Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-05T18:02:47.309Z Has data issue: false hasContentIssue false

9 - Transition to Turbulence

from Part II - Challenges

Published online by Cambridge University Press:  31 January 2025

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Filipe S. Pereira
Affiliation:
Los Alamos National Laboratory
Massimo Germano
Affiliation:
Duke University, North Carolina
Get access

Summary

Most turbulence theory is derived in a theorized asymptotic state. But real engineering problems almost never reach such a state; in the real world, the route to turbulence leaves its fingerprints on the observed flow. Any coarse-grained simulation must handle this, either by resolving the transition process or modeling some or all of it. Either approach faces significant challenges. If the transition is to be resolved, then a suitable mechanism for turning on and off any turbulence model in the appropriate places is needed. If it is to be modeled, then the model must be capable of handling subfilter fluctuations that may have very different properties than those of fully developed turbulence. All of these approaches have been tried in the literature, and a complete solution is still an active research problem. This chapter reviews the approaches that have been used for coarse-grained simulation of transition.

Type
Chapter
Information
Coarse Graining Turbulence
Modeling and Data-Driven Approaches and their Applications
, pp. 263 - 305
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Ghannam, B. J., and Shaw, R. 1980. Natural Transition of Boundary Layers – The Effects of Turbulence, Pressure Gradient, and Flow History. Journal of Mechanical Engineering Science, 22(5), 213–228.CrossRefGoogle Scholar
Alam, M., Walters, K., and Thompson, D. 2013 (7–10 January). A Transition-Sensitive Hybrid RANS/LES Modeling Methodology for CFD Applications. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.CrossRefGoogle Scholar
Bader, S. H., Yin, Z., and Durbin, P. A. 2022. A Hybrid Model for Turbulence and Transition, with a Locally Varying Coefficient. Flow, Turbulence and Combustion, 108(4), 935–954.CrossRefGoogle Scholar
Banari, A., Gehrke, M., Janßen, C. F., and Rung, T. 2020. Numerical Simulation of Nonlinear Interactions in a Naturally Transitional Flat Plate Boundary Layer. Computers & Fluids, 203, 104502.CrossRefGoogle Scholar
Bertolotti, F. P., Herbert, ThSpalart, , P. R. 1992. Linear and Nonlinear Stability of the Blasius Boundary Layer. Journal of Fluid Mechanics, 242, 441–474.CrossRefGoogle Scholar
Besnard, D., Harlow, Francis H., Rauenzahn, R. M., and Zemach, C. 1992. Turbulence Transport Equations for Variable-Density Turbulence and Their Relationship to Two-Field Models. Tech. rept. LA-12303-MS. Los Alamos National Laboratory.CrossRefGoogle Scholar
Bhushan, S., and Walters, D. K. 2012. A dynamic hybrid Reynolds-averaged Navier Stokes–Large eddy simulation modeling framework. Physics of Fluids, 24(1), 015103.CrossRefGoogle Scholar
Bodart, J., and Larsson, J. 2012. Sensor-Based Computation of Transitional Flows Using Wall-Modeled Large Eddy Simulation. Annual Research Briefs. Center for Turbulence Research.Google Scholar
Brachet, M. E., Meiron, D. I., Orszag, S. A., and Nickel, B. G. 1983. Small-Scale Structure of the Taylor–Green Vortex. Journal of Fluid Mechanics, 130(May), 411–452.CrossRefGoogle Scholar
