Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-04T07:10:59.170Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 January 2025

Jiří Adámek
Affiliation:
Czech Technical University in Prague
Stefan Milius
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Lawrence S. Moss
Affiliation:
Indiana University, Bloomington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Initial Algebras and Terminal Coalgebras
The Theory of Fixed Points of Functors
, pp. 598 - 616
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, Samson. 2005. A Cook’s tour of the finitary non-well-founded sets. Pages 1–18 of: We Will Show Them: Essays in Honour of Dov Gabbay, vol. 1. College Publications.Google Scholar
Abramsky, Samson, and Jung, Achim. 1994. Domain theory. Pages 1–168 of: Handbook of Logic in Computer Science, vol. III. Clarendon Press.Google Scholar
Aczel, Peter. 1988. Non-Well-Founded Sets. CLSI Lecture Notes, vol. 14. CLSI Publications.Google Scholar
Aczel, Peter, and Mendler, Nax. 1989. A final coalgebra theorem. Pages 357–365 of: Proc. Conference on Category Theory and Computer Science (CTCS). Lecture Notes Comput. Sci., vol. 389. Springer.Google Scholar
Aczel, Peter, Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2003. Infinite trees and completely iterative theories: a coalgebraic view. Theoret. Comput. Sci., 300(1–3), 145. Fundamental Study.CrossRefGoogle Scholar
Adámek, Jirí, Milius, Stefan, and Moss, Lawrence S. 2023. On Kripke, Vietoris and Hausdorff polynomial functors. Pages 21:1–21:20 of: Baldan, Paolo, and de Paiva, Valeria (eds), Proc. 10th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 270. Schloss Dagstuhl. Full version available at https://arxiv.org/abs/2303.11071.Google Scholar
Adámek, Jiří. 1974. Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolin., 15(4), 589602.Google Scholar
Adámek, Jiří. 1977. Colimits of algebras revisited. Bull. Aust. Math. Soc., 17(3), 433450.CrossRefGoogle Scholar
Adámek, Jiří. 1983. Theory of Mathematical Structures. Reidel.Google Scholar
Adámek, Jiří. 1995. Recursive data types in algebraically ω-complete categories. Inform. Comput., 118(2), 181190.CrossRefGoogle Scholar
Adámek, Jiří. 1997. A categorical generalization of Scott domains. Math. Struct. Comput. Sci., 7(5), 419443.CrossRefGoogle Scholar
Adámek, Jiří. 2002. Final coalgebras are ideal completions of initial algebras. J. Logic Comput., 12(2), 217242.CrossRefGoogle Scholar
Adámek, Jiří. 2003. On final coalgebras of continuous functors. Theoret. Comput. Sci., 294(1–2), 329.CrossRefGoogle Scholar
Adámek, Jiří. 2020a. Approximate coalgebra homomorphisms and approximate solutions. Pages 11–31 of: Petrişan, Daniela, and Rot, Jurriaan (eds), Proc. Coalgebraic Methods in Computer Science (CMCS). Lecture Notes Comput. Sci., vol. 12094. Springer.Google Scholar
Adámek, Jiří. 2020b. On free iterative algebras. Pages 7:1–7:21 of: Fernández, Maribel, and Muscholl, Anca (eds), Proc. 28th Conference on Computer Science Logic (CSL). LIPIcs, vol. 152. Schloss Dagstuhl.Google Scholar
Adámek, Jiří, and Koubek, Václav. 1979. On the least fixed point of a set functor. J. Comput. Syst. Sci., 19(2), 163178.CrossRefGoogle Scholar
Adámek, Jiří, and Koubek, Václav. 1995. On the greatest fixed point of a set functor. Theoret. Comput. Sci., 150(1), 5775.CrossRefGoogle Scholar
Adámek, Jiří, and Merzenich, Wolfgang. 1984. Fixed points as equations and solutions. Canad. J. Math., 36(3), 495519.CrossRefGoogle Scholar
Adámek, Jiří, and Milius, Stefan. 2006. Terminal coalgebras and free iterative theories. Inform. Comput., 204(7), 11391172.CrossRefGoogle Scholar
Adámek, Jiří, and Milius, Stefan. 2019. On functors preserving coproducts and algebras with iterativity. Theoret. Comput. Sci., 763, 6687.CrossRefGoogle Scholar
Adámek, Jiří, and Porst, Hans-E. 2004. On tree coalgebras and coalgebra presentations. Theoret. Comput. Sci., 311(1–3), 257283.CrossRefGoogle Scholar
Adámek, Jiří, and Reiterman, Jan. 1994. Banach’s fixed-point theorem as a base for data-type equations. Appl. Categ. Struct., 2, 7790.CrossRefGoogle Scholar
Adámek, Jiří, and Rosický, Jiří. 1994. Locally Presentable and Accessible Categories. Cambridge University Press.CrossRefGoogle Scholar
Adámek, Jiří, and Rosický, Jiří. 2022. Approximate injectivity and smallness in metric-enriched categories. J. Pure Appl. Algebra, 226(6). Article 106974.CrossRefGoogle Scholar
Adámek, Jiří, and Trnková, Věra. 1990. Automata and Algebras in Categories. Mathematics and Its Applications, vol. 37. Kluwer Academic Publishers.Google Scholar
Adámek, Jiří, and Trnková, Věra. 2011. Initial algebras and terminal coalgebras in many-sorted sets. Math. Struct. Comput. Sci., 21(2), 481509.CrossRefGoogle Scholar
Adámek, Jiří, and Trnková, Věra. 2012. Relatively terminal coalgebras. J. Pure Appl. Algebra, 216(8–9), 18871895.CrossRefGoogle Scholar
Adámek, Jiří, Koubek, Václav, and Pohlová, Věra. 1972. The colimits in the generalized algebraic categories. Acta Univ. Carolinæ – Math. et Phys., 13(2), 2940.Google Scholar
Adámek, Jiří, Nelson, Evelyn, and Reiterman, Jan. 1982. Tree constructions of free continuous algebras. J. Comput. System Sci., 24(1), 114146.CrossRefGoogle Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2003. Free iterative theories: a coalgebraic view. Math. Struct. Comput. Sci., 13(2), 259320.CrossRefGoogle Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2004. On coalgebras based on classes. Theoret. Comput. Sci., 316(1–3), 323.CrossRefGoogle Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2006a. Elgot algebras. Log. Methods Comput. Sci., 2(5), 4:14:31.Google Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2006b. Iterative algebras at work. Math. Struct. Comput. Sci., 16(6), 10851131.CrossRefGoogle Scholar
Adámek, Jiří, Lücke, Dominik, and Milius, Stefan. 2007. Recursive coalgebras of finitary functors. Theor. Inform. Appl., 41(4), 447462.CrossRefGoogle Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2007. What are iteration theories? Pages 240–252 of: Kučera, Luděk, and Kučera, Antonín (eds), Proc. 32nd Symposium on Mathematical Foundations of Computer Science (MFCS). Lecture Notes Comput. Sci., vol. 4708. Springer.Google Scholar
Adámek, Jiří, Börger, Reinhard, Milius, Stefan, and Velebil, Jiří. 2008a. Iterative algebras: how iterative are they? Theory Appl. Categ., 19, 6192.Google Scholar
Adámek, Jiří, Bloom, Stephen L., and Milius, Stefan. 2008b. On algebras with iteration. J. Logic. Comput., 18(6), 10471085.CrossRefGoogle Scholar
Adámek, Jiří, Herrlich, Horst, and Strecker, George E. 2009. Abstract and Concrete Categories: The Joy of Cats. 3rd edn. Dover Publications. Reprint published in Reprints in Theory and Applications of Categories, No. 17, 2006, http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf.Google Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2010. Equational properties of iterative monads. Inform. Comput., 208(12), 13061348. http://dx.doi.org/ 10.1016/j.ic.2009.10.006.CrossRefGoogle Scholar
