Book contents
- Frontmatter
- Contents
- Introduction
- 1 Complete Metric Spaces
- 2 Banach’s Principle
- 3 Picard’s Theorem
- 4 Banach Spaces
- 5 Renewal Equation in the McKendrick–von Foerster Model
- 6 Riemann Integral for Vector-Valued Functions
- 7 The Stone–Weierstrass Theorem
- 8 Norms Do Differ
- 9 Hilbert Spaces
- 10 Complete Orthonormal Sequences
- 11 Heat Equation
- 12 Completeness of the Space of Operators
- 13 Working in ℒ(𝕏)
- 14 The Banach–Steinhaus Theorem and Strong Convergence
- 15 We Go Deeper, DeeperWe Go (into the Structure of Complete Spaces)
- 16 Semigroups of Operators
- Appendix Two Consequences of the Hahn–Banach Theorem
- References
- Index
10 - Complete Orthonormal Sequences
Published online by Cambridge University Press: 31 October 2024
- Frontmatter
- Contents
- Introduction
- 1 Complete Metric Spaces
- 2 Banach’s Principle
- 3 Picard’s Theorem
- 4 Banach Spaces
- 5 Renewal Equation in the McKendrick–von Foerster Model
- 6 Riemann Integral for Vector-Valued Functions
- 7 The Stone–Weierstrass Theorem
- 8 Norms Do Differ
- 9 Hilbert Spaces
- 10 Complete Orthonormal Sequences
- 11 Heat Equation
- 12 Completeness of the Space of Operators
- 13 Working in ℒ(𝕏)
- 14 The Banach–Steinhaus Theorem and Strong Convergence
- 15 We Go Deeper, DeeperWe Go (into the Structure of Complete Spaces)
- 16 Semigroups of Operators
- Appendix Two Consequences of the Hahn–Banach Theorem
- References
- Index
Summary
A sequence of norm-one elements of a Hilbert space that are mutually orthogonal is said to form an orthonormal sequence. If, additionally, such a sequence spans the entire space, it is said to be complete. As it turns out, if in a Hilbert space there is a complete orthonormal sequence, this space is indistinguishable from the space of square summable sequences. In particular, perhaps contrary to our misleading intuition saying that there are many more square integrable functions than there are square summable sequences, the space of the former is as large as (in fact much the same as) the space of the latter. We will see one important consequence of this stunning result in the next chapter.
Keywords
- Type
- Chapter
- Information
- Functional Analysis RevisitedAn Essay on Completeness, pp. 103 - 112Publisher: Cambridge University PressPrint publication year: 2024