
Adv. Appl. Prob. 48, 832–847 (2016)
doi:10.1017/apr.2016.30

© Applied Probability Trust 2016

DYNAMIC PROGRAMMING FOR DISCRETE-TIME
FINITE-HORIZON OPTIMAL SWITCHING PROBLEMS
WITH NEGATIVE SWITCHING COSTS
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Abstract

In this paper we study a discrete-time optimal switching problem on a finite horizon.
The underlying model has a running reward, terminal reward, and signed (positive
and negative) switching costs. Using optimal stopping theory for discrete-parameter
stochastic processes, we extend a well-known explicit dynamic programming method for
computing the value function and the optimal strategy to the case of signed switching
costs.
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1. Introduction

The relatively recent papers [4], [10] have shown the connection between Dynkin games
and optimal switching problems where negative switching costs are allowed. In particular, Guo
and Tomecek [4] proved that the value of the Dynkin game is equal to the difference of the
value functions for the two-mode optimal switching problem. However, there is no rigorous
derivation of the dynamic programming algorithm for computing the value function in the case
of signed (positive and negative) switching costs. In fact, in the literature there are relatively
few theoretical results for optimal switching problems in discrete time.

1.1. Literature review

The discrete-time optimal switching problem with multiple modes was used in [1] and [3]
as an approximation to the solution of a continuous-time problem. The dynamic programming
algorithm advocated in those papers follows from the backward induction method for solving
optimal stopping problems [7, Chapter I, Section 1.1], and requires the existence of a system
of Snell envelope processes which solve the continuous-time optimal switching problem.
However, their arguments for proving the existence of these processes assumed strictly positive
switching costs. A backward induction formula for the value function of a discrete-time optimal
switching problem with two modes and strictly positive, constant switching costs was obtained
in [9] under general non-Markovian assumptions. In [10], the authors studied the discrete-time
optimal switching problem with two modes in a Markovian model, and obtained a different
type of dynamic programming equation for the value function—one which is more in the spirit
of the Wald–Bellman equations [7, Chapter I, Section 1.2].
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1.2. Aim and layout of the paper

In this paper we look at optimal switching for a finite-horizon discrete-time model which
has a running reward, terminal reward, and allows for negative switching costs. In Section 2 we
define this problem along with the notation and assumptions. In Section 3 we use the martingale
approach to optimal stopping problems to provide a discrete-time analogue of the verification
theorem established in [2] for continuous-time optimal switching problems. In Section 4 we
justify and extend the dynamic programming method in [1] and [3] to the case of signed
switching costs. A numerical example which utilises these results is presented in Section 5.
The conclusion and appendix then follow.

2. Discrete-time optimal switching

2.1. Definitions

2.1.1. Probabilistic setup. Let (�, F , P) be a complete probability space which is given. The
expectation operator with respect to P is denoted by E, and the indicator function of a set or
event A is written as 1A. Let T = {0, 1, . . . , T } represent a sequence of integer-valued times
with 0 < T < ∞. The probability space is equipped with a filtration F = (Ft )t∈T, where it is
assumed that F0 is the trivial σ -algebra, F0 = {∅, �}, and F = FT . The notation a.s. stands for
‘almost surely’. For a given F-stopping time ν, the notation Tν is used for the set of F-stopping
times τ such that ν ≤ τ ≤ T P-a.s. Martingales, stopping times, and other relevant concepts
are understood to be defined with respect to the filtered probability space (�, F , F, P) unless
stated otherwise. The usual convention to suppress the dependence on ω ∈ � is used below.

2.1.2. Optimal switching definitions. The following data for the optimal switching problem are
assumed.

(i) A discrete set of operational modes I = {1, 2, . . . , m}, where 2 ≤ m < ∞.

(ii) A reward received at time T for being in mode i ∈ I, which is modelled by an FT -
measurable real-valued random variable �i .

(iii) A running reward received while in mode i ∈ I, which is represented by a real-valued
adapted process �i = (�i(t))t∈T.

(iv) A cost for switching from mode i ∈ I to j ∈ I, which is modelled by a real-valued
adapted process γi,j = (γi,j (t))t∈T.

We next define a class of admissible switching controls.

Definition 2.1. Let t ∈ T and i ∈ I be given. An admissible switching control starting from
time t in mode i is a sequence α = (τn, ιn)n≥0 with the following properties.

(i) For n ≥ 0, τn ∈ Tt and satisfies t = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ T ; if n ≥ 1 then
P({τn < T } ∩ {τn = τn+1}) = 0.

(ii) For n ≥ 0, ιn : � → I is Fτn -measurable with ι0 = i and ιn 	= ιn+1 P-a.s.

Let At,i denote the class of admissible switching controls (also called strategies) for the initial
condition (t, i) ∈ T × I.
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The switching control α = (τn, ιn)n≥0 models the controller’s decision to switch at time τn,
n ≥ 1, from the active mode ιn−1 to another one ιn. The condition

P({τn < T } ∩ {τn = τn+1}) = 0, n ≥ 1,

renders inadmissible those strategies with multiple switches at the same time. The above
definition is similar to the one given in [10, p.145].

Definition 2.2. Associated with each α = (τn, ιn)n≥0 ∈ At,i are the following objects.

(i) A mode indicator function u : � × T → I defined by

us =
∑
n≥0

ιn1{τn≤s<τn+1}, t ≤ s ≤ T . (2.1)

(ii) The (random) total number of switches before T is

N(α) =
∑
n≥1

1{τn<T }. (2.2)

2.2. The optimal switching problem

Define the following performance index for switching controls with initial mode i ∈ I at
time t ∈ T:

J (α; t, i) = E

[T −1∑
s=t

�us (s) + �ιN(α)
−

∑
n≥1

γιn−1,ιn (τn)1{τn<T }
∣∣∣∣ Ft

]
, α ∈ At,i , (2.3)

where ιN(α) is the last mode switched to before T . The optimisation problem is to maximise the
objective function J (α; t, i) over all admissible controls α ∈ At,i . The value function V for the
optimal switching problem is defined as a random function of the initial time and mode (t, i):

V (t, i) = ess sup
α∈At,i

J (α; t, i). (2.4)

A switching control α∗ ∈ At,i is said to be optimal if it achieves the essential supremum in (2.4):

V (t, i) = J (α∗; t, i) ≥ J (α; t, i) for all α ∈ At,i P-a.s.