Adámek, Jiří, Peter, Gumm, H., and Trnková, Věra. 2010. Presentation of set functors: a coalgebraic perspective. J. Logic Comput., 20(5), 9911015.CrossRefGoogle Scholar
Adámek, Jiří, Rosický, Jiří, and Vitale, Enrico. 2011. Algebraic Theories. Cambridge University Press.Google Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2011a. Elgot theories: a new perspective of the equational properties of iteration. Math. Struct. Comput. Sci., 21(2), 417480.CrossRefGoogle Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2011b. On second-order iterative monads. Theoret. Comput. Sci., 412(38), 49694988.CrossRefGoogle Scholar
Adámek, Jiří, Milius, Stefan, and Velebil, Jiří. 2011c. Semantics of higher-order recursion schemes. Log. Methods Comput. Sci., 7(1), 15:115:43.Google Scholar
Adámek, Jiří, Bowler, Nathan, Levy, Paul B., and Milius, Stefan. 2012. Coproducts of monads on Set. Pages 4554 of: Proc. 27th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Adámek, Jiří, Haddadi, Mahdieh, and Milius, Stefan. 2014a. Corecursive algebras, corecursive monads and Bloom monads. Log. Methods Comput. Sci., 10(3), 19:119:51.Google Scholar
Adámek, Jiří, Milius, Stefan, Moss, Lawrence S., and Sousa, Lurdes. 2014b. Well-pointed coalgebras. Log. Methods Comput. Sci., 9(2), 2:12:51.Google Scholar
Adámek, Jiří, Levy, Paul B., Milius, Stefan, Moss, Lawrence S., and Sousa, Lurdes. 2015a. On final coalgebras of power-set functors and saturated trees. Appl. Categ. Struct., 23(4), 609641. http://dx.doi.org/10.1007/s10485-014-9372-9.CrossRefGoogle Scholar
Adámek, Jiří, Milius, Stefan, Moss, Lawrence S., and Urbat, Henning. 2015b. On finitary functors and their presentations. J. Comput. System Sci., 81(5), 813833. http://dx.doi.org/10.1016/j.jcss.2014.12.002.CrossRefGoogle Scholar
Adámek, Jiří, Koubek, Václav, and Palm, Thorsten. 2016. Fixed points of set functors: how many iterations are needed? Appl. Categ. Struct., 24(5), 649661.Google Scholar
Adámek, Jiří, Milius, Stefan, Sousa, Lurdes, and Wißmann, Thorsten. 2019a. Finitely presentable algebras for finitary monads. Theory Appl. Categ., 34, 11791195.Google Scholar
Adámek, Jiří, Milius, Stefan, Sousa, Lurdes, and Wißmann, Thorsten. 2019b. On finitary functors. Theory Appl. Categ., 34, 11341164.Google Scholar
Adámek, Jiří, Milius, Stefan, and Moss, Lawrence S. 2020. On well-founded and recursive coalgebras. Pages 17–36 of: König, Barbara, and Goubault-Larrecq, Jean (eds), Proc. 23rd Conference on Foundations of Software Science and Computation Structures (FoSSaCS). Lecture Notes Comput. Sci., vol. 12077. Springer.Google Scholar
Adámek, Jiří, Milius, Stefan, and Moss, Lawrence S. 2021a. Initial algebras without iteration. Pages 5:1–5:20 of: Gaducci, Fabio, and Silva, Alexandra (eds), Proc. 9th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 211. Schloss Dagstuhl.Google Scholar
Adámek, Jiří, Milius, Stefan, and Urbat, Henning. 2021b. On the behaviour of coalgebras with side effects and algebras with effectful iteration. J. Logic Comput., 31(6), 14291481.CrossRefGoogle Scholar
Adámek, Jiří, Hušek, Miroslav, Rosický, Jiří, and Tholen, Walter. 2023. Smallness in topology. Questiones Mathematicae, 46, 1339.CrossRefGoogle Scholar
Alessi, Fabio, Baldan, Paolo, and Bellé, Gianna. 1995. A fixed point theorem in a category of compact metric spaces. Theoret. Comput. Sci., 146(1–2), 311320.CrossRefGoogle Scholar
Allouche, Jean-Paul, and Shallit, Jeffrey. 2003. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press.CrossRefGoogle Scholar
America, Pierre, and Rutten, Jan. 1989. Solving reflexive domain equations in a category of complete metric spaces. J. Comput. System Sci., 39(3), 343375.CrossRefGoogle Scholar
Applegate, Harry. 1965. Acyclic Models and Resolvent Functors. Ph.D. thesis, Columbia University.Google Scholar
Arnold, André, and Nivat, Maurice. 1980. The metric space of infinite trees. Algebraic and topological properties. Fund. Inform., 3(4), 445476.Google Scholar
Baader, Franz, and Tinelli, Cesare. 2002. Deciding the word problem in the union of algebraic theories. Inform. Comput., 178, 346390.CrossRefGoogle Scholar
Balan, Adriana, and Kurz, Alexander. 2011. Finitary functors: from Set to Preord and Poset. Pages 85–99 of: Corradini, Andrea, Klin, Bartek, and Cîrstea, Corina (eds), Proc. 4th Conference on Algebra and Coalgebra in Computer Science (CALCO). Lecture Notes Comput. Sci., vol. 6859. Springer.Google Scholar
Balan, Adriana, Kurz, Alexander, and Velebil, Jiří. 2015. Extension of functors from Set to 𝒱-cat. Pages 16–32 of: Moss, Lawrence, S., and Sobociński, Paweł (eds), Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 35. Schloss Dagstuhl.Google Scholar
Baldan, Paolo, Bonchi, Filippo, Kerstan, Henning, and König, Barbara. 2018. Coalgebraic behavioral metrics. Log. Methods Comput. Sci., 14(3), 20:120:61.Google Scholar
Banach, Stefan. 1922. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math., 3(1), 133181.CrossRefGoogle Scholar
Barlocco, Simone, Kupke, Clemens, and Rot, Jurriaan. 2019. Coalgebra learning via duality. Pages 62–79 of: Bojańczyk, Mikołaj, and Simpson, Alex (eds), Proc. 22nd Conference on Foundations of Software Science and Computation Structures (FoSSaCS). Lecture Notes Comput. Sci., vol. 11425. Springer.Google Scholar
Barnsley, Michael F. 1993. Fractals Everywhere. 2nd edn. Morgan Kaufmann.Google Scholar
Barr, Michael. 1970a. Coequalizers and free triples. Math. Z., 116, 307322.CrossRefGoogle Scholar
Barr, Michael. 1970b. Relational algebras. Pages 39–55 of: Reports of the Midwest Category Seminar IV. Lecture Notes Math., vol. 137. Springer.Google Scholar
Barr, Michael. 1992. Algebraically compact functors. J. Pure Appl. Algebra, 82(3), 211231.CrossRefGoogle Scholar
Barr, Michael. 1993. Terminal coalgebras in well-founded set theory. Theo-ret. Comput. Sci., 114(2), 299315.CrossRefGoogle Scholar
Bartels, Falk. 2004. On Generalized Coinduction and Probabilistic Specification Formats. Ph.D. thesis, Vrije Universiteit Amsterdam.Google Scholar
Barwise, Jon, and Moss, Lawrence S. 1996. Vicious Circles. CSLI Lecture Notes, no. 60. CSLI Publications, Stanford.Google Scholar
Bauer, Andrej, and Lumsdaine, Peter LeFanu. 2013. On the Bourbaki-Witt principle in toposes. Math. Struct. Comput. Sci., 155(1), 8799.Google Scholar
Baumgartner, James E. 1976. Almost-disjoint sets, the dense set problem and the partition calculus. Ann. Math. Logic, 9(4), 401439.CrossRefGoogle Scholar
Bergman, George. 2008. On lattices and their ideal lattices, and posets and their ideal posets. Tbilisi Math. J., 1, 89103.CrossRefGoogle Scholar
Berstel, Jean, and Reutenauer, Christophe. 1988. Rational Series and Their Languages. Springer-Verlag.Google Scholar
Bhattacharya, Prasit, Moss, Lawrence S., Ratnayake, Jayampathy, and Rose, Robert. 2014. Fractal sets as final coalgebras obtained by completing an initial algebra. Pages 146–167 of: Horizons of the Mind. A Tribute to Prakash Panangaden. Lecture Notes Comput. Sci., vol. 8464. Springer.Google Scholar