Celik, I., Klein, M., Freitag, M., and Janicka, J. 2006. Assessment Measures for URANS/DES/LES: An Overview with Applications. Journal of Turbulence, 7(48).CrossRefGoogle Scholar
Chandrasekhar, S. 1981. Hydrodynamic and Hydromagnetic Stability. Dover Publications.Google Scholar
Cho, J. R., and Chung, M. K. 1992. A Kεγ Equation Turbulence Model. Journal of Fluid Mechanics, 237, 301–322.CrossRefGoogle Scholar
Coder, J. G. 2017. Enhancement of the Amplification Factor Transport Transition Modeling Framework. In: 55th AIAA Aerospace Sciences Meeting.CrossRefGoogle Scholar
Coder, J. G., and Maughmer, M. D. 2014. Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation. AIAA Journal, 52(11), 2506–2512.CrossRefGoogle Scholar
Criminale, W. O., Jackson, T. L., and Joslin, R. D. 2003. Theory and Computation in Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Denison, M. 2022. 1st AIAA CFD Transition Modeling and Prediction Workshop: OVERFLOW Results for the SST and Langtry-Menter Models. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Dhawan, S., and Narasimha, R. 1958. Some Properties of Boundary Layer Flow during the Transition from Laminar to Turbulent Motion. Journal of Fluid Mechanics, 3(4), 418–436.CrossRefGoogle Scholar
Dopazo, C. 1977. On Conditioned Averages for Intermittent Turbulent Flows. Journal of Fluid Mechanics, 81(3), 433–438.CrossRefGoogle Scholar
Drazin, P. G., and Reid, W. H. 2004. Hydrodynamic Stability. 2nd ed. Cambridge University Press.CrossRefGoogle Scholar
Drela, M., and Giles, M. B. 1987. Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils. AIAA Journal, 25(10), 1347–1355.CrossRefGoogle Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Youngs, D. 2007. Simulation of Transition and Turbulence Decay in the Taylor–Green Vortex. Journal of Turbulence, 8, N20.CrossRefGoogle Scholar
Ducros, F., Comte, P., and Lesieur, M. 1995. Direct and Large-Eddy Simulations of Transition of a Supersonic Boundary Layer. Pages 283–300 in Turbulent Shear Flows 9, Durst, F., Kasagi, N., Launder, B. E., Schmidt, F. W., Suzuki, K., and Whitelaw, J. H. (eds). Springer.Google Scholar
Ducros, F., Comte, P., and Lesieur, M. 1996. Large-Eddy Simulation of Transition to Turbulence in a Boundary Layer Developing Spatially over a Flat Plate. Journal of Fluid Mechanics, 326, 1–36.Google Scholar
Durbin, P. 2012. An intermittency model for bypass transition. International Journal of Heat and Fluid Flow, 36, 1–6.CrossRefGoogle Scholar
Eca, L., Lopes, R., Kerkvliet, M., and Toxopeus, S. L. 2022. On the Simulation of Low Reynolds Number Flows Using the RANS Equations with Eddy-Viscosity and Transition Models. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Fasel, H. 1976. Investigation of the Stability of Boundary Layers by a Finite-Difference Model of the Navier–Stokes Equations. Journal of Fluid Mechanics, 78(2), 355–383.CrossRefGoogle Scholar
Fasel, H. F., von Terzi, D. A., and Sandberg, R. D. 2006. A Methodology for Simulating Compressible Turbulent Flows. Journal of Applied Mechanics, 73(May), 405–412.CrossRefGoogle Scholar
François, D. G., Krumbein, A., Krimmelbein, N., and Grabe, C. 2022. Simplified Stability-Based Transition Transport Modeling for Unstructured Computational Fluid Dynamics. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Gaster, M. 1966. The Structure and Behaviour of Laminar Separation Bubbles. Pages 813–854 in AGARD CP4 Part 2.Google Scholar
Ge, X., Arolla, S., and Durbin, P. 2014. A Bypass Transition Model Based on the Intermittency Function. Flow, Turbulence and Combustion, 93(1), 37–61.CrossRefGoogle Scholar
