Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-06T16:19:38.108Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 February 2025

Costis Skiadas
Affiliation:
Northwestern University, Illinois
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczél, J. Lectures on Functional Equations and Their Applications. Dover Publications, Mineola, NY, 2006. 195Google Scholar
Anscombe, F. J. and Aumann, R. J. A definition of subjective probability. Annals of Mathematical Statistics, 34:199205, 1963. 198CrossRefGoogle Scholar
Applebaum, D. Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge, UK, 2004. 77CrossRefGoogle Scholar
Arrow, K. J. Le rôle des valeurs boursiéres pour la répartition la meilleure des risques. Econométrie, Colloques Internationaux du Centre National de la Recherche Scientifique, 40:4147, 1953. 15, 112Google Scholar
Arrow, K. J. The role of securities in the optimal allocation of risk bearing. Review of Economic Studies, 31:9196, 1964. 15, 112CrossRefGoogle Scholar
Arrow, K. J. Aspects of the Theory of Risk Bearing. Yrjo Jahnssonin Saatio, Helsinki, 1965. 156Google Scholar
Arrow, K. J. Essays in the Theory of Risk Bearing. North Holland, London, 1971. 60, 156Google Scholar
Back, K. E. Asset Pricing and Portfolio Choice Theory. Oxford University Press, New York, NY, second ed., 2017. xiGoogle Scholar
Beiglböck, M., Schachermayer, W., and Veliyev, B. A short proof of the Doob–Meyer theorem. Stochastic Processes and Their Applications, 122:12041209, 2012. 219CrossRefGoogle Scholar
Bertsekas, D. P. Convex Analysis and Optimization. Athena Scientific, Belmont, MA, 2003. 206Google Scholar
Black, F. and Scholes, M. The pricing of options and corporate liabilities. Journal of Political Economy, 3:637654, 1973. 93CrossRefGoogle Scholar
Bonnans, J. F. and Shapiro, A. Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, NY, 2000. 206CrossRefGoogle Scholar
Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004. 206CrossRefGoogle Scholar
Cinlar, E. Probability and Stochastics. Springer-Verlag, New York, NY, 2010. 77Google Scholar
Cox, J. and Ross, S. The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3:145166, 1976. 60CrossRefGoogle Scholar
Cox, J., Ross, S., and Rubinstein, M. Option pricing: A simplified approach. Journal of Financial Economics, 7:229263, 1979.38CrossRefGoogle Scholar
Dalang, R., Morton, A., and Willinger, W. Equivalent martingale measures and noarbitrage in stochastic securities market models. Stochastics and Stochastic Reports, 29:185201, 1990. 16CrossRefGoogle Scholar
Debreu, G. Theory of Value. Cowles Foundation Monograph, Yale University Press, New Haven, CT, 1959. 15, 112Google Scholar
Debreu, G. Mathematical Economics: Twenty Papers of Gerard Debreu. Cambridge University Press, New York, NY, 1983. 188, 190CrossRefGoogle Scholar
Delbaen, F. and Schachermayer, W. The Mathematics of Arbitrage. Springer-Verlag, New York, NY, 2006. 16Google Scholar
DeMarzo, P. and Skiadas, C. Aggregation, determinacy, and informational efficiency for a class of economies with asymmetric information. Journal of Economic Theory, 80:123152, 1998. 181CrossRefGoogle Scholar
DeMarzo, P. and Skiadas, C. On the uniqueness of fully informative rational expectations equilibria. Economic Theory, 13:124, 1999. 181CrossRefGoogle Scholar
Dreyfus, S. Richard Bellman on the birth of dynamic programming. Operations Research, 50(1), 2002. 24CrossRefGoogle Scholar
Dréze, J. Market allocation under uncertainty. European Economic Review, 15:133165, 1971. 60Google Scholar
Dudley, R. M. Real Analysis and Probability. Cambridge University Press, New York, NY, 2002. 162, 217CrossRefGoogle Scholar
Duffie, D. Dynamic Asset Pricing Theory. Princeton University Press, Princeton, NJ, third ed., 2001. xiGoogle Scholar
Duffie, D. and Epstein, L. G. Stochastic differential utility. Econometrica, 60:353394, 1992a. 157, 158, 163CrossRefGoogle Scholar
Duffie, D. and Epstein, L. G. Asset pricing with stochastic differential utility. Review of Financial Studies, 5:411436, 1992b. 163CrossRefGoogle Scholar
Duffie, D. and Skiadas, C. Continuous-time security pricing: A utility gradient approach. Journal of Mathematical Economics, 23:107131, 1994. 163CrossRefGoogle Scholar
Dunford, N. and Schwartz, J. T. Linear Operators, Part I, General Theory. Wiley, Hoboken, NJ, 1988. 206Google Scholar
Ekeland, I. and Témam, R. Convex Analysis and Variational Problems. SIAM, Philadelphia, PA, 1999. 206CrossRefGoogle Scholar
Epstein, L. and Zin, S. Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica, 57:937969, 1989. 136CrossRefGoogle Scholar