Remark 2.1. Processes or functions with super(sub)scripts in terms of the mode indicators
{ιn} are interpreted in the following way (for example):

γιn−1,ιn (·) =
∑
j∈I

∑
k∈I

1{ιn−1=j}1{ιn=k}γj,k(·).

Note that the summations are finite.

2.3. Notation, conventions and assumptions

The convention that
∑t

s=v(·) = 0 for any integers t and v with t < v is used. The following
terminology is referred to in later developments. For a constant p ≥ 1,

(i) let Lp denote the class of random variables Z satisfying E[|Z|p] < ∞;

(ii) let Sp denote the class of adapted processes X satisfying E[maxt∈T |Xt |p] < ∞.
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Assumption 2.1. For each i ∈ I, �i ∈ L2 and is FT -measurable, �i ∈ S2, and γi,j ∈ S2 for
every j ∈ I.

Assumption 2.1 ensures that the performance index (2.3) is well defined and allows the app-
lication of optimal stopping theory later. The following standard assumption on the switching
costs [4], [10] is also imposed.

Assumption 2.2. For every i, j, k ∈ I, and for all t ∈ T, P-a.s.,

(i) γi,i(t) = 0;

(ii) γi,k(t) < γi,j (t) + γj,k(t) if i 	= j and j 	= k

Assumption 2.2(i) says there is no additional cost for staying in the same mode. Assump-
tion 2.2(ii) ensures that when going from one mode i to another mode k, it is never profitable
to immediately visit an intermediate mode j .

3. The verification theorem

In this section we propose a probabilistic solution to the optimal switching problem. The app-
roach follows that of [2] in continuous time, which postulates the existence of a particular system
of m stochastic processes and verifies (see Theorem 3.1) that the components of this system
solve the optimal switching problem. The existence of these processes is proved in the following
section (see Theorem 4.1). Before we proceed, however, let us recall the following standard
results from the theory of optimal stopping which will be used below (see [7]).

Proposition 3.1. Let U = (Ut )t∈T ∈ S1. There exists an adapted, integrable process Z =
(Zt )t∈T such that Z is the smallest supermartingale which dominates U . The process Z is
called the Snell envelope of U and it enjoys the following properties.

(i) For any t ∈ T, Zt is defined by Zt = ess supτ∈Tt
E[Uτ | Ft ]. Moreover, Z can also be

defined recursively as ZT := UT and Zt := Ut ∨ E[Zt+1 | Ft ] for t = T − 1, . . . , 0.

(ii) For any θ ∈ T , the stopping time τ ∗
θ = inf{t ≥ θ : Zt = Ut } is optimal after θ in the

sense that Zθ = E[Uτ∗
θ

| Fθ ] = ess supτ∈Tθ
E[Uτ | Fθ ] P-a.s.

(iii) For any t ∈ T given and fixed, the stopped process (Zr∧τ∗
t
)t≤r≤T is a martingale.

3.1. An iterative optimal stopping problem

Suppose that there exist m real-valued adapted processes Y i = (Y i
t )t∈T, i ∈ I, such that

Y i ∈ S2 and

Y i
t = ess sup

τ∈Tt

E

[τ−1∑
s=t

�i(s) + �i1{τ=T } + max
j 	=i

{Y j
τ − γi,j (τ )}1{τ<T }

∣∣∣∣ Ft

]
. (3.1)

For i ∈ I, define the implicit gain process (Ui
t )t∈T by

Ui
t = max

j 	=i
{Y j

t − γi,j (t)}1{t<T } + �i1{t=T }. (3.2)

Then (3.1) can be expressed as

Y i
t = ess sup

τ∈Tt

E

[τ−1∑
s=t

�i(s) + Ui
τ

∣∣∣∣ Ft

]
. (3.3)
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Note that the assumptions on Y i , and the costs guarantee that Ui ∈ S2 for every i ∈ I.
Recalling Proposition 3.1, (Y i

t + ∑t−1
s=0 �i(s))t∈T can be identified as the Snell envelope of the

process (Ui
t + ∑t−1

s=0 �i(s))t∈T (also see Lemma A.1).

Theorem 3.1. (Verification theorem.) Let i ∈ I be the active mode at some fixed initial time
t ∈ T and suppose that Y 1, . . . , Ym as defined in (3.1) are in S2. Define sequences of random
times {τ ∗

n }n≥0 and mode indicators {ι∗n}n≥0 as τ ∗
0 = t , ι∗0 = i, and, for n ≥ 1,

τ ∗
n = inf{τ ∗

n−1 ≤ s ≤ T : Y
ι∗n−1
s = U

ι∗n−1
s }, ι∗n =

∑
j∈I

j1
A

ι∗
n−1
j

, (3.4)

where A
ι∗n−1
j (= A

ι∗n−1
j (ω)) is the event

A
ι∗n−1
j

:=
{
Y

j
τ∗
n

− γι∗n−1,j
(τ ∗

n ) = max
k 	=ι∗n−1

{Y k
τ∗
n

− γι∗n−1,k
(τ ∗

n )}
}
.

Then α∗ = (τ ∗
n , ι∗n)n≥0 ∈ At,i and satisfies Y i

t = J (α∗; t, i) = ess supα∈At,i
J (α; t, i) a.s.

Proof. The proof is essentially the same as the proof of [2, Theorem 1]. Note that the
infimum in (3.4) is always attained since Y i

T = Ui
T a.s. for every i ∈ I.

