(b ∩ b′)+ 1)/�(β + 1)

�(kβ + #b + k)/�(kβ + k)
, π ′ ∈ P[n] \ {1n},

(4.22)
where k↓j = k(k − 1) · · · (k − j + 1) and

Zn(π) = 1 − k
∏
b∈π

�(β + #b + 1)/�(β + 1)

�(kβ + #b + k)/�(kβ + k)
. (4.23)

The conditional beta splitting rule (4.7) is the special case of (4.22) with k = 2.

Theorem 4.3. Let (Q[n](·, ·))n∈N be a family of exchangeable, consistent Gibbs transition
probabilities. Then its conditional Gibbs splitting rules (pn)n≥2 are given by

pn(π
′;π) = k↓#π ′

Zn(π)

∏
b∈π

∏
b′∈π ′(β + 1)↑#(b∩b′)

(kβ + k)↑#b , π ′ ∈ P[n] \ {1[n]},

for some k < ∞ and β > −1, or pn is the limit as β → ∞, where Zn(π) is the normalizing
constant in (4.23).

Proof. For convenience, we write (4.21) in the equivalent form

pn(π
′;π) = a(#π ′)

Z(π)

∏
b∈π

∏
b′∈π ′

ψ(#(b ∩ b′)) for ψ(0) = 1, (4.24)

and we write ψ(π) = ∏
b∈π ψ(#b). Let π ∈ P[n], π ′ ∈ P[n] \ {1n}, and π∗ ∈ D−1

n,n+1(π).
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The Gibbs form (4.21) and consistency (4.6) imply

a(#π ′)
Z(π)

ψ(π ∧ π ′)
[

1 − a(2)

Z(π∗)
ψ(π)ψ(1)

]

= a(#π ′ + 1)

Z(π∗)
ψ(π ∧ π ′)ψ(1)+

∑
b∈π ′

a(#π ′)
Z(π∗)

ψ(π∗ ∧ π ′′
b ),

where π ′′
b is obtained by inserting element n + 1 in block b ∈ π ′; whence, for any π ′ in the

support of pn(·;π),

C(π∗) := Z(π∗)− a(2)ψ(π)ψ(1)

Z(π)
= A(#π ′)ψ(1)+

∑
b′∈π ′

	(#(b′ ∩ b∗)),

where 	(i) := ψ(i + 1)/ψ(i), A(r) := a(r + 1)/a(r), and b∗ ∈ π is the block into which
n + 1 is inserted to obtain π∗. The left-hand side depends only on π∗, which implies that
	(i + 1) − 	(i) is constant for all i ≥ 0, and we may write 	(i + 1) − 	(i) = β. For the
moment, assume that 	(i) = α + βi with α, β > 0. We have

ψ(i) = 	(i − 1)	(i − 2) . . . 	(0) =
i−1∏
j=0

(α + βj) = βi
�(i + α/β)

�(α/β)
.

There is no loss of generality in putting β = 1 and γ = α/β > 0 to obtain ψ(i) = �(i +
γ )/�(γ ), giving

C(π∗) = A(r)ψ(1)+
∑
b′∈π ′

	(#(b∗ ∩ b′)) = γA(r)+ γ r + #b∗,

r ≤ inf{m ∈ N : a(m+ 1) = 0};
whence, A(r) := δ − r . Without loss of generality, we assign a(1) = 0 and a(2) = δ(δ − 1)
so that

a(r) = a(2)
r−1∏
j=2

A(j) = δ(δ − 1)
r−1∏
j=2

(δ − j) = δ↓r .

As A(r) will be negative for large enough r , we must have #π ′ < k for some k < ∞ and
a(k + 1) = 0 implies δ = k.

In this case, the conditional Gibbs splitting rule is

pn(π
′;π) = k↓#π ′

Z(π)

∏
b∈π

∏
b′∈π ′

γ ↑#(b∩b′).

For α ∈ R, the α-permanent of an n× n real-valued matrix M is defined by

perα M :=
∑
σ∈Sn

α#σ
n∏
j=1

Mj,σ(j),

where Sn is the symmetric group of permutations acting on [n] and #σ denotes the number of
cycles of σ ∈ Sn. In [11] we have shown that

perα M =
∑
π∈P[n]

k↓#π
∏
b∈π

perα/k M[b],
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where M[b] is the submatrix of M with rows and columns indexed by b. For a partition
π ∈ P[n], we can write perα π = ∏

b∈π α↑#b by regarding π as a 0-1 valued matrix with (i, j)
entry 1 if i and j are in the same block of π , and 0 otherwise. Hence,

Z(π) =
∑

π ′∈P[n]\{1n}
k↓#π ′ ∏

b∈π∧π ′
γ ↑#b

=
∑

π ′∈P[n]
k↓#π ′ ∏

b∈π∧π ′
perγ 1b′ −k

∏
b∈π

γ ↑#b

= perkγ π − k perγ π.