Bielecki, Michal, Hidders, Jan, Paredaens, Jan, Tyszkiewicz, Jerzy, and den Bussche, Jan Van. 2002. Navigating with a browser. Pages 764–775 of: Widmayer, Peter, Ruiz, Francisco Triguero, Bueno, Rafael Morales, Hennessy, Matthew, Eidenbenz, Stephan, and Conejo, Ricardo (eds), Proc. 29th Symposium on Automata, Languages and Programming (ICALP). Lecture Notes Comput. Sci., vol. 2380. Springer.Google Scholar
Bird, Gregory J. 1984. Limits in 2-Categories of Locally-Presentable Categories. Ph.D. thesis, University of Sydney.Google Scholar
Birkedal, Lars, Støvring, Kristian, and Thamsborg, Jacob. 2010. The category-theoretic solution of recursive metric-space equations. Theoret. Comput. Sci., 411(47), 41024122.CrossRefGoogle Scholar
Bloom, Bard, Istrail, Sorin, and Meyer, Albert R. 1995. Bisimulation can’t be traced. J. ACM, 42(1), 232268.CrossRefGoogle Scholar
Bloom, Stephen L., and Ésik, Zoltán. 1993. Iteration Theories: The Equational Logic of Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer.Google Scholar
Bloom, Stephen L., and Ésik, Zoltán. 1995. Some equational laws of initiality in 2ccc’s. Internat. J. Found. Comput. Sci., 6(2), 95118.CrossRefGoogle Scholar
Bojańczyk, Mikołaj. 2010. Automata for data words and data trees. Pages 1–4 of: Lynch, Christopher (ed), Proc. 21st Conference on Rewriting Techniques and Applications, (RTA). LIPIcs, vol. 6. Schloss Dagstuhl.Google Scholar
Bojanczyk, Mikolaj, Klin, Bartek, and Lasota, Slawomir. 2014. Automata theory in nominal sets. Log. Methods Comput. Sci., 10(3), 4:14:44.Google Scholar
Bollig, Benedikt, Habermehl, Peter, Leucker, Martin, and Monmege, Benjamin. 2014. A robust class of data languages and an application to learning. Log. Methods Comput. Sci., 10(4), 19:119:23.Google Scholar
Bonsangue, Marcello M., Milius, Stefan, and Silva, Alexandra. 2013. Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Logic, 14(1), 7:17:52.CrossRefGoogle Scholar
Borceux, Francis. 1994a. Handbook of Categorical Algebra: Volume 1, Basic Category Theory. Encyclopedia of Mathematics and Its Applications. Cambridge University Press.Google Scholar
Borceux, Francis. 1994b. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Encyclopedia of Mathematics and Its Applications. Cambridge University Press.Google Scholar
Borceux, Francis. 1994c. Handbook of Categorical Algebra: Volume 3, Categories of Sheaves. Encyclopedia of Mathematics and Its Applications. Cambridge University Press.Google Scholar
Bourbaki, Nicolas. 1949. Sur le théoréme de Zorn. Arch. Math., 2(6), 434437.CrossRefGoogle Scholar
Buchholz, Peter. 2008. Bisimulation relations for weighted automata. Theo-ret. Comput. Sci., 393(1–3), 109123.CrossRefGoogle Scholar
Bunge, Marta, and Carboni, Aurelio. 1995. The symmetric topos. J. Pure Appl. Algebra, 105(3), 233249.CrossRefGoogle Scholar
Calude, Cristian, Calude, Elena, and Khoussainov, Bakhadyr. 1997. Deterministic automata simulation, universality and minimality. Ann. Pure Appl. Logic, 90(1–3), 263276.CrossRefGoogle Scholar
Campbell, Colin M., Robertson, Edmund F., Ruškuc, Nik, and Thomas, Richard M. 1996. On subsemigroups of finitely presented semigroups. J. Algebra, 180(1), 121.CrossRefGoogle Scholar
Cancila, Daniela, Honsell, Furio, and Lenisa, Marina. 2006. Some properties and some problems on set functors. Pages 67–84 of: Adámek, Jiří (ed), Proc. Coalgebraic Methods in Computer Science (CMCS). Electron. Notes Theor. Comput. Sci., vol. 164. Elsevier.Google Scholar
Cantor, Georg. 1891. Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1, 7578.Google Scholar
Capretta, Venanzio, Uustalu, Tarmo, and Vene, Varmo. 2006. Recursive coalgebras from comonads. Inform. Comput., 204(4), 437468.CrossRefGoogle Scholar
Capretta, Venanzio, Uustalu, Tarmo, and Vene, Varmo. 2009. Corecursive algebras: a study of general structured corecursion. Pages 84–100 of: Oliveira, Vinícius Medeiros, Marcel, and Woodcock, Jim (eds), Formal Methods: Foundations and Applications. Lecture Notes Comp. Sci., vol. 5902. Springer Berlin Heidelberg.Google Scholar
Carboni, Aurelio, Kelly, Max, and Wood, Richard J. 1991. A 2-categorical approach to change of base and geometric morphisms I. Cah. Topol. Géom. Dif-fér. Catég., 32(1), 4795.Google Scholar
Carboni, Aurelio, Lack, Steve, and Walters, Robert F. C. 1993. Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 84(2), 145158.CrossRefGoogle Scholar
Cîrstea, Corina. 2010. Generic infinite traces and path-based coalgebraic temporal logics. Pages 83–103 of: Jacobs, Bart, Niqui, Milad, Rutten, Jan, and Silva, Alexandra (eds), Proc. Coalgebraic Methods in Computer Science (CMCS). Electron. Notes Theor. Comput. Sci., vol. 264. Elsevier.Google Scholar
Cîrstea, Corina. 2011. Maximal traces and path-based coalgebraic temporal logics. Theoret. Comput. Sci., 412(38), 50255042.CrossRefGoogle Scholar
Cîrstea, Corina. 2017. From branching to linear time, coalgebraically. Fund. Inform., 150(3–4), 379406.Google Scholar
Courcelle, Bruno. 1983. Fundamental properties of infinite trees. Theoret. Comput. Sci., 25(2), 95169.CrossRefGoogle Scholar
Crafa, Silvia, and Ranzato, Francesco. 2011. A spectrum of behavioral relations over LTSs on probability distributions. Pages 124–139 of: Katoen, Joost-Pieter, and König, Barbara (eds), Proc. Conference on Concurrency Theory (CONCUR). Lecture Notes Comput. Sci., vol. 6901. Springer.Google Scholar
Dacar, France. 2009 (January). The join-induction principle for closure operators on dcpos. draft, https://dis.ijs.si/france/notes/join-induction. pdf.Google Scholar
Davies, Roy O., Hayes, Allan, and Rousseau, George. 1971. Complete lattices and the generalized Cantor theorem. Proc. Amer. Math. Soc., 27(2), 253258.CrossRefGoogle Scholar
de Bakker, Jaco W., and Zucker, Jeffery I. 1982. Processes and the denotational semantics of concurrency. Inform. Control, 54(1–2), 70120.CrossRefGoogle Scholar
Desharnais, Josée, Edalat, Abbas, and Panangaden, Prakash. 2002. Bisimulation for labelled Markov processes. Inform. Comput., 179(2), 163193.CrossRefGoogle Scholar
Droste, Manfred, Kuich, Werner, and Vogler, Heiko (eds). 2009. Handbook of Weighted Automata. Monographs in Theoretical Computer Science. Springer.Google Scholar
Eilenberg, S. 1974. Automata, Languages, and Machines, Vol. A. Pure and applied mathematics, vol. 59. Academic Press.Google Scholar
Elgot, Calvin C. 1975. Monadic computation and iterative algebraic theories. Pages 175–230 of: Rose, Harvey, E., and Sheperdson, John C. (eds), Logic Colloquium ’73, vol. 80. North-Holland Publishers.Google Scholar
Elgot, Calvin C., Bloom, Stephen L., and Tindell, Ralph. 1978. On the algebraic structure of rooted trees. J. Comput. System Sci., 16, 362399.CrossRefGoogle Scholar
Eppendahl, Adam. 1999. Coalgebra-to-algebra morphisms. Pages 42–49 of: Proc. Conference on Category Theory and Computer Science (CTCS). Electron. Notes Theor. Comput. Sci., vol. 29. Elsevier.Google Scholar
Escardó, Martín. 2003. Joins in the frame of nuclei. Appl. Categ. Struct., 11, 117124.CrossRefGoogle Scholar