In Lemma A.2 in the appendix we verify that α∗ ∈ At,i . Using (3.2) and (3.3), it is simple
to check that the second claim follows trivially when t = T since Y i

T = �i = J (α; T , i) =
V (T , i) a.s. for any α ∈ AT ,i . Suppose now that t < T .

The stopping time τ ∗
1 in (3.4) is optimal after t by Proposition 3.1. Using this together with

the definition of ι∗1, we have

Y i
t = ess sup

τ∈Tt

E

[τ−1∑
s=t

�i(s) + Ui
τ

∣∣∣∣ Ft

]

= E

[τ∗
1 −1∑
s=t

�i(s) + �i1{τ∗
1 =T } + max

j 	=i
{Y j

τ∗
1

− γi,j (τ
∗
1 )}1{τ∗

1 <T }
∣∣∣∣ Ft

]

= E

[τ∗
1 −1∑
s=t

�i(s) + �i1{τ∗
1 =T } + {Y ι∗1

τ∗
1

− γi,ι∗1 (τ
∗
1 )}1{τ∗

1 <T }
∣∣∣∣ Ft

]
a.s. (3.5)

Lemma A.1 in the appendix confirms that Y ι∗1 satisfies

Y
ι∗1
s = ess sup

τ∈Ts

E

[τ∗
1 −1∑
r=s

�ι∗1 (r) + U
ι∗1
τ

∣∣∣∣ Fs

]
on [τ ∗

1 , T ]. (3.6)

Using (3.6) together with the definition and optimality of τ ∗
2 and ι∗2, we obtain

1{τ∗
1 <T }Y

ι∗1
τ∗

1

= ess sup
τ∈Tτ∗

1

E

[ τ−1∑
r=τ∗

1

�ι∗1 (r) + U
ι∗1
τ

∣∣∣∣ Fτ∗
1

]
1{τ∗

1 <T }

= E

[τ∗
2 −1∑

r=τ∗
1

�ι∗1 (r) + {Y ι∗2
τ∗

2
− γι∗1,ι∗2 (τ

∗
2 )}1{τ∗

2 <T } + �ι∗1 1{τ∗
2 =T }

∣∣∣∣ Fτ∗
1

]
1{τ∗

1 <T } a.s. (3.7)
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Combining (3.5) and (3.7), we obtain the following expression for Y i
t :

Y i
t = E

[τ∗
1 −1∑
s=t

�i(s) + �i1{τ∗
1 =T } + {Y ι∗1

τ∗
1

− γi,ι∗1 (τ
∗
1 )}1{τ∗

1 <T }
∣∣∣∣ Ft

]

= E

[τ∗
1 −1∑
s=t

�i(s) + E

[τ∗
2 −1∑

r=τ∗
1

�ι∗1 (r)

∣∣∣∣ Fτ∗
1

]
1{τ∗

1 <T }
∣∣∣∣ Ft

]

+ E[�i1{τ∗
1 =T } + E[�ι∗1 1{τ∗

2 =T } | Fτ∗
1
]1{τ∗

1 <T } | Ft ]
− E[γi,ι∗1 (τ

∗
1 )1{τ∗

1 <T } + E[γι∗1,ι∗2 (τ
∗
2 )1{τ∗

2 <T } | Fτ∗
1
]1{τ∗

1 <T } | Ft ]
+ E[E[Y ι∗2

τ∗
2

1{τ∗
2 <T } | Fτ∗

1
]1{τ∗

1 <T } | Ft ] a.s. (3.8)

Since 1{τ∗
1 =T }, 1{τ∗

1 <T }, and γi,ι∗1 (τ
∗
1 ) are all Fτ∗

1
-measurable, they can be brought inside the

conditional expectation with respect to Fτ∗
1

in (3.8); thus,

Y i
t = E

[
E

[τ∗
1 −1∑
s=t

�i(s) +
τ∗

2 −1∑
r=τ∗

1

�ι∗1 (r)1{τ∗
1 <T }

∣∣∣∣ Fτ∗
1

] ∣∣∣∣ Ft

]

+ E[E[�i1{τ∗
1 =T } + �ι∗1 1{τ∗

2 =T }1{τ∗
1 <T } | Fτ∗

1
] | Ft ]

− E[E[γi,ι∗1 (τ
∗
1 )1{τ∗

1 <T } + γι∗1,ι∗2 (τ
∗
2 )1{τ∗

2 <T }1{τ∗
1 <T } | Fτ∗

1
] | Ft ]

+ E[E[Y ι∗2
τ∗

2
1{τ∗

2 <T }1{τ∗
1 <T } | Fτ∗

1
] | Ft ] a.s.

Using ι∗0 = i and the definition of the mode indicator u∗ (cf. (2.1)), we have

τ∗
2 −1∑
s=t

�u∗
s
(s) =

τ∗
1 −1∑
r=t

�i(r) +
τ∗

2 −1∑
r=τ∗

1

�ι∗1 (r)1{τ∗
1 <T }.

Since α∗ ∈ At,i , P({τ ∗
n < T } ∩ {τ ∗

n = τ ∗
n+1}) = 0 and the above expression is well defined.

Since τ ∗
1 ≤ τ ∗

2 , it follows that {τ ∗
2 < T } ⊂ {τ ∗

1 < T } and, therefore,

1{τ∗
2 <T }1{τ∗

1 <T } = 1{τ∗
2 <T } a.s.