We have

pn(π
′;π) = k↓#π ′

Z∗(π)
∏
b∈π

∏
b′∈π ′ γ ↑#(b∩b′)

(kγ )↑#b , (4.25)

where

Z∗(π) := perkγ π − k perγ π

perkγ π
.

The following cases arise.

• k < ∞ and 0 < γ < ∞. In this case, (4.25) is exactly (4.22) with β = γ − 1, i.e.

pn(π
′;π) = 1

Z∗(π)
k↓#π ′

k#π I{π ′∧π=π},

a discrete-time coalescent chain conditioned not to transition to the trivial state 1n, where
I{·} is the indicator function.

• k < ∞ and γ = ∞. Then γ = ∞ corresponds to β = 0, for which ψ(i) = αi and
C(π∗) = αA(r)+ αr ′; hence, A(r ′)+ r ′ = δ > 0 and A(r ′) = δ − r as above. In this
case,

pn(π
′;π) = 1

Z(π)

k↓#π ′

kn

is the splitting rule obtained by conditioning a k-coupon collector partition to be nontrivial,
the limit of (4.22) as β → ∞.

In the Gibbs case, γ = 0 is not possible because it corresponds to 	(0) = 0. The case k = ∞
and 0 < γ ≤ ∞ is prohibited as it corresponds to pn(π ′;π) = I{π ′=0n}, the deterministic split
into singletons, which is not of Gibbs type (4.21). �

Corollary 4.1. The conditional Dirichlet splitting models (4.22) with −1 < β ≤ ∞ are the
only consistent conditional Gibbs models.

By taking limits, we can extend the parameter range of (4.25) to include the cases k ∈ N∪{∞}
and 0 ≤ γ ≤ ∞, but not all limiting cases have Gibbs type.

Proposition 4.2. In considering limits in (4.25) as both γ ↓ 0 and k ↑ ∞, the following cases
arise. Fix n ∈ N, π ∈ P[n], and π ′ ∈ P[n] \ {1n}.

• k < ∞ and 0 < γ < ∞. In this case, (4.25) is exactly (4.22) with β = γ − 1.
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• k < ∞ and γ = ∞. We have

pn(π
′;π) = 1

Z(π)

k↓#π ′

kn
,

the k-coupon collector law conditioned to be nontrivial, also the limit of (4.22) asβ → ∞.

• k ↑ ∞, γ ↓ 0, and γ k → θ ∈ (0,∞). Equation (4.25) converges to

pn(π
′;π, θ) = θ#(π∧π ′)

Z∗(π)
∏
b∈π

∏
b′∈π ′ �(#(b ∩ b′))

θ↑#b I{π∧π ′=π ′},

the splitting rule obtained by fragmenting the blocks of π independently according to the
Ewens distribution with parameter θ > 0.

• k = ∞ and 0 < γ ≤ ∞. We have pn(π ′;π) = I{π ′=0n}, the deterministic split into
singletons.

Remark 4.2. Note that π = 1n translates each of the above cases to its corresponding uncon-
ditional Gibbs splitting rule.

5. Attaching edge lengths to generalized Markov branching trees

5.1. Weighted fragmentation trees

By associating each edge of tA ∈ TA with a real number in [0,∞], we construct a tree with
edge lengths. We can let edge lengths be real-valued, which corresponds to continuous-time
evolution, or integer-valued, which corresponds to nonoverlapping generations in population
genetics modeling. Appending edge lengths to fragmentation trees introduces further technical
points. In the interest of space, we keep technicalities to a minimum.

Definition 5.1. A weighted fragmentation t◦ of A ⊂f N is a pair (t,w) such that t ∈ TA and
w = {wb, b ⊆ A}, with

(W1) wb ∈ (0,∞] for all b ∈ t ,

(W2) wb = 0 if and only if b /∈ t , and

(W3) wb = ∞ if and only if b is a singleton or the empty set.

For b ∈ t , we call wb > 0 the weight, or length, of b. We write T ◦
A to denote the space of

weighted trees with most recent common ancestor A. We call t◦ a discrete-weighted tree if, in
addition to (W2) and (W3),

(D) wb ∈ {1, 2, . . . ,∞} for all b ∈ t .

