Published online by Cambridge University Press: 05 June 2012
The previous chapter focused on describing and understanding the variability of angular momentum. We now apply those concepts to relate the motion of a system to the forces driving that motion. The formulation is based on the linear and angular momentum principles of Newton and Euler. These principles govern the motion of a single rigid body, but practical applications feature many bodies. In such situations, individual equations of motion may be written for each body. If one pursues such an analysis, careful attention must be given to accounting for the forces exerted between bodies, so the construction of free-body diagrams will play a prominent role in this chapter's development. As a supplement to this approach, a following section develops a momentum-based concept for systems of rigid bodies that sometimes can lead to the desired solution without considering all of the interaction forces. Ultimately, the energy-based concepts associated with Lagrange, whose development is taken up in the next chapter, provide a more robust alternative approach. However, they are mathematical in nature and afford little physical insight. For this reason, particular attention is given here to providing physical explanations for the results derived from the Newton–Euler formulation of equations of motion.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.