Note that τ ∗
0 = t < T so P({τ ∗

0 < T }) = 1, and Ft ⊆ Fτ∗
1

since t ≤ τ ∗
1 . These observations

together with the tower property of conditional expectations shows that Y i
t satisfies

Y i
t = E

[
E

[τ∗
2 −1∑
s=t

�u∗
s
(s) +

2∑
n=1

�ι∗n−1
1{τ∗

n =T }1{τ∗
n−1<T }

∣∣∣∣ Fτ∗
1

] ∣∣∣∣ Ft

]

+ E

[
E

[ 2∑
n=1

−γι∗n−1,ι
∗
n
(τ ∗

n )1{τ∗
n <T } + Y

ι∗2
τ∗

2
1{τ∗

2 <T }
∣∣∣∣ Fτ∗

1

] ∣∣∣∣ Ft

]

= E

[τ∗
2 −1∑
s=t

�u∗
s
(s) +

1∑
k=0

�ι∗k 1{τ∗
k <T }1{τ∗

k+1=T } −
2∑

n=1

γι∗n−1,ι
∗
n
(τ ∗

n )1{τ∗
n <T }

∣∣∣∣ Ft

]

+ E[Y ι∗2
τ∗

2
1{τ∗

2 <T } | Ft ] a.s.
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Let N(α∗) be the total number of switches under α∗ (cf. (2.2)). Repeating the procedure of
substituting for Y

ι∗n
τ∗
n

with n = 2, 3, . . . and using α∗ ∈ At,i yields

Y i
t = E

[T −1∑
s=t

�u∗
s
(s) +

N(α∗)∑
k=0

�ι∗k 1{τ∗
k <T }1{τ∗

k+1=T } −
N(α∗)∑
n=1

γι∗n−1,ι
∗
n
(τ ∗

n )

∣∣∣∣ Ft

]
. (3.9)

Under the assumption t < T , the sum of terminal reward terms collapses to a single term

N(α∗)∑
k=0

�ι∗k 1{τ∗
k <T }1{τ∗

k+1=T } = �ι∗
N(α∗)

P-a.s., (3.10)

and using (3.9) and (3.10) we arrive at the following representation for Y i
t :

Y i
t = E

[T −1∑
s=t

�u∗
s
(s) + �ι∗

N(α∗)
−

∑
n≥1

γι∗n−1,ι
∗
n
(τ ∗

n )1{τ∗
n <T }

∣∣∣∣ Ft

]
= J (α∗; t, i) P-a.s. (3.11)

Now let α = (τn, ιn)n≥0 ∈ At,i be any admissible control. The verification theorem can be
completed by showing that J (α∗; t, i) ≥ J (α; t, i) a.s. First, note that

J (α∗; T , i) = J (α; T , i) when t = T ,

so assume, henceforth, that t < T . Then, due to possible suboptimality of the pair (τ1, ι1), it
holds that

Y i
t = ess sup

τ∈Tt

E

[τ−1∑
s=t

�i(s) + Ui
τ

∣∣∣∣ Ft

]

≥ E

[τ1−1∑
s=t

�i(s) + Ui
τ1

∣∣∣∣ Ft

]

≥ E

[τ1−1∑
s=t

�i(s) + �i1{τ1=T } + {Y ι1
τ1

− γi,ι1(τ1)}1{τ1<T }
∣∣∣∣ Ft

]
.

Repeating the arguments leading to (3.11), replacing the equalities (=) with inequalities (≥)
due to possible suboptimality of (τn, ιn) for n ≥ 2, eventually leads to

Y i
t ≥ E

[T −1∑
s=t

�us (s) +
N(α)∑
k=0

�ιk 1{τk<T }1{τk+1=T } −
N(α)+1∑

n=1

γιn−1,ιn (τn)1{τn<T }
∣∣∣∣ Ft

]

+ E[Y ιN(α)+1
τN(α)+1 1{τN(α)+1<T } | Ft ]

= E

[T −1∑
s=t

�us (s) + �ιN(α)
−

∑
n≥1

γιn−1,ιn (τn)1{τn<T }
∣∣∣∣ Ft

]

= J (α; t, i)

and proves that the strategy α∗ is optimal. �
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4. Existence of the optimal processes

4.1. Backward dynamic programming

Lemma 4.1. (Backward induction.) Define the processes Ỹ i = (Ỹ i
t )t∈T, i ∈ I, recursively as

Ỹ i
T = �i , and, for t = T − 1, . . . , 0,

Ỹ i
t = max

j 	=i
{−γi,j (t) + �j(t) + E[Ỹ j

t+1 | Ft ]} ∨ {�i(t) + E[Ỹ i
t+1 | Ft ]}. (4.1)

Then Ỹ i is F-adapted and in S2.

Proof. Both claims can be established by using (4.1) and proceeding recursively for t =
T , T − 1, . . . , 0, noting that the conditional expectations are well defined by the integrability
conditions on the rewards and switching costs. The details are omitted. �

4.1.1. An explicit Snell envelope system. A connection between Ỹ i in Lemma 4.1 and the Snell
envelope becomes apparent upon defining a new process (Ŷ i

t )t∈T for every i ∈ I by

Ŷ i
t := Ỹ i

t +
t−1∑
s=0

�i(s).

Let (Û i
t )t∈T be the explicit gain process defined by

Û i
t := max

j 	=i

{
−γi,j (t) +

t−1∑
s=0

(�i(s) − �j(s)) + E[Ŷ j
t+1 | Ft ]

}
1{t<T }

+
{T −1∑

s=0

�i(s) + �i

}
1{t=T }

=
t−1∑
s=0

�i(s) + max
j 	=i

{
−γi,j (t) −

t−1∑
s=0

�j(s) + E[Ŷ j
t+1 | Ft ]

}
1{t<T } + �i1{t=T }. (4.2)

The processes (Ŷ i
t )t∈T and (Û i

t )t∈T, i ∈ I, belong to S2 by properties of the rewards, switching
costs, and as Ỹ i ∈ S2. Proposition 3.1 and the backward induction formula show that (Ŷ i

t )t∈T

is the Snell envelope of (Û i
t )t∈T.

Theorem 4.1. (Existence.) Let (Ỹ i
t )t∈T, i ∈ I, be the processes defined by (4.1). Then, for

every t ∈ T,

Ỹ i
t = ess sup

τ∈Tt

E

[τ−1∑
s=t

�i(s) + �i1{τ=T } + max
j 	=i

{
Ỹ j

τ − γi,j (τ )
}
1{τ<T }

∣∣∣∣ Ft

]
P-a.s. (4.3)

Therefore, Ỹ 1, . . . , Ỹ m satisfy the verification theorem.