We write T •
A ⊂ T ◦

A to denote the space of discrete weighted trees with MRCA A.

Remark 5.1. A weighted tree is a fragmentation tree with weights assigned to each of its edges.
The infinite weight assigned to singletons reflects the fact that singletons undergo no further
splitting and, thus, ‘live forever’. We need not require that the weight associated to every
singleton be infinite; however, these are the only trees that can arise as a result of the projection
operation defined in (5.1) below.

In Figure 5 we give a pictorial representation of the tree t5 in Figure 2 with edge lengths
w{1,2,3,4,5} = 1, w{1,2} = 3, and w{3,4} = 2 attached.
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{1,2,3,4,5}

{1,2}

{1} {2} {3} {4}

{5}{3,4}

ROOT = 

1

23 ∞

∞ ∞ ∞ ∞

Figure 5.

Analogous to the unweighted case, we define the restriction of t◦ ∈ TA by removing elements
and elongating branches as appropriate. Formally, for A′ ⊆ A, we define the restriction of
t◦ := (t,w) ∈ T ◦

A to T ◦
A′ by R◦

A′,At◦ = t◦
|A′ := (RA′,At,w′), where RA,A′ is defined in (3.2)

and w′ := {w′
b, b ⊆ A′} is given by

w′
b :=

∑
{b′∈t : b′∩A′=b}

wb′ , b ⊆ A′. (5.1)

We write T ◦
N

to denote the space of weighted N-trees, which consists of collections (t◦
n, n ∈ N)

with t◦
n ∈ T ◦[n] and t◦

m = R◦
m,nt

◦
n for allm ≤ n, for every n ∈ N. As usual, we equip T ◦

N
and T •

N

with the smallest σ -field so that these restriction maps are measurable.

5.2. Attaching edge lengths to generalized Markov branching trees

Previous authors have considered the task of attaching both continuous, exponentially
distributed [21], [24] and discrete, geometrically distributed [10] edge lengths to Markov
branching trees. We now consider the analogous task for generalized Markov branching trees.
As before, we let p = (pn, n ≥ 2) be an exchangeable, consistent conditional splitting rule
and μ be a sufficiency measure satisfying Hypothesis 4.1. We could allow the sufficiency
measure to depend on a weighted fragmentation t◦ = (t,w) ∈ TN, in which case we modify
Hypothesis 4.1 accordingly. This generalization is straightforward to carry out and does not
affect our conclusions, so we omit it.

Given t◦ := (t,w) ∈ T ◦
N

, we define a distribution on T ◦
N

as follows.

• First, generate π ∼ μ(· | t◦).

• Given π , we generate T ′ ∼ Qp(·;π).
• Given T ′ = t ′ and π , assign edge lengthsWb to each b ∈ t ′ conditionally independently

according to a distribution Fb(·;π) on [0,∞].
To maintain the generalized Markov branching property, the edge length distribution must be
memoryless, which immediately restricts Fb to either the exponential or geometric distribution.
In the next two sections, we obtain necessary and sufficient conditions for the edge length
distributions (Fb)b⊂fN, given a family of conditional splitting rules.

5.3. Generalized Markov branching trees with continuous edge weights

Let (pn, n ≥ 2) be the conditional splitting rules of a (μ, p)-Markov branching model on
TN and let (λn, n ≥ 0) be a collection of exponential rate functions, λn : P[n] → [0,∞) for
each n = 0, 1, . . ., such that λ0 = λ1 = 0 and

λn(π) = λn(π
σ ), π ∈ P[n] for all permutations σ : [n] → [n], n ≥ 2. (5.2)
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Given t◦ := (t,w) ∈ T ◦[n], we defineQ[n]◦
μ,p,λ(·; t◦) as the law of T ′◦ generated as follows.

(C1) We take π ∼ μ(· | t◦) and, given π , T ′ ∼ Q
[n]
p (·;π).

(C2) Given T ′ = t ′, π , and t◦, we generate W ′ := {W ′
b, b ∈ t ′}, a mutually independent

collection of exponential random variables, where W ′
b is exponentially distributed with

rate parameter λb(π|b), for each b ∈ t ′.

(C3) We put T ′◦ := (t ′,w′), where w′ := {W ′
b, b ⊆ [n]} is defined from {W ′

b, b ∈ t ′} in (C2)
and W ′

b ≡ 0 for every b /∈ t ′.