Ésik, Zoltán, and Kuich, Werner. 2001. A generalization of Kozen’s axiomatization of the equational theory of regular sets. Pages 99–114 of: Ito, Masami, Păun, Gheorghe, and Yu, Sheng (eds), Words, Semigroups and Transductions: Festschrift in Honor of Gabriel Thierrin. World Scientific.Google Scholar
Ésik, Zoltán, and Maletti, Andreas. 2010. Simulation vs. equivalence. Pages 119122 of: Proc. 6th Int. Conf. Foundations of Computer Science. CSREA Press.Google Scholar
Ésik, Zoltán, and Maletti, Andreas. 2011. Simulations of weighted tree automata. Pages 321–330 of: Proc. Conference on Implementation and Application of Automata (CIAA). Lecture Notes Comput. Sci., vol. 6482. Springer.Google Scholar
Feys, Frank, Hansen, Helle Hvid, and Moss, Lawrence S. 2018. Long-term values in Markov decision processes, (co)algebraically. Pages 78–99 of: Cîrstea, Corina (ed), Proc. 14th Workshop on Coalgebraic Methods in Computer Science (CMCS). Lecture Notes Comput. Sci., vol. 11202. Springer.Google Scholar
Fine, K. 1975. Normal forms in modal logic. Notre Dame J. Form. Log., 16(2), 229237.CrossRefGoogle Scholar
Fiore, Marcelo, Plotkin, Gordon D., and Turi, Daniele. 1999. Abstract syntax and variable binding. Pages 193–202 of: Proc. 14th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Fliess, Michel. 1974. Sur divers produits de séries formelles. Bull. Soc. Math. Fr., 102, 181191.CrossRefGoogle Scholar
Frank, Florian, Milius, Stefan, and Urbat, Henning. 2022. Coalgebraic semantics of nominal automata. Pages 45–66 of: Hansen, Hvid, Helle, and Zanasi, Fabio (eds), Proc. 16th Workshop on Coalgebraic Methods in Computer Science (CMCS). Lecture Notes Comput. Sci., vol. 13225. Springer. Full version available at https://arxiv.org/abs/2202.06546.Google Scholar
Freyd, Peter. 1968. Rédei’s finiteness theorem for commutative semigroups. Proc. Amer. Math. Soc., 19(4), 1003.Google Scholar
Freyd, Peter. 1991. Algebraically complete categories. Pages 95–104 of: Carboni, Aurelio, Pedicchio, Cristina, Maria, and Rosolini, Guiseppe (eds), Category Theory: Proceedings of the International Conference held in Como. Lecture Notes in Math., vol. 1488. Springer.Google Scholar
Freyd, Peter. 1992. Remarks on algebraically compact categories. Pages 95–106 of: Fourman, Michael, P., Johnstone, Peter T., and Pitts, Andrew M. (eds), Applications of Category Theory in Computer Science: Proceedings of the London Mathematical Society Symposium, Durham 1991. London Mathematical Society Lecture Note Series, vol. 177. Cambridge University Press.Google Scholar
Freyd, Peter. 2008. Algebraic real analysis. Theory Appl. Categ., 20(10), 215306.Google Scholar
Freyd, Peter J. 1964. Abelian Categories: An Introduction to the Theory of Functors. Harper and Row.Google Scholar
Gabbay, Murdoch, and Pitts, Andrew M. 1999. A new approach to abstract syntax involving binders. Pages 214–224 of: Longo, Giuseppe (ed), Proc. 14th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Gabbay, Murdoch J., and Pitts, Andrew M. 2002. A new approach to abstract syntax with variable binding. Form. Asp. Comput., 13, 341363.CrossRefGoogle Scholar
Gabriel, Peter, and Ulmer, Friedrich. 1971. Lokal präsentierbare Kategorien. Lecture Notes Math., vol. 221. Springer.Google Scholar
Ghani, Neil, and Uustalu, Tarmo. 2004. Coproducts of ideal monads. Theor. Inform. Appl., 38(4), 321342.CrossRefGoogle Scholar
Ghani, Neil, Lüth, Christoph, Marchi, De, Federico, and Power, John. 2003. Dualizing initial algebras. Math. Struct. Comput. Sci., 13(2), 349370.CrossRefGoogle Scholar
Ghani, Neil, Hancock, Peter, and Pattinson, Dirk. 2009. Continuous functions on final coalgebras. Pages 3–18 of: Abramsky, Samson, Mislove, Michael, and Palamidessi, Catuscia (eds), Proc. 25th Conference on Mathematical Foundations of Programming Science (MFPS). Electron. Notes Theor. Comput. Sci., vol. 249. Elsevier.Google Scholar
Gierz, Gerhard, Hofmann, Karl Heinrich, Keimel, Klaus, Lawson, Jimmie D., Mislove, Michael W., and Scott, Dana S. 2003. Continuous lattices and domains. Encyclopedia of Mathematics and Its Applications, vol. 93. Cambridge University Press.Google Scholar
Ginali, Susanna. 1979. Regular trees and the free iterative theory. J. Comput. System Sci., 18(3), 228242.CrossRefGoogle Scholar
Giry, Michelle. 1982. A categorical approach to probability theory. Pages 68–85 of: Proc. Categorical Aspects of Topology and Analysis. Lecture Notes Math., vol. 915. Springer.Google Scholar
Gleason, Andrew M., and Dilworth, Robert P. 1962. A generalized Cantor theorem. Proc. Amer. Math. Soc., 13(5), 704705.CrossRefGoogle Scholar
Glimming, Johan, and Ghani, Neil. 2005. Difunctorial semantics of object calculus. Electron. Notes Theor. Comput. Sci., 138(2), 7994.CrossRefGoogle Scholar
Goguen, Joseph A., Thatcher, James W., and Wagner, Eric G. 1973. A Junction Between Computer Science and Category Theory, I: Basic Concepts and Examples (part I). IBM Thomas J. Watson Research Center.Google Scholar
Goncharov, Sergey, Milius, Stefan, and Silva, Alexandra. 2014. Towards a coalgebraic Chomsky hierarchy (extended abstract). Pages 265–280 of: Proc. 8th Conference on Theoretical Computer Science (TCS). Lecture Notes Comput. Sci., vol. 8705. Springer.Google Scholar
Goncharov, Sergey, Milius, Stefan, and Silva, Alexandra. 2020. Towards a uniform theory of effectful state machines. ACM Trans. Comput. Log., 21(3), 23:123:63.CrossRefGoogle Scholar
Goubault-Larrecq, Jean. 2013. Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology. New Mathematical Monographs, vol. 22. Cambridge University Press.Google Scholar
Goubault-Larrecq, Jean. 2021. Bourbaki, Witt, and Dito Pataraia. https://projects.lsv.ens-cachan.fr/topology/?page_id=176.Google Scholar
Grabmayer, Clemens, Endrullis, Jörg, Hendriks, Dimitri, Klop, Jan Willem, and Moss, Lawrence S. 2012. Automatic sequences and zip-specifications. Pages 335344 of: Proc. 25th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Gumm, H. Peter. 2001. Functors for coalgebras. Algebra Universalis, 45(2), 135147.Google Scholar
Gumm, H. Peter. 2005. From T-coalgebras to filter structures and transition systems. Pages 194–212 of: Proc 1st Conference on Algebra and Coalgebra in Computer Science (CALCO). Lecture Notes in Comput. Sci., vol. 3629. Springer.Google Scholar
Gumm, H. Peter. 2020. Free-algebra functors from a coalgebraic perspective. Pages 55–67 of: Petrişan, Daniela, and Rot, Jurriaan (eds), Proc. 15th Workshop on Coalgebraic Methods in Computer Science (CMCS). Lecture Notes Comput. Sci., vol. 12094. Springer.Google Scholar
Peter, Gumm, H., and Schröder, Tobias. 2001. Monoid-labeled transition systems. Electron. Notes Theor. Comput. Sci., 44(1), 185204.Google Scholar
Peter, Gumm, H., and Schröder, Tobias. 2002. Coalgebras of bounded type. Math. Struct. Comput. Sci., 12(5), 565578.Google Scholar
Peter, Gumm, H., and Schröder, Tobias. 2005. Types and coalgebraic structure. Algebra Universalis, 53(2), 229252.Google Scholar
Hardy, Godfrey H., and Wright, Edward M. 1960. An Introduction to the Theory of Numbers. Fourth edn. Oxford University Press.Google Scholar
Hasuo, Ichiro. 2008. Tracing Anonymity with Coalgebras. Ph.D. thesis, Radboud University Nijmegen.Google Scholar
