Book contents
- Frontmatter
- Contents
- Preface
- Preface to the First Edition
- 1 Introduction and Background
- 2 Fundamentals of Inviscid, Incompressible Flow
- 3 General Solution of the Incompressible, Potential Flow Equations
- 4 Small-Disturbance Flow over Three-Dimensional Wings: Formulation of the Problem
- 5 Small-Disturbance Flow over Two-Dimensional Airfoils
- 6 Exact Solutions with Complex Variables
- 7 Perturbation Methods
- 8 Three-Dimensional Small-Disturbance Solutions
- 9 Numerical (Panel) Methods
- 10 Singularity Elements and Influence Coefficients
- 11 Two-Dimensional Numerical Solutions
- 12 Three-Dimensional Numerical Solutions
- 13 Unsteady Incompressible Potential Flow
- 14 The Laminar Boundary Layer
- 15 Enhancement of the Potential Flow Model
- A Airfoil Integrals
- B Singularity Distribution Integrals
- C Principal Value of the Lifting Surface Integral IL
- D Sample Computer Programs
- Index
9 - Numerical (Panel) Methods
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Preface to the First Edition
- 1 Introduction and Background
- 2 Fundamentals of Inviscid, Incompressible Flow
- 3 General Solution of the Incompressible, Potential Flow Equations
- 4 Small-Disturbance Flow over Three-Dimensional Wings: Formulation of the Problem
- 5 Small-Disturbance Flow over Two-Dimensional Airfoils
- 6 Exact Solutions with Complex Variables
- 7 Perturbation Methods
- 8 Three-Dimensional Small-Disturbance Solutions
- 9 Numerical (Panel) Methods
- 10 Singularity Elements and Influence Coefficients
- 11 Two-Dimensional Numerical Solutions
- 12 Three-Dimensional Numerical Solutions
- 13 Unsteady Incompressible Potential Flow
- 14 The Laminar Boundary Layer
- 15 Enhancement of the Potential Flow Model
- A Airfoil Integrals
- B Singularity Distribution Integrals
- C Principal Value of the Lifting Surface Integral IL
- D Sample Computer Programs
- Index
Summary
In the previous chapters the solution to the potential flow problem was obtained by analytical techniques. These techniques (except in Chapter 6) were applicable only after some major geometrical simplifications in the boundary conditions were made. In most of these cases the geometry was approximated by flat, zero-thickness surfaces and for additional simplicity the boundary conditions were transferred, too, to these simplified surfaces (e.g., at z = 0).
The application of numerical techniques allows the treatment of more realistic geometries and the fulfillment of the boundary conditions on the actual surface. In this chapter the methodology of some numerical solutions will be examined and applied to various problems. The methods presented here are based on the surface distribution of singularity elements, which is a logical extension of the analytical methods presented in the earlier chapters. Since the solution is now reduced to finding the strength of the singularity elements distributed on the body's surface this approach seems to be more economical, from the computational point of view, than methods that solve for the flowfield in the whole fluid volume (e.g., finite difference methods). Of course this comparison holds for inviscid incompressible flows only, whereas numerical methods such as finite difference methods were basically developed to solve the more complex flowfields where compressibility and viscous effects are not negligible.
Basic Formulation
Consider a body with known boundaries SB, submerged in a potential flow, as shown in Fig. 9.1.
- Type
- Chapter
- Information
- Low-Speed Aerodynamics , pp. 206 - 229Publisher: Cambridge University PressPrint publication year: 2001
- 5
- Cited by