Theorem 5.1. Let p := (pn, n ≥ 2) be a family of conditional splitting rules satisfying (4.1)
and (4.6) and let μ satisfy Hypothesis 4.1. The following are equivalent.

(i) There exists a collection λ := (λn, n ≥ 0) of exponential rate functions such that
(Q

◦[n]
μ,p,λ, n ∈ N) are the finite-dimensional distributions of an exchangeable generalized

Markov branching model on T ◦
N

.

(ii) The family λ := (λn, n ∈ N) of exponential rate functions satisfies λ0 = λ1 = 0, (5.2),
and

λn(Dn,n+1π
∗) = λn+1(π

∗)(1 − pn+1(e
(n+1)
n+1 ;π∗)) (5.3)

for every π∗ ∈ P[n+1], for all n ≥ 1.

(iii) The families p = (pn, n ≥ 2) and λ = (λn, n ≥ 1) are determined by a family of
exchangeable Markovian transition rates (qn, n ∈ N) on (P[n], n ∈ N) satisfying (4.9)
and

qn(P[n] \ {1[n]};π) < ∞ for every π ∈ P[n], for all n ∈ N. (5.4)

In this case, we have λn(π) = qn(P[n] \ {1[n]};π) and pn(π ′;π) = qn(π
′;π)/λn(π),

π ′ �= 1[n]; moreover, the finite-dimensional conditional densities (Q[n]◦
μ,p,λ, n ∈ N)

associated to Q◦
μ,p,λ are

Q
[n]◦
μ,p,λ(dt ′◦; t◦)

=
∫

PN

∏
{b∈t ′ : #b≥2}

qb(CHt ′(b);π|b)e{−w′
bqb(Pb\{1b};π|b)}dw′

bμ(dπ | t◦) (5.5)

for every t◦, t ′◦ = (t ′, w′) ∈ T ◦[n].

Proof. Throughout this proof, we assume that T ′◦ ∼ Q◦
μ,p,λ(·; t◦), for some t◦ ∈ T ◦

N
,

wherever it appears.

(i) ⇐⇒ (ii). From Theorem 4.2, the induced kernel Qμ,p on TN is exchangeable and satisfies
(4.4) if and only if p satisfies (4.1) and (4.6). To establish the consistency of (Q[n]◦

μ,p,λ,

n ≥ 1), the independent random edge weights (Wb, b ∈ T ′) must satisfy

Wb
d= Wb∪{n+1} +WbIEb∪{n+1} for all b ⊂f N,

where ‘
d=’ denotes equality in law, Eb∪{n+1} := {�T ′|b∪{n+1} = {b, {n + 1}}}. By ex-

changeability of Qμ,p, it suffices that

Wn
d= Wn+1 +WnIn+1 for every π∗ ∈ P[n+1], for all n ∈ N, (5.6)
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where {Wn,Wn+1, In+1} are mutually independent,Wn ∼ Exp(λn(Dn,n+1π
∗)),Wn+1 ∼

Exp(λn+1(π
∗)), and In+1 ∼ Bern(pn+1(e

(n+1)
n+1 ;π∗)).

The characteristic function of X ∼ Exp(λ) is

ψX(t) := EeitX = λ

λ− it
.

Fix π∗ ∈ P[n+1] and put π = Dn,n+1π
∗. Then

E(eit (Wn+1+WnIn+1))

= λn+1(π
∗)

λn+1(π∗)− it

[
λn(π)

λn(π)− it
pn+1(e

(n+1)
n+1 ;π∗)+ 1 − pn+1(e

(n+1)
n+1 ;π∗)

]

= λn(π)

λn(π)− it

[
λn+1(π

∗)
λn+1(π∗)− it

λn(π)− it (1 − pn+1(e
(n+1)
n+1 ;π∗))

λn(π)

]
. (5.7)

If (5.3), then (5.7) simplifies to λn(π)/(λn(π)− it), the characteristic function ofWn ∼
Exp(λn(π)). On the other hand, if (5.7) is equal to ψWn(t), then

λn+1(π
∗)

λn+1(π∗)− it
= λn(π)

λn(π)− it (1 − pn+1(e
(n+1)
n+1 ;π∗))

.

