Published online by Cambridge University Press: 05 June 2012
Introduction
In this chapter we consider the motion of nuclei in the classical limit. The laws of classical mechanics apply, and the nuclei move in a conservative potential, determined by the electrons in the Born–Oppenheimer approximation. The electrons are assumed to be in the ground state, and the energy is the ground-state solution of the time-independent Schrödinger equation, with all nuclear positions as parameters. This is similar to the assumptions of Car–Parrinello dynamics (see Section 6.3.1), but the derivation of the potential on the fly by quantum-mechanical methods is far too compute-intensive to be useful in general. In order to be able to treat large systems over reasonable time spans, a simple description of the potential energy surface is required to enable the simulation of motion on that surface. This is the first task: design a suitable force field from which the forces on each atom, as well as the total energy, can be efficiently computed, given the positions of each atom. Section 6.3 describes the principles behind force fields, and emphasizes the difficulties and insufficiencies of simple force field descriptions. But before considering force fields, we must define the system with its boundary conditions (Section 6.2). The way the interactions over the boundary of the simulated systems are treated is in fact part of the total potential energy description.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.