Proof. For notational convenience, introduce a new process (Ŵ i
t )t∈T defined by

Ŵ i
t :=

t−1∑
s=0

�i(s) + �i1{t=T } + max
j 	=i

{
−γi,j (t) −

t−1∑
s=0

�j(s) + Ŷ
j
t

}
1{t<T }. (4.4)
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Note that Ŵ i ∈ S2 by the properties of �i, �i, γi,j , and Ŷ j for i, j ∈ I. Equation (4.3) can be
proved if, for all t ∈ T,

Ŷ i
t = ess sup

τ∈Tt

E[Ŵ i
τ | Ft ] P-a.s. (4.5)

In order to prove (4.5), first note that by Proposition 3.1 the Snell envelope of Ŵ i exists and,
denoting it by Zi = (Zi

t )t∈T, it satisfies

Zi
t = ess sup

τ∈Tt

E[Ŵ i
τ | Ft ]

and the backward induction formulae

Zi
T = Ŵ i

T and Zi
t = Ŵ i

t ∨ E[Zi
t+1 | Ft ], t = T − 1, . . . , 0. (4.6)

Thus, establishing (4.5) is equivalent to showing that Ŷ i is a modification of (and, by
[8, Proposition II.36.5], indistinguishable from) Zi defined in (4.6). This is established below.

Note that Zi
T = Ŵ i

T = Û i
T = Ŷ i

T a.s. for every i ∈ I. Now suppose inductively for t =
T − 1, . . . , 0 that for all i ∈ I, Zi

t+1 = Ŷ i
t+1 P-a.s. Next, for every i ∈ I define a stopping

time θi
t by

θi
t = inf{t ≤ s ≤ T : Ŷ i

s = Û i
s }, (4.7)

noting that t ≤ θi
t ≤ T a.s. The following lines will establish Zi

t = Ŷ i
t on the events {θi

t = t}
and {θi

t > t} ≡ {θi
t ≥ t + 1}. This leads to Zi

t = Ŷ i
t a.s. and the induction argument will

complete the proof that Ŷ i is a modification of Zi .

Case 1: Zi
t = Ŷ i

t on {θi
t = t}. Since Ŷ j is the Snell envelope of Û j , j ∈ I, it is a

supermartingale. Using this with the definitions of Û i (cf. (4.2)) and Ŵ i (cf. (4.4)) leads to
Û i ≤ Ŵ i for i ∈ I. Then, using (4.7), the backward induction formula and the induction
hypothesis, we obtain

Ŵ i
t ≥ Û i

t = Ŷ i
t ≥ E[Ŷ i

t+1 | Ft ] = E[Zi
t+1 | Ft ] on {θi

t = t}. (4.8)

Using (4.6) for Zi and (4.8) above, we also have

Ŵ i
t = Zi

t on {θi
t = t}. (4.9)

Equation (4.9) and the finiteness of I imply the existence of an Fθi
t
-measurable mode j∗ (that

is, j∗ is an Fθi
t
-measurable I-valued random variable) such that

Zi
t =

t−1∑
s=0

�i(s) − γi,j∗(t) −
t−1∑
s=0

�j∗(s) + Ŷ
j∗
t , (4.10)

j∗ = arg max
j 	=i

{
−γi,j (t) −

t−1∑
s=0

�j(s) + Ŷ
j
t

}
on {θi

t = t}. (4.11)

Let us show that
1{θi

t =t}Ŷ
j∗
t = 1{θi

t =t}E[Ŷ j∗
t+1 | Ft ] P-a.s. (4.12)

Since j∗ is Fθi
t
-measurable, we have, for t ≤ r ≤ T ,

E

[∑
j∈I

1{j∗=j}Ŷ j
r

∣∣∣∣ Ft

]
=

∑
j∈I

1{j∗=j}E[Ŷ j
r | Ft ] ≤

∑
j∈I

1{j∗=j}Ŷ j
t on {θi

t = t}
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so that Ŷ j∗ := ∑
j∈I

Ŷ j 1{j∗=j} is a supermartingale on [θi
t , T ]. Now if (4.12) does not hold,

by the supermartingale property of Ŷ j∗ the event Ai
t defined by

Ai
t := {Ŷ j∗

t > E[Ŷ j∗
t+1 | Ft ]} ∩ {θi

t = t}
has positive probability. If P(Ai

t ) > 0 then there exists an Fθi
t
-measurable mode k∗ such that

Ŷ
j∗
t =

t−1∑
s=0

�j∗(s) − γj∗,k∗(t) −
t−1∑
s=0

�k∗(s) + E[Ŷ k∗
t+1 | Ft ] on Ai

t .

This leads to

Zi
t =

t−1∑
s=0

�i(s) − γi,j∗(t) −
t−1∑
s=0

�j∗(s) + Ŷ
j∗
t

=
t−1∑
s=0

�i(s) − γi,j∗(t) −
t−1∑
s=0

�j∗(s) +
t−1∑
s=0

�j∗(s) − γj∗,k∗(t)

−
t−1∑
s=0

�k∗(s) + E[Ŷ k∗
t+1 | Ft ]

<

t−1∑
s=0

�i(s) − γi,k∗(t) −
t−1∑
s=0

�k∗(s) + Ŷ
k∗
t on Ai

t , (4.13)

where the inequality comes from the no-arbitrage condition (Assumption 2.2(ii)) and the
supermartingale property of Ŷ k∗ on [θi

t , T ]. However, (4.13) contradicts the optimality of
j∗ and, therefore, shows that (4.12) holds.