We have defined λ0 = λ1 = 0 so that (5.6) is obvious for n = 1. Definition 5.1 forces
λn(·) > 0 for all n ≥ 2; so, for every π∗ ∈ P[n+1], there is a unique απ∗ = α > 0 such
that αλn(Dn,n+1π

∗) = λn+1(π
∗). We have

α

α

λn(π)

λn(π)− it (1 − pn+1(e
(n+1)
n+1 ;π∗))

= λn+1(π
∗)

λn+1(π∗)− αit (1 − pn+1(e
(n+1)
n+1 ;π∗))

,

which simplifies to (5.3). Since this relation must hold for all t◦ ∈ T ◦
N

, it must be satisfied
for all π∗ ∈ P[n+1].

(ii) ⇐⇒ (iii) Assume (ii). For every n ∈ N, we define, for each π ∈ P[n],

Qn(π
′;π) =

{
λn(π)pn(π

′;π), π ′ �= 1[n],
−λn(π), π ′ = 1[n] .

Finiteness of λn for each n ∈ N implies (5.4). Also, (4.6) and (5.3) imply (4.9): for
π ′ �= 1[n],

λn+1(π
∗)pn+1(D

−1
n,n+1(π

′);π∗) = λn+1(π
∗)(1 − pn+1(e

(n+1)
n+1 ;π∗))pn(π ′;π)

= λn(π)pn(π
′;π);

otherwise, for π ′ = 1[n],

Qn+1(D
−1
n,n+1(1[n]);π∗) = −λn+1(π

∗)+ λn+1(π
∗)pn+1(e

(n+1)
n+1 ;π∗) = −λn(π).

Thus, (Qn, n ∈ N) satisfies (4.9) and (5.4). The finite-dimensional transition density
(5.5) follows by our procedure for embedding in T ◦[n] through (C1)–(C3) preceding the
theorem. The converse is immediate.

This completes the proof. �
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Corollary 5.1. Any exchangeable generalized Markov branching tree on TN can be consistently
embedded in T ◦

N
.

Proof. Setting λ1({1}) = 0, λ2(π) = 1 for all π ∈ P[2], and defining λn recursively from
(5.3) completes the proof. �

5.4. Generalized Markov branching trees with discrete edge weights

Let (pn, n ≥ 2) be the conditional splitting rules associated to an exchangeable Markov
branching model on TN and let (τn, n ≥ 0) be a collection of geometric success functions,
τn : P[n] → [0, 1], satisfying τ0 = τ1 = 0 and (5.2). Given t• := (t,w) ∈ T •[n], we define
Q

[n]•
μ,p,τ (·; t•) as the law of T ′• generated in three steps (G1), (G2), (G3), where (G1) and (G3)

coincide with (C1) and (C3), respectively, and

(G2) given T ′ = t ′, π , and t•, we generate {Wb, b ∈ t ′} to be a mutually independent
collection of geometric random variables, where Wb has the geometric distribution with
success probability τb(π|b), for each b ∈ t ′.

Theorem 5.2. Let p := (pn, n ≥ 2) be a family of conditional splitting rules satisfying (4.1)
and (4.6) and let μ be a sufficiency measure on PN satisfying Hypothesis 4.1. The following
are equivalent.

(i) There exists a collection τ := (τn, n ≥ 0) of geometric success functions such that
(Q

[n]•
μ,p,τ , n ∈ N) are the finite-dimensional distributions of an exchangeable generalized

Markov branching model on T •
N

.

(ii) The family τ := (τn, n ≥ 0) satisfies τ0 = τ1 = 0, (5.2), and, for each π ∈ P[n],

τn(π) = τn+1(π
∗)(1 − pn+1(e

(n+1)
n+1 ;π∗)) for all π∗ ∈ D−1

n,n+1(π), for all n ≥ 2.
(5.8)

(iii) The families (pn, n ≥ 2) and (τn, n ≥ 0) are associated, through (4.11), to some family
(Pn, n ∈ N) of Markovian transition probabilities on (P[n], n ∈ N) satisfying (4.8)
and (4.9), and τn(π) = 1 − Pn(1[n];π), π ∈ P[n], for every n ∈ N. Moreover, the
finite-dimensional conditional distributions (Q[n]•

μ,p,τ , n ∈ N) associated to Q•
μ,p,τ are

Q[n]•
μ,p,τ (t

′•; t•) =
∫

PN

∏
{b∈t ′ : #b≥2}

Pb(CHt ′(b);π|b)Pb(1b;π|b)w
′
b−1μ(dπ | t•),

t•, t ′• :=(t ′,w′) ∈ T •[n].
(5.9)

(iv) Q•
μ,p,τ (·; t•)-almost every t ′• ∈ T •

N
possesses a root partition, for every t• ∈ T •

N
.