Hasuo, Ichiro, and Jacobs, Bart. 2005. Context-free languages via coalgebraic trace semantics. Pages 213–231 of: Proc. 1st Conference on Algebra and Coalgebra in Computer Science (CALCO). Lecture Notes Comput. Sci., vol. 3629. Springer.Google Scholar
Hasuo, Ichiro, Jacobs, Bart, and Sokolova, Ana. 2007. Generic trace semantics via coinduction. Log. Methods Comput. Sci., 3(4), 11:111:36.Google Scholar
Hausdorff, Felix. 1914. Grundzüge der Mengenlehre. Veit & Comp.Google Scholar
Hausmann, Daniel, Milius, Stefan, and Schröder, Lutz. 2021. A linear-time nominal µ-calculus with name allocation. Pages 58:1–58:18 of: Bonchi, Filippo, and Puglisi, Simon (eds), Proc. 46th Symposium on Mathematical Foundations of Computer Science (MFCS). LIPIcs, vol. 202. Schloss Dagstuhl.Google Scholar
Hennessy, Matthew. 2002. A fully abstract denotational semantics for the pi-calculus. Theoret. Comput. Sci., 278, 5389.CrossRefGoogle Scholar
Hermida, Claudio, and Jacobs, Bart. 1998. Structural induction and coinduction in a fibrational setting. Inform. Comput., 145(2), 107152.CrossRefGoogle Scholar
Hinze, Ralf, Wu, Nicolas, and Gibbons, Jeremy. 2015. Conjugate hylomorphisms - or: the mother of all structured recursion schemes. Pages 527–538 of: Rajamani, Sriram, K., and Walker, David (eds), Proc. 42nd Symposium on Principles of Programming Languages (POPL). ACM SIGPLAN Notices, vol. 50(1). ACM.Google Scholar
Hoffmann, Dirk, and Nora, Pedro. 2020. Hausdorff coalgebras. Appl. Categ. Struct., 28(5), 773806.CrossRefGoogle Scholar
Hofmann, Dirk, Neves, Renato, and Nora, Pedro. 2019. Limits in categories of Vietoris coalgebras. Math. Struct. Comput. Sci., 29(4), 552587.CrossRefGoogle Scholar
Hughes, Jesse, and Jacobs, Bart. 2004. Simulations in coalgebra. Theoret. Comput. Sci., 327(1–2), 71108.CrossRefGoogle Scholar
Hyland, Martin, Plotkin, Gordon D., and Power, John. 2006. Combining effects: sums and tensor. Theoret. Comput. Sci., 357(1–3), 7099.CrossRefGoogle Scholar
Ihringer, Thomas. 2003. Allgemeine Algebra. Mit einem Anhang über Universelle Coalgebra von H. P. Gumm. Berliner Studienreihe zur Mathematik, vol. 10. Heldermann Verlag.Google Scholar
Iwamura, Tsurane. 1944. A lemma on directed sets. Zenkoku Shijo Sugaku Danwakai, 262, 107111. In Japanese.Google Scholar
Jacobs, Bart. 2002. The temporal logic of coalgebras via Galois algebras. Math. Struct. Comput. Sci., 12(6), 875903.CrossRefGoogle Scholar
Jacobs, Bart. 2004. Trace semantics for coalgebras. Pages 167–184 of: Adámek, Jiří, and Milius, Stefan (eds), Proc. Coalgebraic Methods in Computer Science (CMCS). Electron. Notes Theor. Comput. Sci., vol. 106. Elsevier.Google Scholar
Jacobs, Bart. 2010. Convexity, duality and effects. Pages 1–19 of: Calude, Cristian, S., and Sassone, Vladimiro (eds), Proc. 6th Conference on Theoretical Computer Science (TCS). IFIP Adv. Inf. Commun. Technol., vol. 323. Springer.Google Scholar
Jacobs, Bart. 2016. Introduction to Coalgebra. Towards Mathematics of States and Observation. Cambridge University Press.CrossRefGoogle Scholar
Jacobs, Bart, Silva, Alexandra, and Sokolova, Ana. 2015. Trace semantics via determinization. J. Comput. System Sci., 81(5), 859879.CrossRefGoogle Scholar
Jeannin, Jean-Baptiste, Kozen, Dexter, and Silva, Alexandra. 2017. Well-founded coalgebras, revisited. Math. Struct. Comput. Sci., 27(7), 11111131.CrossRefGoogle Scholar
Jech, Thomas. 1978. Set Theory. Academic Press.Google Scholar
Johnstone, Peter T. 1975. Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc., 7(2), 294297.CrossRefGoogle Scholar
Johnstone, Peter T. 1986. Stone Spaces. Cambridge University Press.Google Scholar
Joyal, André. 1981. Une théorie combinatoire des séries formelles. Adv. Math., 42(1), 182.CrossRefGoogle Scholar
Joyal, André. 1986. Foncteurs analytiques et espèces de structures. Lecture Notes in Math., 1234, 126159.CrossRefGoogle Scholar
Kaminski, Michael, and Francez, Nissim. 1994. Finite-memory automata. Theoret. Comput. Sci., 134(2), 329363.CrossRefGoogle Scholar
Kantorovich, Leonid V. 1939. Mathematical methods of organizing and planning production. Management Science, 6(4), 366422.CrossRefGoogle Scholar
Kantorovich, Leonid V. 1942. On the translocation of masses. Dokl. Akad. Nauk SSSR, 37, 227229.Google Scholar
Karazeris, Panagis, Matzaris, Apostolos, and Velebil, Jiří. 2011. Final coalgebras in accessible categories. Math. Structure Comput. Sci, 21(5), 10671108.CrossRefGoogle Scholar
Katsumata, Shin-ya, and Sato, Tetsuya. 2015. Codensity liftings of monads. Pages 156–170 of: Moss, Lawrence, S., and Sobociński, Paweł (eds), Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 35. Schloss Dagstuhl.Google Scholar
Kawahara, Yasuo, and Mori, Masao. 2000. A small final coalgebra theorem. Theoret. Comput. Sci., 233(1–2), 129145.CrossRefGoogle Scholar
Kelly, Max. 1980. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc., 22(2), 183.CrossRefGoogle Scholar
Kelly, Max. 1982. Basic concept of enriched category theory. London Mathematical Society Lecture Notes, vol. 64. Cambridge University Press. Reprint published in Reprints in Theory and Applications of Categories, No. 10, 2005, http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf.Google Scholar
Kerstan, Henning, and König, Barbara. 2013. Coalgebraic trace semantics for continuous probabilistic transitions systems. Log. Methods Comput. Sci., 9(4), 16:116:34.Google Scholar
Khinchin, Aleksandr Ya. 1964. Continued Fractions. University of Chicago Press.Google Scholar
Kőnig, Dénes. 1927. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci. Math., 3(2–3), 121130.Google Scholar
Klin, Bartek. 2011. Bialgebras for structural operational semantics: An introduction. Theoret. Comput. Sci., 412(38), 50435069.CrossRefGoogle Scholar
Klin, Bartek, and Sassone, Vladimiro. 2013. Structural operational semantics for stochastic and weighted transition systems. Inform. Comput., 227, 5883.CrossRefGoogle Scholar
Knaster, Bronislav. 1928. Un théorème sur les fonctions d’ensembles. Ann. Soc. Pol. Math., 6, 133134.Google Scholar
Knijnenburg, Peter W. 1993. Algebraic domains, chain completion, and the Plotkin powerdomain contruction. Technical Report RUU-CS-93-03.Google Scholar
Kock, Anders. 1970. Monads on symmetric monoidal closed categories. Arch. Math. (Basel), 21, 110.CrossRefGoogle Scholar
Kock, Anders. 1972. Strong functors and monoidal monads. Arch. Math. (Basel), 23, 113120.CrossRefGoogle Scholar
Koubek, Václav. 1971. Set functors. Comment. Math. Univ. Carolin., 12(1), 175195.Google Scholar
Koubek, Václav, and Reiterman, Jan. 1975. Automata and categories – input processes. Pages 280–286 of: Bečvář, Jiří (ed), Proc. 4th Symposium on Mathematical Foundations of Computer Science (MFCS). Lecture Notes Comput. Sci., vol. 32. Springer.Google Scholar
Koubek, Václav, and Reiterman, Jan. 1979. Categorical constructions of free algebras, colimits, and completions of partial algebras. J. Pure Appl. Algebra, 14(2), 195231.CrossRefGoogle Scholar
Kozen, Dexter. 2009. Coinductive proof principles for stochastic processes. Log. Methods Comput. Sci., 3(4), 8:18:14.Google Scholar