Using (4.10) and (4.11) together with (4.12) and the definition of Ŷ i yields

Zi
t =

t−1∑
s=0

�i(s) − γi,j∗(t) −
t−1∑
s=0

�j∗(s) + E[Ŷ j∗
t+1 | Ft ] ≤ Ŷ i

t on {θi
t = t}.

Using this with (4.8) and (4.9), we obtain

Ŵ i
t = Û i

t = Ŷ i
t = Zi

t on {θi
t = t}. (4.14)

Case 2: Zi
t = Ŷ i

t on {θi
t ≥ t + 1}. Note that {θi

t ≥ t + 1} ≡ {θi
t > t} and is, therefore,

Ft -measurable. Using the properties of the Snell envelopes Ŷ i and Zi together with the
induction hypothesis, we obtain

Ŷ i
t = E[Ŷ i

t+1 | Ft ] = E[Zi
t+1 | Ft ] ≤ Zi

t on {θi
t ≥ t + 1}. (4.15)

Let Bi
t be the Ft -measurable event that Zi is a strict supermartingale at time t on {θi

t ≥ t + 1}:
Bi

t := {E[Zi
t+1 | Ft ] < Zi

t } ∩ {θi
t ≥ t + 1}.

If P(Bi
t ) > 0 then this implies the existence of an Ft -measurable mode j∗ such that

Ŷ i
t < Zi

t =
t−1∑
s=0

�i(s) − γi,j∗(t) −
t−1∑
s=0

�j∗(s) + Ŷ
j∗
t , (4.16)

j∗ = arg max
j 	=i

{
−γi,j (t) −

t−1∑
s=0

�j(s) + Ŷ
j
t

}
on Bi

t . (4.17)
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But by the definition of Ŷ i , it holds that

Ŷ i
t ≥

t−1∑
s=0

�i(s) − γi,j∗(t) −
t−1∑
s=0

�j∗(s) + E[Ŷ j∗
t+1 | Ft ] on Bi

t

and using this in (4.16) and (4.17) shows that E[Ŷ j∗
t+1 | Ft ] < Ŷ

j∗
t on Bi

t . Similar arguments
as those used to establish (4.13) lead to a contradiction on the optimality of j∗, whence we
conclude that P(Bi

t ) = 0. Therefore,

1{θi
t ≥t+1}E[Zi

t+1 | Ft ] = Zi
t 1{θi

t ≥t+1} P-a.s. (4.18)

and combining (4.14), (4.15), and (4.18) gives Ŷ i
t = Zi

t P-a.s. Since the t = T − 1 case
holds and i ∈ I was arbitrary, the proof by induction is complete. Therefore, it holds for all
i ∈ I, and for all t ∈ T : Ŷ i

t = Zi
t P-a.s., which means Ŷ i is a modification of (and, therefore,

indistinguishable from) Zi , whence (4.5) follows. �

5. Numerical example: pricing a cancellable call option

A finite expiry cancellable call option is a financial contract on an underlying asset which
gives its holder the right, but not the obligation, to purchase the asset at a fixed strike price.
On the one hand, the holder is able to exercise this right at any time between the option’s
start and expiration. On the other hand, the writer is allowed to recall the option at any time
before the holder exercises by paying the option’s intrinsic value and a fixed penalty at the
recall (cancellation) time. In this section we use discrete-time optimal switching to obtain a
numerical approximation to the value of a cancellable call option in a continuous-time financial
market model.

5.1. The model for the financial market and option

For 0 < S < ∞, let the interval [0, S] denote the lifetime of the option without exercise
or cancellation. Suppose a complete probability space (�, F , P) has been given on which
is defined a standard Brownian motion (W(r))r∈[0,S]. Let F = (Fr )r∈[0,S] be the completed
natural filtration of the Brownian motion and suppose F = FT .

The asset price is an F-adapted stochastic process X = (X(r))r∈[0,S]. We assume a Black–
Scholes market where X is modelled by a geometric Brownian motion (GBM) and the risk-free
interest rate is a constant ρ > 0. Let κ > 0 be the asset’s constant volatility and suppose
that dividends are paid at a constant rate d > 0. Assuming P to be a risk-neutral probability
measure, the asset price X starting from an initial value x0 > 0 evolves as

X(r) = x0 exp(μ̃r + κW(r)), r ∈ [0, S] P-a.s.

with μ̃ := ρ − d − κ2/2.
Let K > 0 denote the fixed strike price, δ > 0 the cancellation penalty, and τ (respectively σ )

be an [0, S]-valued F-stopping time representing the holder’s exercise (respectively writer’s
cancellation) time. The cost of the option with respect to P from the writer’s perspective is
given by

J(σ, τ ) = E[e−ρσ [(X(σ) − K)+ + δ]1{σ<τ } + e−ρτ (X(τ) − K)+1{τ≤σ }],
where a+ = max{a, 0} for a ∈ R. The writer (respectively holder) chooses σ (respectively τ )
in order to minimise (respectively maximise) the expected payoff, given his/her counterpart’s
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decision. This leads to upper and lower values for the option which are defined respectively by

V+ = inf
σ

sup
τ

J(σ, τ ), V− = sup
τ

inf
σ

J(σ, τ ).

If there is equality between these values, then there exists a fair price for the option which
is given by the common value V = V+ = V−. In this sense, the pricing problem for the
option can be viewed as an optimal stopping (Dynkin) game, which may be solved by an
appropriately formulated continuous-time optimal switching problem [4]. The solution to this
optimal switching problem will be approximated by a suitable discrete-time analogue.

5.2. The discretisation procedure and discrete-time switching problem

Let 0 < T < ∞ be an integer and h = S/T be the step size used to define an increasing
sequence of times {rt }Tt=0 by rt = th. The GBM X sampled at these times forms a sequence
of random variables {Xrt }Tt=0 with respect to (�, F , P). Let T = {0, 1, . . . , T } be the time
parameter set as before, X̂ = (X̂t )t∈T be a discrete-parameter stochastic process defined by
X̂t = Xrt , and F̂ = (F̂t )t∈T be a filtration defined by F̂t = Frt . In this section we work with
the stochastic basis (�, F , F̂, P). All stopping times, adapted processes, and similar concepts
are with respect to this basis unless stated otherwise.