Hansen, L. P. and Jagannathan, R. Implications of security market data for models of dynamic economies. Journal of Political Economy, 99:225262, 1991. 59CrossRefGoogle Scholar
Harrison, M. J. and Kreps, D. M. Martingale and arbitrage in multiperiod securities markets. Journal of Economic Theory, 20:381408, 1979. 60CrossRefGoogle Scholar
Herstein, I. N. and Milnor, J. An axiomatic approach to measurable utility. Econometrica, 21:291297, 1953. 198CrossRefGoogle Scholar
Jacod, J. and Protter, P. Discretization of Processes. Springer-Verlag Berlin, Heidelberg, 2012. 77CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. N. Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin, Heidelberg, second ed., 2003. 30, 77, 79, 80, 81CrossRefGoogle Scholar
Kabanov, Y. M. and Kramkov, D. O. No-arbitrage and equivalent martingale measure: An elementary proof of the Harrison–Pliska theorem. Theory of Probability and its Applications, 39:523527, 1994. 16CrossRefGoogle Scholar
Komlós, J. A generalization of a problem of Steinhaus. Acta Mathematica Hungarica, 18:217229, 1967. 219Google Scholar
Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A. Foundations of Measurement, volume I. Academic Press, Inc., San Diego, CA, 1971. 190Google Scholar
Kreps, D. M. Arbitrage and equilibrium in economies with infinitely many commodities. Journal of Mathematical Economics, 8:1535, 1981. 16CrossRefGoogle Scholar
Kreps, D. M. and Porteus, E. Temporal resolution of uncertainty and dynamic choice theory. Econometrica, 46:185200, 1978. 157, 183CrossRefGoogle Scholar
Lintner, J. The valuation of risk assets and the selection of of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 47:1337, 1965. 114CrossRefGoogle Scholar
Lucas, R. E. B. Asset prices in an exchange economy. Econometrica, 46:14291446, 1978. 145CrossRefGoogle Scholar
Luenberger, D. G. Optimization by Vector Space Methods. Wiley, New York, NY, 1969. 206Google Scholar
Markowitz, H. Portfolio selection. Journal of Finance, 7:7791, 1952. 54Google Scholar
Merton, R. C. Lifetime portfolio selection under uncertainty: The continuous time case. Review of Economics and Statistics, 51:247257, 1969. 167CrossRefGoogle Scholar
Merton, R. C. Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3:373413, 1971. Erratum 6 (1973):213–214. 167CrossRefGoogle Scholar
Merton, R. C. The theory of rational option pricing. Bell Journal of Economics and Management Science, 4:141183, 1973. 95Google Scholar
Meyer, C. D. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA, 2004. 213Google Scholar
Mörters, P. and Peres, Y. Brownian Motion. Cambridge University Press, New York, NY, 2010. 79Google Scholar
Mossin, J. Equilibrium in a capital asset market. Econometrica, 34:768783, 1966. 114CrossRefGoogle Scholar
Pardoux, E. and Peng, S. Adapted solution of a backward stochastic differential equation. Systems and Control Letters, 14:5561, 1990. 157CrossRefGoogle Scholar
Pratt, J. W. Risk aversion in the small and in the large. Econometrica, 32:122136, 1964. 156CrossRefGoogle Scholar
Ramsey, F. P. Truth and probability. In Kyburg, H. E. Jr. and Smokler, H. E., editors, Studies in Subjective Probability (1980). Robert E. Krieger Publishing Company, New York, NY, 1926. 198Google Scholar
Jr. Rendleman, R. J. and Bartter, B. J. Two-state option pricing. The Journal of Finance, 34:10931110, 1979. 38Google Scholar
Reny, P. J. A simple proof of the nonconcavifiability of functions with linear not-allparallel contour sets. Journal of Mathematical Economics, 49:506508, 2013. 119CrossRefGoogle Scholar
Revuz, D. and Yor, M. Continuous Martingales and Brownian Motion. Springer, New York, NY, third ed., 1999. 79CrossRefGoogle Scholar
Rockafellar, R. T. Convex Analysis. Princeton University Press, Princeton, NJ, 1970. 137, 206CrossRefGoogle Scholar
Ross, S. A. A simple approach to the valuation of risky streams. Journal of Business, 51:453475, 1978. 16CrossRefGoogle Scholar
Savage, L. J. The Foundations of Statistics. Dover Publications (1972), New York, NY, 1954. 198Google Scholar
Schachermayer, W. A Hilbert-space proof of the fundamental theorem of asset pricing. Insurance Mathematics and Economics, 11:249257, 1992. 16CrossRefGoogle Scholar
Schroder, M. and Skiadas, C. Optimal consumption and portfolio selection with stochastic differential utility. Journal of Economic Theory, 89:68126, 1999. 157CrossRefGoogle Scholar
Schroder, M. and Skiadas, C. An isomorphism between asset pricing models with and without linear habit formation. Review of Financial Studies, 15:11891221, 2002. 177CrossRefGoogle Scholar