Kozen, Dexter. 2011. Realization of coinductive types. Pages 237–246 of: Proc. 27th Conference on Mathematical Foundations of Programming Semantics (MFPS). Electron. Notes Theor. Comput. Sci., vol. 276. Elsevier.Google Scholar
Kozen, Dexter, Mamouras, Konstantinos, Petrişan, Daniela, and Silva, Alexandra. 2015. Nominal Kleene coalgebra. Pages 286–298 of: 42nd Colloquium on Automata, Languages, and Programming, (ICALP). Lecture Notes Comput. Sci., vol. 9135. Springer.Google Scholar
Kupke, Clemens, and Rutten, Jan. 2012. On the final coalgebra of automatic sequences. Pages 149–164 of: Logic and Program Semantics – Essays Dedicated to Dexter Kozen on the Occasion of his 60th Birthday. Lecture Notes Comput. Sci., vol. 7230. Springer.Google Scholar
Kupke, Clemens, Kurz, Alexander, and Venema, Yde. 2004. Stone coalgebras. Theoret. Comput. Sci., 327(1–2), 109132.CrossRefGoogle Scholar
Kürtz, Klaas, Küsters, Ralf, and Wilke, Thomas. 2007. Selecting theories and nonce generation for recursive protocols. Pages 61–70 of: Ning, Peng, Atluri, Vijay, Gligor, Virgil, and Mantel, Heiko (eds), Formal Methods in Security Engineering (FMSE). ACM.Google Scholar
Kurz, Alexander. 2000. Logics for Coalgebras and Applications to Computer Science. Ph.D. thesis, Ludwig-Maximilians-Universität München.Google Scholar
Kurz, Alexander, and Velebil, Jiří. 2016. Relation lifting, a survey. J. Log. Algebr. Program., 85(4), 475499.Google Scholar
Kurz, Alexander, Petrişan, Daniela, Severi, Paula, and de Vries, Fer-Jan. 2013. Nominal coalgebraic data types with applications to calculus. Log. Methods Comput. Sci., 9(4), 20:120:51.Google Scholar
Lambek, Joachim. 1968. A fixpoint theorem for complete categories. Math. Z., 103, 151161.CrossRefGoogle Scholar
Larsen, Kim G., and Skou, Arne. 1991. Bisimulation through probabilistic testing. Inform. Comput., 94(1), 128.CrossRefGoogle Scholar
Lehmann, Daniel J., and Smyth, Michael B. 1981. Algebraic specification of data types: A synthetic approach. Mathematical Systems Theory, 14(1), 97139.CrossRefGoogle Scholar
Leinster, Tom. 2011. A general theory of self-similarity. Adv. Math., 226.CrossRefGoogle Scholar
Lévy, Azriel. 1979. Basic Set Theory. Springer.CrossRefGoogle Scholar
Levy, Paul. 2011. Similarity quotients as final coalgebras. Pages 27–41 of: Hofmann, Martin (ed), Proc. 14th Conference on Foundations of Software Science and Computation Structures (FoSSaCS). Lecture Notes Comput. Sci., vol. 6604. Springer.Google Scholar
Loya, Paul. 2017. Amazing and Aesthetic Aspects of Analysis. Springer.CrossRefGoogle Scholar
Lane, Mac, Saunders. 1998. Categories for the Working Mathematician. 2nd edn. Springer.Google Scholar
Makkai, Michael, and Paré, Robert. 1989. Accessible Categories: The Foundation of Categorical Model Theory. Contemporary Math., vol. 104. American Mathematical Society.Google Scholar
Manes, Ernest G. 1976. Algebraic Theories. Graduate Texts in Math., vol. 26. Springer.CrossRefGoogle Scholar
Manes, Ernest G., and Arbib, Michael A. 1986. Algebraic Approaches to Program Semantics. Springer.CrossRefGoogle Scholar
Manna, Zohar, and Pnüeli, Amir. 1992. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag.CrossRefGoogle Scholar
Markowsky, George. 1976. Chain-complete posets and directed sets with applications. Algebra Universalis, 6(1), 5368.CrossRefGoogle Scholar
Marti, Johannes, and Venema, Yde. 2015. Lax extensions of coalgebra functors and their logic. J. Comput. System Sci., 81(5), 880900.CrossRefGoogle Scholar
Martin, Keye. 2013. Nothing can be fixed. Pages 195–196 of: Computation, Logic, Games, and Quantum Foundations. Lecture Notes Comput. Sci., vol. 7860. Springer.Google Scholar
Michael, Ernest. 1951. Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71(1), 152182.CrossRefGoogle Scholar
Milius, Stefan. 2005. Completely iterative algebras and completely iterative monads. Inform. Comput., 196(1), 141.CrossRefGoogle Scholar
Milius, Stefan. 2010. A sound and complete calculus for finite stream circuits. Pages 449–458 of: Proc. 25th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Milius, Stefan. 2018. Proper functors and fixed points for finite behaviour. Log. Methods Comput. Sci., 14(3), 22:122:32.Google Scholar
Milius, Stefan, and Moss, Lawrence S. 2006. The category theoretic solution of recursive program schemes. Theoret. Comput. Sci., 366(1–2), 359. Fundamental Study.CrossRefGoogle Scholar
Milius, Stefan, and Wißmann, Thorsten. 2015. Finitary corecursion for the infinitary lambda calculus. Pages 336–351 of: Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 35. Schloss Dagstuhl.Google Scholar
Milius, Stefan, Palm, Thorsten, and Schwencke, Daniel. 2009. Complete iterativity for algebras with effects. Pages 34–48 of: Kurz, Alexander, Lenisa, Marina, and Tarlecki, Andrzej (eds), Proc. 3rd Conference on Algebra and Coalgebra in Computer Science (CALCO). Lecture Notes Comput. Sci., vol. 5728. Springer. full version avaible at www8.cs.fau.de/ext/milius/publications/files/mps_lambda_revised_full.pdf.Google Scholar
Milius, Stefan, Moss, Lawrence S., and Schwencke, Daniel. 2010. CIA structures and the semantics of recursion. Pages 312–327 of: Ong, Luke, C.-H. (ed), Proc. 13th Conference on Foundations of Software Science and Computation Structures (FoSSaCS). Lecture Notes Comput. Sci., vol. 6014. Springer.Google Scholar
Milius, Stefan, Bonsangue, Marcello M., Myers, Robert S. R., and Rot, Jurriaan. 2013. Rational operation models. Pages 257–282 of: Mislove, Michael (ed), Proc. 29th Conference on Mathematical Foundations of Programming Science (MFPS). Electron. Notes Theor. Comput. Sci., vol. 298. Elsevier.Google Scholar
Milius, Stefan, Schröder, Lutz, and Wißmann, Thorsten. 2016. Regular behaviours with names: On rational fixpoints of endofunctors on nominal sets. Appl. Categ. Struct., 24(5), 663701.CrossRefGoogle Scholar
Milius, Stefan, Pattinson, Dirk, and Wißmann, Thorsten. 2020. A new foundation for finitary corecursion and iterative algebras. Inform. Comput., 271. Article 104456.Google Scholar
Milner, Robin. 1980. A Calculus of Communicating Systems. Lecture Notes Comput. Sci., vol. 92. Springer.Google Scholar
Milner, Robin. 1989. Communication and Concurrency. International Series in Computer Science. Prentice Hall.Google Scholar
Moggi, Eugenio. 1991. Notions of computations and monads. Inform. Comput., 93(1), 5592.CrossRefGoogle Scholar
Moss, Lawrence S. 1999. Coalgebraic logic. Annals of Pure and Applied Logic, 96(1), 277317.CrossRefGoogle Scholar
Moss, Lawrence S., and Noquez, Victoria. 2022. Corecursive algebras in nature. In: Hansen, Helle Hvid, and Zanasi, Fabio (eds), Proc. 16th Workshop on Coalgebraic Methods in Computer Science (CMCS). Lecture Notes Comput. Sci. Springer.Google Scholar
Mulry, Philip S. 1994. Lifting theorems for Kleisli categories. Pages 304–319 of: Brookes, Stephen, Main, Michael, Melton, Austin, Mislove, Michael, and Schmidt, David (eds), Proc. 9th Conference on Mathematical Foundations of Programming Semantics (MFPS). Lecture Notes Comput. Sci., vol. 802. Springer.Google Scholar