We consider an optimal switching problem with m = 2 modes which are denoted by 0 and 1
in accordance with the literature. Define switching costs γij = (γij (t))t∈T, i, j ∈ {0, 1}, by

γ0,0 ≡ γ1,1 ≡ 0, γ0,1(t) = (X̂t − K)+ + δ, γ1,0(t) = −(X̂t − K)+,

and terminal rewards �0 = 0, �1 = −γ1,0(T ). Note that the switching cost γ1,0 may become
negative. The discounted discrete-time optimal switching problem starting in mode i ∈ {0, 1}
at time 0 takes a similar form as (2.3):

J (α; 0, i) = E

[
e−ρT h�ιN(α)

−
∑
n≥1

e−ρτnhγιn−1,ιn (τn)1{τn<T }
]
, α ∈ A0,i ,

V (i) = sup
α∈A0,i

J (α; 0, i).

Note that P-a.s., γ1,0(T ) ≤ �1 ≤ γ0,1(T ) and γ0,1(t) + γ1,0(t) > 0 for t = 0, . . . , T , relations
which still hold when the terms are multiplied by the discount factor e−ρth. Furthermore, the
switching costs γ0,1 and γ1,0 are S2 processes. If V (i) is a ‘good’ approximation to the value
of its continuous-time analogue, we may argue that using the results of [4] that V (1) − V (0)

is also a ‘good’ approximation to the value V of the cancellable call option. In this case, one
may use Theorems 3.1 and 4.1, taking into account discounting, to show that there exist S2

processes {Y̌ i
t }t∈T, i ∈ {0, 1}, defined by Y̌ i

T = �i , and, for t = T − 1, . . . , 0,

Y̌ i
t = max

j∈{0,1}{−γi,j (t) + E[e−ρhY̌
j
t+1 | F̂t ]} (5.1)

such that Y̌ i
0 = V (i) and Y̌ 1

0 − Y̌ 0
0 ≈ V.

5.3. Numerical results

Least-squares Monte Carlo regression (LSMC) [1] provides a method for approximating the
conditional expectations appearing in (5.1) and consequently obtaining numerical results for
optimal switching problems in a Markovian setting. This procedure will be used to obtain the
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Table 1: Mean and standard deviation of the cancellable call option values.

x0 δ = 1 δ = 5 δ = 10 δ = 15

60 0.057 (0.029) 0.292 (0.036) 0.323 (0.050) 0.323 (0.055)
80 0.268 (0.087) 2.130 (0.065) 3.220 (0.125) 3.260 (0.167)
100 1.000 (0.000) 5.000 (0.000) 10.000 (0.000) 11.300 (0.248)
120 20.400 (0.108) 22.800 (0.256) 24.600 (0.209) 24.700 (0.212)
140 40.300 (0.103) 41.100 (0.259) 41.500 (0.258) 41.500 (0.254)

Figure 1: Mean values of the cancellable call option for different δ and x0.

approximate value for the option. Sample paths for the GBM X at {rt }Tt=0 (and, therefore, X̂),
which are inputs to the algorithm, can be simulated exactly using the following relation:

X̂0 := X(r0) = x0, X̂t+1 := X(rt+1) = X(rt ) exp(μ̃h + κ
√

hξt+1), t = 0, . . . , T − 1,

(5.2)
where {ξt }Tt=1 is a sequence of independent and identically distributed standard normal random
variables.

Model parameters for the finite expiry cancellable call option were obtained from [5, p. 7]
and are as follows: S = 1, K = 100, ρ = 0.1, d = 0.09, and κ = 0.3. We set T = 200
and generated 2500 sample paths for X̂ using (5.2) and the well-known Monte Carlo variance
reduction technique of antithetic variates. The mean and standard deviation of the option
value were recorded after 100 runs of the LSMC algorithm. These results are recorded to
three significant figures in Table 1 above different values of the initial asset price x0 and the
cancellation penalty δ. In Figure 1 we show the mean of the option price for these different
values of δ with x0 ranging from 40 to 180 in increments of 5.

It is beyond the scope of this paper to provide financial insight into these results—such details
may be found in [5] and some of its references. However, the reader is invited to compare our
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Figure 1 with [5, p. 7, Figure 1] to confirm that our results are in good agreement to theirs.
Further examples can be found in [6].

6. Conclusion

In this paper we used a probabilistic approach to solve a finite-horizon discrete-time optimal
switching problem for a model with signed switching costs. The approach, which works without
Markovian assumptions, reduced the switching problem to iterated optimal stopping problems
defined in terms of (coupled) Snell envelopes, just as in the verification theorem of [2] in the
continuous-time case. We were able to define the Snell envelopes by an explicit backward
induction scheme, thereby extending the numerical methods of [1] and [3] to problems with
negative switching costs. Finally, we demonstrated these results numerically by approximating
a game call option’s value.