Germano, M. 1992. Turbulence: the filtering approach. Journal of Fluid Mechanics, 238, 325–336.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids, 3(7), 1760–1765.Google Scholar
Girimaji, S. S. 2006. Partially-Averaged Navier–Stokes Model for Turbulence: A Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 73(May), 413–421.Google Scholar
Girimaji, S. S., Jeong, E., and Srinivasan, R. 2006. Partially Averaged Navier–Stokes Method for Turbulence: Fixed Point Analysis and Comparison with Unsteady Partially Averaged Navier–Stokes. Journal of Applied Mechanics, 73(May), 422–429.Google Scholar
Grinstein, F. F., Saenz, J. A., Rauenzahn, R. M., Germano, M., and Israel, D. M. 2020. Dynamic Bridging Modeling for Coarse Grained Simulations of Shock Driven Turbulent Mixing. Computers & Fluids, 199, 104430.CrossRefGoogle Scholar
Haas, A. P., and Israel, D. M. 2023. Using Linear-Stability Theory to Build Transition Models. In: AIAA AVIATION 2023 Forum.CrossRefGoogle Scholar
Herbert, T. 1988. Secondary Instability of Boundary Layers. Annual Review of Fluid Mechanics, 20(1), 487–526.CrossRefGoogle Scholar
Herbert, T. 1983. On Perturbation Methods in Nonlinear Stability Theory. Journal of Fluid Mechanics, 126, 167–186.CrossRefGoogle Scholar
Hodara, J., and Smith, M. J. 2017. Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation Closure for Separated Transitional Flows. AIAA Journal, 55(6), 1948–1958.CrossRefGoogle Scholar
Huai, X., Joslin, R. D., and Piomelli, U. 1997. Large-Eddy Simulation of Transition to Turbulence in Boundary Layers. Theoretical and Computational Fluid Dynamics, 9(2), 149–163.CrossRefGoogle Scholar
Inagaki, M., Kondoh, T., and Nagano, Y. 2005. A Mixed-Time-Scale SGS Model with Fixed Model-Parameters for Practical LES. Journal of Fluids Engineering, 127(1), 1–13.CrossRefGoogle Scholar
Israel, D. M., Flippo, K. A., and Doss, F. 2022. Transition Modeling at Los Alamos National Laboratory. In: AIAA AVIATION 2022 Forum.CrossRefGoogle Scholar
Kachanov, Y. S., and Levchenko, V. Y. 1984. The Resonant Interaction of Disturbances at Laminar-Turbulent Transition in a Boundary Layer. Journal of Fluid Mechanics, 138, 209–247.CrossRefGoogle Scholar
Kawai, S., and Asada, K. 2013. Wall-Modeled Large-Eddy Simulation of High Reynolds Number Flow around an Airfoil near Stall Condition. Computers & Fluids, 85, 105–113. International Workshop on Future of CFD and Aerospace Sciences.CrossRefGoogle Scholar
Kawai, S., and Larsson, J. 2012. Wall-Modeling in Large Eddy Simulation: Length Scales, Grid Resolution, and Accuracy. Physics of Fluids, 24(1), 015105.CrossRefGoogle Scholar
Kim, W.-W., and Menon, S. 1999. An Unsteady Incompressible Navier–Stokes Solver for Large Eddy Simulation of Turbulent Flows. International Journal for Numerical Methods in Fluids, 31(6), 983–1017.3.0.CO;2-Q>CrossRefGoogle Scholar
Kraichnan, R. M. 1976. Eddy Viscosity in Two and Three Dimensions. Journal of the Atmospheric Sciences, 33, 1521–1536.2.0.CO;2>CrossRefGoogle Scholar
Krumbein, A., François, D. G., and Krimmelbein, N. 2022. Transport-Based Transition Prediction for the Common Research Model Natural Laminar Flow Configuration. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Langtry, R. B., and Menter, F. R. 2009. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 47(12), 2894–2906.CrossRefGoogle Scholar