Nelson, Evelyn. 1983. Iterative algebras. Theoret. Comput. Sci., 25(1), 6794.CrossRefGoogle Scholar
Neven, Frank, Schwentick, Thomas, and Vianu, Victor. 2004. Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log., 5(3), 403435.CrossRefGoogle Scholar
Niven, Ivan, Zuckerman, Herbert S., and Montgomery, Hugh L. 1991. An Introduction to the Theory of Numbers. Fifth edn. John Wiley & Sons.Google Scholar
Osius, Gerhard. 1974. Categorical set theory: a characterization of the category of sets. J. Pure Appl. Algebra, 4(1), 79119.CrossRefGoogle Scholar
Pataraia, Dito. 1997 (November). A constructive proof of Tarski’s fixed-point theorem for dcpo’s. Lecture presented at the 65th Peripatetic Seminar on Sheaves and Logic (PSSL), Aarhus.Google Scholar
Pavlović, D., and Pratt, V. 2002. The continuum as a final coalgebra. Theoret. Comput. Sci., 280(1–2), 105122.CrossRefGoogle Scholar
Pavlović, Dusko, and Escardó, Martín H. 1998. Calculus in coinductive form. Pages 408417 of: Proc. 13th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Petrişan, Daniela. 2011. Investigations into Algebra and Topology over Nominal Sets. Ph.D. thesis, University of Leicester.Google Scholar
Pitts, Andrew M. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press.Google Scholar
Plotkin, Gordon. 1977. LCF considered as a programming language. Theo-ret. Comput. Sci., 5(3), 223255.CrossRefGoogle Scholar
Plotkin, Gordon D., and Turi, Daniele. 1997. Towards a mathematical operational semantics. Pages 280–291 of: Proc. 12th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Pompeiu, Dimitrie. 1905. Sur la continuité des fonctions de variables complexes. Annales de la Faculté des Sciences de la Université de Toulouse pour les Sciences Mathématiques et les Sciences Physiques, 2ième Série, 7(3), 265315.Google Scholar
Pultr, Aleš, and Trnková, Věra. 1980. Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland.Google Scholar
Pumplün, Dieter. 1984. Regularly ordered Banach spaces and positively convex spaces. Res. Math., 7, 85112.CrossRefGoogle Scholar
Pumplün, Dieter. 2003. Positively convex modules and ordered normed linear spaces. J. Convex Analysis, 10(1), 109127.Google Scholar
Rabin, Michael O. 1963. Probabilistic automata. Inform. Control, 6(3), 230245.CrossRefGoogle Scholar
Rabin, Michael O., and Scott, Dana. 1959. Finite automata and their decision problems. IBM Journal of Research and Development, 3(2), 114125.CrossRefGoogle Scholar
Rédei, Lásló. 1965. The Theory of Finitely Generated Commutative Semigroups. Pergamon.Google Scholar
Ribes, Luis, and Zalesskii, Pavel. 2010. Profinite Groups. 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 40. Springer.CrossRefGoogle Scholar
Robinson, Derek J. S. 1993. A Course in the Theory of Groups. Graduate Texts in Mathematics, vol. 80. Springer.Google Scholar
Rodríguez-Lopez, Jesús, and Romaguera, Salvador. 2002. The relationship between the Vietoris topology and the Hausdorff quasi-uniformity. Topology Appl., 124(3), 451464.CrossRefGoogle Scholar
Rutten, Jan. 1998. Relators and metric bisimulations. Electron. Notes Theor. Comput. Sci., 11, 252258.Google Scholar
Rutten, Jan. 2000. Universal coalgebra: a theory of systems. Theoret. Comput. Sci., 249(1), 380. Fundamental Study.CrossRefGoogle Scholar
Rutten, Jan. 2005. A coinductive calculus of streams. Math. Struct. Comput. Sci., 15(1), 93147.CrossRefGoogle Scholar
Rutten, Jan. 2006. Algebraic specification and coalgebraic synthesis of Mealy automata. Electron. Notes Theor. Comput. Sci., 160, 305319.CrossRefGoogle Scholar
Rutten, Jan. 2008. Rational streams coalgebraically. Log. Methods Comput. Sci., 4(3), 9:19:22.Google Scholar
Rutten, Jan. 2019. The Method of Coalgebra: Exercises in Coinduction. CWI. https://ir.cwi.nl/pub/28550/rutten.pdf.Google Scholar
Rutten, Jan, and de Vink, Erik. 1999. Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoret. Comput. Sci., 221, 271293.Google Scholar
Schröder, Lutz, Kozen, Dexter, Milius, Stefan, and Wißmann, Thorsten. 2017. Nominal automata with name binding. Pages 124–142 of: Esparza, Javier, and Murawski, Andrzej (eds), Proc. 20th Conference on Foundations of Software Science and Computation Structures (FoSSaCS). Lecture Notes Comput. Sci., vol. 10203. Springer.Google Scholar
Schützenberger, Marcel Paul. 1961. On the definition of a family of automata. Inform. Control, 4(2–3), 275270.CrossRefGoogle Scholar
Schwencke, Daniel. 2010. Coequational logic for accessible functors. Inform. Comput., 208(12), 14691489.CrossRefGoogle Scholar
Scott, Dana. 1972. Continuous lattices. Pages 97–136 of: Lawvere, William, F. (ed), Toposes, Algebraic Geometry and Logic. Lecture Notes in Math., vol. 274. Springer. Proceeding of the conference held at Dalhousie University, 1971.Google Scholar
Segoufin, Luc. 2006. Automata and logics for words and trees over an infinite alphabet. Pages 41–57 of: Ésik, Zoltán (ed), Proc. 15th Conference on Computer Science Logic (CSL). Lecture Notes Comput. Sci., vol. 4207. Springer.Google Scholar
Seifan, Fatehmeh, Schröder, Lutz, and Pattinson, Dirk. 2017. Uniform interpolation in coalgebraic modal logic. Pages 21:1–21:30 of: Bonchi, Filippo, and König, Barbara (eds), Proc. 7th Conference on Coalgebraic Methods in Computer Science (CALCO). LIPIcs, vol. 72. Schloss Dagstuhl.Google Scholar
Silva, Alexandra, Bonsangue, Marcello M., and Rutten, Jan. 2010. Non-deterministic Kleene coalgebras. Log. Methods Comput. Sci., 6(3), 23:123:39.Google Scholar
Silva, Alexandra, Bonchi, Filippo, Bonsangue, Marcello M., and Rutten, Jan. 2011. Quantitative Kleene coalgebras. Inform. Comput., 209(5), 822849.CrossRefGoogle Scholar
Silva, Alexandra, Bonchi, Filippo, Bonsangue, Marcello M., and Rutten, Jan. 2013. Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci., 9(1), 9:19:27.Google Scholar
Smyth, M. B., and Plotkin, G. D. 1982. The category-theoretic solution of recursive domain equations. SIAM J. Comput., 11(4), 761783.CrossRefGoogle Scholar
Sokolova, Ana. 2005. Coalgebraic Analysis of Probabilistic Systems. Ph.D. thesis, Eindhoven University of Technology.Google Scholar
Sokolova, Ana, and Woracek, Harald. 2015. Congruences of convex algebras. J. Pure Appl. Algebra, 219(8), 31103148.CrossRefGoogle Scholar
Sokolova, Ana, and Woracek, Harald. 2018. Proper semirings and proper convex functors. Pages 331–347 of: Baier, Christel, and Dal Lago, Ugo (eds), Proc. 21st Conference on Foundations of Software Science and Computation Structures (FoSSaCS). Lecture Notes Comput. Sci., vol. 10803. Springer.Google Scholar
Sprunger, David, and Moss, Lawrence S. 2017. Precongruences and parametrized coinduction for logics for behavioral equivalence. Pages 23:1–23:15 of: Bonchi, Filippo, and König, Barbara (eds), Proc. 7th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 72. Schloss Dagstuhl.Google Scholar
Tarski, Alfred. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math., 5(2), 285309.CrossRefGoogle Scholar
Taylor, Paul. 1994. The limit-colimit coincidence for categories. Ppreprint, http://www.paultaylor.eu/domains/limccc.pdf.Google Scholar