(v) λ∞(π) := limn→∞ λn(π|[n]) < ∞ for all π ∈ PN \ {1N}, where λ := (λn, n ≥ 2) is
defined recursively by λ2 ≡ 1 and

λn+1(π
∗) := λn(π

∗|[n])

(1 − pn+1(e
(n+1)
n+1 ;π∗))

, for every π∗ ∈ P[n+1], n ≥ 2.

Proof. The argument closely follows the proof of Theorem 5.1. Only condition (5.3) and
(iii) differ slightly.
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(i) ⇐⇒ (ii). As in Theorem 5.1, consistency of (Q[n]•
μ,p,τ , n ≥ 1) holds if and only if

Wn
d= Wn+1 +WnIn+1 for all t◦ ∈ T ◦

N
, (5.10)

where {Wn,Wn+1, In+1} are mutually independent, Wn ∼ geom(τ ∗
n (π)), Wn+1 ∼

geom(τ ∗
n+1(π

∗)), and In+1 ∼ Bern(pn+1(e
(n+1)
n+1 ;π∗)), for π∗ ∈ P[n+1] and π :=

Dn,n+1π
∗.

The probability generating function of X ∼ geom(p), 0 < p < 1, is

GX(s) := EsX = ps

1 − (1 − p)s
, s <

1

1 − p
.

We have defined τ1 ≡ 0 so that (5.10) is trivial for n = 1. By Definition 5.1, 0 < τn ≤ 1
for all n ≥ 2. Letting π, π∗, and In+1 be as in (5.10) and writing σn(·) := 1 − τn(·), we
have

E(sWn+1+WnIn+1)

= E(sWn+1)E(sWnIn+1)

= sτn+1(π
∗)

1 − σn+1(π∗)s

[
sτn(π)pn+1(e

(n+1)
n+1 ;π∗)

1 − sσn(π)
+ 1 − pn+1(e

(n+1)
n+1 ;π∗)

]

= sτn(π)

1 − sσn(π)

sτn+1(π
∗)

1 − sσn+1(π∗)

× 1

sτn(π)
[sτn(π)pn+1(e

(n+1)
n+1 ;π∗)+ 1 − pn+1(e

(n+1)
n+1 ;π∗)

− sσn(π)(1 − pn+1(e
(n+1)
n+1 ;π∗))]

= sτn(π)

1 − sσn(π)

sτn+1(π
∗)

1 − sσn+1(π∗)
sτn(π)+ (1 − s)(1 − pn+1(e

(n+1)
n+1 ;π∗))

sτn(π)
.

Hence, (5.8) implies (5.10). On the other hand, if (5.10) then

sτn+1(π
∗)

1 − sσn+1(π∗)
= sτn(π)

sτn(π)+ (1 − s)(1 − pn+1(e
(n+1)
n+1 ;π∗))

.

As τn(π) and τn+1(π
∗) are both strictly positive, there is a unique απ∗ = α > 0 such

that ατn(π) = τn+1(π
∗). The above expression simplifies to

sτn+1(π
∗)

1 − sσn+1(π∗)
= α

α

sτn(π)

sτn(π)+ (1 − s)(1 − pn+1(e
(n+1)
n+1 ;π∗))

= sτn+1(π
∗)

sτn+1(π∗)+ (1 − s)α(1 − pn+1(e
(n+1)
n+1 ;π∗))

,

for which we need
α(1 − pn+1(e

(n+1)
n+1 ;π∗)) = 1,

establishing (5.8).
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(ii) ⇐⇒ (iii). Assuming (ii), we can define Pn : P[n] × P[n] → [0, 1], n ∈ N, by

Pn(π
′;π) =

{
pn(π

′;π)τn(π), π ′ �= 1[n],
1 − τn(π), π ′ = 1[n] .

The finite-dimensional transition law (5.9) follows from the construction ofQ•
μ,p,τ (·; t•)

in (G1)–(G3). Corollary 4.1 gives the converse.

(iii) ⇐⇒ (iv). This follows from Theorem 4.1.

(ii) ⇐⇒ (v). This is clear since (5.8) implies the functions λn constructed from (5.3) converge
to a finite value for each π ∈ PN.

This completes the proof. �

Remark 5.2. Note that the essential difference between Theorems 5.1 and 5.2 occurs in parts
(iv) and (v) in Theorem 5.2. Whereas trees with continuous edge lengths need not have a
well-defined root partition, those with discrete edge lengths do.
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