Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T09:14:52.370Z Has data issue: false hasContentIssue false

Dynamic programming for discrete-time finite-horizon optimal switching problems with negative switching costs

Published online by Cambridge University Press:  19 September 2016

R. Martyr*
Affiliation:
The University of Manchester
*
* Current address: School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK. Email address: r.martyr@qmul.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study a discrete-time optimal switching problem on a finite horizon. The underlying model has a running reward, terminal reward, and signed (positive and negative) switching costs. Using optimal stopping theory for discrete-parameter stochastic processes, we extend a well-known explicit dynamic programming method for computing the value function and the optimal strategy to the case of signed switching costs.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

References

[1] Carmona, R. and Ludkovski, M. (2008).Pricing asset scheduling flexibility using optimal switching.Appl. Math. Finance 15,405447.CrossRefGoogle Scholar
[2] Djehiche, B.,Hamadène, S. and Popier, A. (2009).A finite horizon optimal multiple switching problem.SIAM J. Control Optimization 48,27512770.CrossRefGoogle Scholar
[3] Gassiat, P.,Kharroubi, I. and Pham, H. (2012).Time discretization and quantization methods for optimal multiple switching problem.Stoch. Process. Appl. 122,20192052.Google Scholar
[4] Guo, X. and Tomecek, P. (2008).Connections between singular control and optimal switching.SIAM J. Control Optimization 47,421443.Google Scholar
[5] Kunita, H. and Seko, S. (2004).Game call options and their exercise regions. Tech. Rep., Nanzan Academic Society, Mathematical Sciences and Information Engineering.Google Scholar
[6] Martyr, R. (2016).Solving finite time horizon Dynkin games by optimal switching. To appear in J. Appl. Prob. Google Scholar
[7] Peskir, G. and Shiryaev, A. (2006).Optimal Stopping and Free-Boundary Problems.Birkhäuser,Basel.Google Scholar
[8] Rogers, L. C. G. and Williams, D. (2000).Diffusions, Markov Processes, and Martingales, Vol. 1, Foundations.Cambridge University Press.Google Scholar
[9] Tanaka, T. (1990).Two-parameter optimal stopping problem with switching costs.Stoch. Process. Appl. 36,153163.Google Scholar
[10] Yushkevich, A. and Gordienko, E. (2002).Average optimal switching of a Markov chain with a Borel state space.Math. Meth. Operat. Res. 55,143159.Google Scholar