Taylor, Paul. 1995–6. Towards a unified treatment of induction I: the general recursion theorem. Preprint, www.paultaylor.eu/ordinals/#towuti.Google Scholar
Taylor, Paul. 1999. Practical Foundations of Mathematics. Cambridge University Press.Google Scholar
Taylor, Paul. 2021 (April). Well Founded Coalgebras and Recursion. Preprint, https://www.paultaylor.eu/ordinals/welfcr.pdf.Google Scholar
Tiuryn, Jerzy. 1980. Unique fixed points vs. least fixed points. Theoret. Comput. Sci., 12(3), 229254.CrossRefGoogle Scholar
Trnková, V., Adámek, J., Koubek, V., and Reiterman, J. 1975. Free algebras, input processes and free monads. Comment. Math. Univ. Carolin., 16(2), 339351.Google Scholar
Trnková, Věra. 1969. Some properties of set functors. Comment. Math. Univ. Carolin., 10(2), 323352.Google Scholar
Trnková, Věra. 1971. On a descriptive classification of set functors I. Com-ment. Math. Univ. Carolin., 12(1), 143174.Google Scholar
Trnková, Věra. 1980. General theory of relational automata. Fund. Inform., 3(2), 189234.Google Scholar
Turner, David, and Winskel, Glynn. 2009. Nominal domain theory for concurrency. Pages 546–560 of: Grädel, Erich, and Kahle, Reinhard (eds), Proc. 18th Conference on Computer Science Logic (CSL). Lecture Notes Comput. Sci., vol. 5771.Google Scholar
Urabe, Natsuki, and Hasuo, Ichiro. 2015. Coalgebraic infinite traces and Kleisli simulations. Pages 320–335 of: Moss, Lawrence, S., and Sobociński, Paweł (eds), Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 35. Schloss Dagstuhl.Google Scholar
Urabe, Natsuki, Shunsuke, Shimizu, and Hasuo, Ichiro. 2016. Coalgebraic trace semantics for Büchi and parity automata. Pages 24:1–24:15 of: Desharnais, Josée, and Jagadeesan, Radha (eds), Proc. 27th Conference on Concurrency Theory (CONCUR). LIPIcs, vol. 59. Schloss Dagstuhl. Full version available at https://arxiv.org/abs/1606.09399.Google Scholar
Urbat, Henning. 2017. Finite behaviours and finitary corecursion. Pages 24:1–24:15 of: Proc. 7th Conference on Algebra and Coalgebra in Computer Science (CALCO). LIPIcs, vol. 72. Schloss Dagstuhl.Google Scholar
Urbat, Henning, and Schröder, Lutz. 2020. Automata learning: an algebraic approach. Pages 900–914 of: Proc. 35th Symposium on Logic in Computer Science (LICS). IEEE Computer Society.Google Scholar
Urbat, Henning, Hausmann, Daniel, Milius, Stefan, and Schröder, Lutz. 2021. Nominal Büchi automata with name allocation. Pages 4:1–4:16 of: Haddad, Serge, and Varacca, Daniele (eds), Proc. 32nd Conference on Concurrency Theory (CONCUR). LIPIcs, vol. 203. Schloss Dagstuhl.Google Scholar
Uustalu, Tarmo, and Vene, Varmo. 2002. Similarity quotients as final coalgebra. Pages 99–110 of: Hammond, Kevin, and Curtis, Sharon (eds), Proc. Trends in Functional Programming 3. Intellect.Google Scholar
Uustalu, Tarmo, and Vene, Varmo. 2011. The recursion scheme from the cofree recursive comonad. Pages 135–157 of: Capretta, Venancio, and McBride, Conor (eds), Proc. 2nd Workshop on Mathematically Structured Functional Programming (MSFP). Electron. Notes Theor. Comput. Sci., vol. 229(5). Elsevier.Google Scholar
van Breugel, Franck. 2004. De Bakker-Zucker processes revisited. Inform. Comput., 188(1), 6876.CrossRefGoogle Scholar
van Breugel, Franck, and Worrell, James. 2005. A behavioural pseudometric for probabilistic transition systems. Theoret. Comput. Sci., 331(1), 115142.CrossRefGoogle Scholar
van Breugel, Franck, Costantini, Camillo, and Watson, Stephen. 2004. Isometries between a metric space and its hyperspace, function space, and space of measures. Topology Appl., 137(1–3), 5157.CrossRefGoogle Scholar
van Breugel, Franck, Hermida, Claudio, Makkai, Michael, and Worrell, James. 2007. Recursively defined metric spaces without contraction. Theoret. Comput. Sci., 380(1–2), 143163.CrossRefGoogle Scholar
Vaseršte˘ın, Leonid N. 1969. Markov processes over denumerable products of spaces, describing large systems of automata. Problemy Peredači Informacii, 5(3), 6472.Google Scholar
Veldhoven, Joep. 2018. Automata Extended to Nominal Sets. Bachelor thesis, Radboud University Nijmegen.Google Scholar
Velebil, Jiří. 1998. Categorical Domain Theory. Ph.D. thesis, Czech Technical University Prague. http://math.feld.cvut.cz/velebil/research/ papers.html.Google Scholar
Vietoris, Leopold. 1922. Bereiche zweiter Ordnung. Monatsh. Math. Phys., 32(1), 258280.CrossRefGoogle Scholar
Villani, Cédric. 2009. Optimal Transport – Old and New. Grundlehren der mathematischen Wissenschaften. Springer.Google Scholar
Winter, Joost, Bonsangue, Marcello, and Rutten, Jan. 2013. Coalgebraic characterizations of context-free languages. Log. Methods Comput. Sci., 9(3), 14:114:39.Google Scholar
Winter, Joost, Bonsangue, Marcello, and Rutten, Jan. 2015. Context-free coalgebras. J. Comput. System Sci., 81, 911939.CrossRefGoogle Scholar
Wißmann, Thorsten. 2020. Coalgebraic Semantics and Minimization in Sets and Beyond. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).Google Scholar
Wißmann, Thorsten, Milius, Stefan, Dubut, Jérémy, and Katsumata, Shin-ya. 2019. A coalgebraic view on reachability. Comment. Math. Univ. Carolin., 60(4), 605638.Google Scholar
Witt, Ernst. 1951. Beweisstudien zum Satz von M. Zorn. Math. Nachr., 4, 434438.CrossRefGoogle Scholar
Worrell, James. 1999. Terminal sequences for accessible endofunctors. Pages 24–38 of: Proc. Coalgebraic Methods in Computer Science (CMCS). Electron. Notes Theor. Comput. Sci., vol. 19. Elsevier.Google Scholar
Worrell, James. 2000. Coinduction for recursive data types: partial orders, metric spaces and omega-categories. Electron. Notes Theor. Comput. Sci., 33, 337356.CrossRefGoogle Scholar
Worrell, James. 2005. On the final sequence of a finitary set functor. Theo-ret. Comput. Sci., 338(1–3), 184199.CrossRefGoogle Scholar
Zermelo, Ernst. 1904. Beweis, daß jede Menge wohlgeordnet werden kann. Math. Ann., 59(4), 514516.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jiří Adámek, Czech Technical University in Prague, Stefan Milius, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, Lawrence S. Moss, Indiana University, Bloomington
  • Book: Initial Algebras and Terminal Coalgebras
  • Online publication: 30 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781108884112.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jiří Adámek, Czech Technical University in Prague, Stefan Milius, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, Lawrence S. Moss, Indiana University, Bloomington
  • Book: Initial Algebras and Terminal Coalgebras
  • Online publication: 30 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781108884112.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jiří Adámek, Czech Technical University in Prague, Stefan Milius, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, Lawrence S. Moss, Indiana University, Bloomington
  • Book: Initial Algebras and Terminal Coalgebras
  • Online publication: 30 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781108884112.020
Available formats
×