Appendix A. Supplementary proofs

Lemma A.1. For each i ∈ I, let Ui ∈ S2 and Y i ∈ S2 be defined as in (3.2) and (3.3),
respectively. Let τn ∈ T and ιn : � → I be Fτn -measurable. Then

Y
ιn
t = ess sup

τ∈Tt

E

[τ−1∑
s=t

�ιn(s) + Uιn
τ

∣∣∣∣ Ft

]
on [τn, T ]. (A.1)

Proof. For notational simplicity define (Ǔ i
t )t∈T by Ǔ i

t = ∑t−1
s=0 �i(s) + Ui

t . For any i ∈ I

and any time s ≤ t , �i(s) is Ft -measurable and using this in (3.3), we obtain

Y i
t = ess sup

τ∈Tt

E

[τ−1∑
s=t

�i(s) + Ui
τ

∣∣∣∣ Ft

]

= ess sup
τ∈Tt

E

[τ−1∑
s=0

�i(s) −
t−1∑
s=0

�i(s) + Ui
τ

∣∣∣∣ Ft

]

= −
t−1∑
s=0

�i(s) + ess sup
τ∈Tt

E[Ǔ i
τ | Ft ]. (A.2)

Since Ui, �i ∈ S2, the Snell envelope of the process (
∑t−1

s=0 �i(s) + Ui
t )t∈T exists

(cf. Proposition 3.1), which we denote by Y̌ i . Using (A.2), Y̌ i satisfies

Y̌ i
t = ess sup

τ∈Tt

E[Ǔ i
τ | Ft ] = Y i

t +
t−1∑
s=0

�i(s) (A.3)

and is the smallest supermartingale which dominates Ǔ i . Note that as Y i, �i ∈ S2, the
supermartingale property carries over to stopping times [8, Theorem II.59.1].

Consider the process
∑

i∈I
1{ιn=i}Y̌ i on [τn, T ], recalling that the sum over I is finite.

Let r, t ∈ T be arbitrary times satisfying r ≤ t . Note that the indicator function 1{ιn=i} is
nonnegative, and each 1{ιn=i} is Fτn -measurable and, therefore, Fr -measurable on {τn ≤ r}.
Using these observations together with the supermartingale property yields

E

[∑
i∈I

1{ιn=i}Y̌ i
t

∣∣∣∣ Fr

]
1{τn≤r} =

∑
i∈I

1{ιn=i}E[Y̌ i
t | Fr ]1{τn≤r} ≤

∑
i∈I

1{ιn=i}1{τn≤r}Y̌ i
r a.s.
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This shows that
∑

i∈I
1{ιn=i}Y̌ i is a supermartingale on [τn, T ]. For each i ∈ I, the

dominating property of the Snell envelope and nonnegativity of 1{ιn=i} leads to

1{τn≤t}1{ιn=i}Y̌ i
t ≥ 1{τn≤t}1{ιn=i}Ǔ i

t

and summing over i ∈ I, we then have

Y̌
ιn
t :=

∑
i∈I

1{ιn=i}Y̌ i
t ≥

∑
i∈I

1{ιn=i}Ǔ i
t =: Ǔ

ιn
t on {τn ≤ t}.

The process Y̌ ιn is, therefore, a supermartingale dominating Ǔ ιn on [τn, T ]. Similar argu-
ments as above can be used to show that Y̌ ιn is the smallest supermartingale with this property,
and is, therefore, the Snell envelope of Ǔ ιn . Proposition 3.1 leads to a representation for Y̌ ιn

similar to (A.3), and the Ft -measurability of the summation term leads to (A.1). �

Lemma A.2. Let α∗ = (τ ∗
n , ι∗n)n≥0 be the sequence defined in (3.4). Suppose that Assump-

tion 2.2(i) holds for the switching costs. Then α∗ ∈ At,i .

Proof. The times {τ ∗
n }n≥0 are nondecreasing by definition, τ ∗

0 = t and each τ ∗
n ∈ Tt since Ui

and Y i are adapted for every i ∈ I. By [8, Lemma II.58.3], for any adapted process Z and

stopping time τ , Zτ is Fτ -measurable. The sets A
ι∗n−1
j in (3.4) are, therefore, Fτ∗

n
-measurable

sets, which means the modes {ι∗n}n≥0 are also Fτ∗
n

-measurable. Furthermore, ι∗n 	= ι∗n+1 a.s. for
n ≥ 0.

The last thing to verify is P({τ ∗
n < T }∩{τ ∗

n = τ ∗
n+1}) = 0 for n ≥ 1. Assume contrarily that

for some n ≥ 1, the event {τ ∗
n < T } ∩ {τ ∗

n = τ ∗
n+1} has positive probability (recall τ ∗

n+1 ≥ τ ∗
n ).

Using the definition for τ ∗
n and τ ∗

n+1, we have Y
ι∗n−1
τ∗
n

= U
ι∗n−1
τ∗
n

and Y
ι∗n
τ∗
n+1

= U
ι∗n
τ∗
n+1

P-a.s. By the

definition of ι∗n and ι∗n+1, it also holds that

Y
ι∗n−1
τ∗
n

= −γι∗n−1,ι
∗
n
(τ ∗

n ) + Y
ι∗n
τ∗
n

on {τ ∗
n < T } ∩ {τ ∗

n = τ ∗
n+1}, (A.4)

Y
ι∗n
τ∗
n

= −γι∗n,ι∗n+1
(τ ∗

n ) + Y
ι∗n+1
τ∗
n

on {τ ∗
n < T } ∩ {τ ∗

n = τ ∗
n+1}. (A.5)

Let H be the event defined by

H = {ι∗n−1 = i, ι∗n = j, ι∗n+1 = k} ∩ {τ ∗
n < T } ∩ {τ ∗

n = τ ∗
n+1},

where i, j, k ∈ I are three modes satisfying i 	= j and j 	= k. Substituting for Y
ι∗n
τ∗
n

in (A.4)
and (A.5), and using Assumption 2.2(ii) for the switching costs, we have

Y i
τ∗
n

= −γi,j (τ
∗
n ) − γj,k(τ

∗
n ) + Y k

τ∗
n

< −γi,k(τ
∗
n ) + Y k

τ∗
n

on H.

In the previous arguments we have just shown that

−γi,k(τ
∗
n ) + Y k

τ∗
n

> −γi,j (τ
∗
n ) + Y

j
τ∗
n

= max
l 	=i

{−γi,l(τ
∗
n ) + Y l

τ∗
n
} on H,

which is a contradiction for every k ∈ I. Since i 	= j and j 	= k were arbitrary modes, for
n ≥ 1 it holds that

P({τ ∗
n < T } ∩ {τ ∗

n = τ ∗
n+1}) = 0. �
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