Schroder, M. and Skiadas, C. Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences. Stochastic Processes and Their Applications, 108:155202, 2003. 160CrossRefGoogle Scholar
Schroder, M. and Skiadas, C. Lifetime consumption-portfolio choice under trading constraints and nontradeable income. Stochastic Processes and their Applications, 115:130, 2005. 160CrossRefGoogle Scholar
Sharpe, W. F. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19:425442, 1964. 114Google Scholar
Sharpe, W. F. Investments. Prentice Hall, Englewood Cliffs, NJ, 1978. 38Google Scholar
Skiadas, C. Subjective probability under additive aggregation of conditional preferences. Journal of Economic Theory, 76:242271, 1997. 198CrossRefGoogle Scholar
Skiadas, C. Recursive utility and preferences for information. Economic Theory, 12: 293312, 1998. 157, 184CrossRefGoogle Scholar
Skiadas, C. Robust control and recursive utility. Finance and Stochastics, 7:475489, 2003. 137CrossRefGoogle Scholar
Skiadas, C. Asset Pricing Theory. Princeton University Press, Princeton, NJ, 2009. xi, 52, 148, 198, 203CrossRefGoogle Scholar
Skiadas, C. Scale-invariant asset pricing and consumption/portfolio choice with general attitudes toward risk and uncertainty. Mathematics and Financial Economics, 7:431456, 2013a. 151CrossRefGoogle Scholar
Skiadas, C. Scale-invariant uncertainty-averse preferences and source-dependent constant relative risk aversion. Theoretical Economics, 8:5993, 2013b. 194, 203CrossRefGoogle Scholar
Skiadas, C. Smooth ambiguity aversion toward small risks and continuous-time recursive utility. Journal of Political Economy, 121:775792, 2013c. 156CrossRefGoogle Scholar
Skiadas, C. Dynamic choice with constant source-dependent relative risk aversion. Economic Theory, 3:393422, 2015. 137, 203CrossRefGoogle Scholar
Stoer, J. and Witzgall, C. Convexity and Optimization in Finite Dimensions. Springer-Verlag, New York, Heidelberg, Berlin, 1970. 16CrossRefGoogle Scholar
Strotz, R. H. Myopia and inconsistency in dynamic utility maximization. Review of Economic Studies, 23:165180, 1957. 111CrossRefGoogle Scholar
von Neumann, J. and Morgenstern, O. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1944. 198Google Scholar
Wakker, P. P. Cardinal coordinate independence for expected utility. Journal of Mathematical Psychology, 28:110117, 1984. 198CrossRefGoogle Scholar
Wakker, P. P. The algebraic versus the topological approach to additive representations. Journal of Mathematical Psychology, 32:421435, 1988. 190, 198CrossRefGoogle Scholar
Wakker, P. P. Additive Representations of Preferences. Kluwer, Dordrecht, The Netherlands, 1989. 190, 198CrossRefGoogle Scholar
Walras, L. Eléments d’Economie Pure. Corbaze, Lausanne. English translation: Elements of Pure Economics, R. D. Irwin, Homewood, IL (1954), 1874. 112Google Scholar
Weil, P. The equity premium puzzle and the risk-free rate puzzle. Journal of Monetary Economics, 24:401421, 1989. 136CrossRefGoogle Scholar
Weil, P. Non-expected utility in macroeconomics. The Quarterly Journal of Economics, 105:2942, 1990. 136CrossRefGoogle Scholar
Whitt, W. Proofs of the martingale FCLT. Probability Surveys, 4:268302, 2007. 79CrossRefGoogle Scholar
Xing, H. Consumption investment optimization with Epstein–Zin utility in incomplete markets. Finance and Stochastics, 21:227262, 2017. 157CrossRefGoogle Scholar
Yaari, M. E. A note on separability and quasiconcavity. Econometrica, 45:11831186, 1977. 192, 203CrossRefGoogle Scholar
Yan, J. A. Caracterisation d’une class d’ensembles convexes de l1 ou h1. Lecture Notes in Mathematics, 784:220222, 1980. 16Google Scholar
Zeidler, E. Nonlinear Functional Analysis and its Applications III: Variational Methods and Optimization. Springer-Verlag, New York, NY, 1985. 206Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Costis Skiadas, Northwestern University, Illinois
  • Book: Theoretical Foundations of Asset Pricing
  • Online publication: 06 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781009439077.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Costis Skiadas, Northwestern University, Illinois
  • Book: Theoretical Foundations of Asset Pricing
  • Online publication: 06 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781009439077.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Costis Skiadas, Northwestern University, Illinois
  • Book: Theoretical Foundations of Asset Pricing
  • Online publication: 06 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781009439077.007
Available formats
×