Lardeau, S., Leschziner, M., and Zaki, T. 2012. Large Eddy Simulation of Transitional Separated Flow over a Flat Plate and a Compressor Blade. Flow, Turbulence and Combustion, 88(1), 19–44.CrossRefGoogle Scholar
Lee, B., Jung, Y. S., and Baeder, J. D. 2022. Validation of SA − γ − Reθt and SA –γ Turbulence/Transition Model. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Lesieur, M. 1990. Turbulence in Fluids: Stochastic and Numerical Modeling. 2nd ed. Kluwer Academic Publishers.CrossRefGoogle Scholar
Libby, P. A. 1975. On the Prediction of Intermittent Turbulent Flows. Journal of Fluid Mechanics, 68(2), 273–295.CrossRefGoogle Scholar
Lodato, G., Tonicello, N., and Pinto, B. 2021. Large-Eddy Simulation of Bypass Transition on a Zero-Pressure-Gradient Flat Plate Using the Spectral-Element Dynamic Model. Flow, Turbulence and Combustion, 107(4), 845–874.CrossRefGoogle Scholar
Lodefier, K., Merci, B., De Langhe, C., and Dick, E. 2004. Transition Modelling with the k–Ω Turbulence Model and an Intermittency Transport Equation. Journal of Thermal Science, 13(3), 220–225.CrossRefGoogle Scholar
Lopes, R., Eca, L., Kerkvliet, M., and Toxopeus, S. L. 2022. Predicting Transition for the 6:1 Prolate Spheroid Using the RANS Equations. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Lozano-Durán, A., Hack, M. J. P., and Moin, P. 2018. Modeling Boundary-Layer Transition in Direct and Large-Eddy Simulations Using Parabolized Stability Equations. Physical Review Fluids, 16(3), 023901.Google Scholar
Mayle, R. E., and Schulz, A. 1997. Heat Transfer Committee and Turbomachinery Committee Best Paper of 1996 Award: The Path to Predicting Bypass Transition. Journal of Turbomachinery, 119(3), 405–411.CrossRefGoogle Scholar
Mayle, R. E. 1991. The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines. Journal of Turbomachinery, 113(4), 509–536.CrossRefGoogle Scholar
Medida, S., and Baeder, J. 2011. Application of the Correlation-Based Gamma-Re Theta t Transition Model to the Spalart-Allmaras Turbulence Model. In: 20th AIAA Computational Fluid Dynamics Conference.CrossRefGoogle Scholar
Menter, F. R. 1994. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32(8), 1598–1605.CrossRefGoogle Scholar
Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Völker, S. 2006. A Correlation-Based Transition Model Using Local Variables – Part I: Model Formulation. Journal of Turbomachinery, 128(3), 413–422.CrossRefGoogle Scholar
Menter, F. R., Smirnov, P. E., Liu, T., and Avancha, R. 2015. A One-Equation Local Correlation-Based Transition Model. Flow, Turbulence and Combustion, 95(4), 583–619.CrossRefGoogle Scholar
Menter, F. R., Esch, T., and Kubacki, S. 2002. Transition Modelling Based on Local Variables. Pages 555–564 in Engineering Turbulence Modelling and Experiments 5, Rodi, W., and Fueyo, N. (eds). Elsevier.Google Scholar
Métais, O., and Lesieur, M. 1992. Spectral Large-Eddy Simulation of Isotropic and Stably Stratified Turbulence. Journal of Fluid Mechanics, 239, 157–194.CrossRefGoogle Scholar
Monokrousos, A., Brandt, L., Schlatter, P., and Henningson, D. S. 2008. DNS and LES of Estimation and Control of Transition in Boundary Layers Subject to Free-Stream Turbulence. International Journal of Heat and Fluid Flow, 29(3), 841–855.CrossRefGoogle Scholar
Narasimhan, G., Meneveau, C., and Zaki, T. A. 2021. Large Eddy Simulation of Transitional Channel Flow Using a Machine Learning Classifier to Distinguish Laminar and Turbulent Regions. Physical Review Fluids, 6(Jul), 074608.CrossRefGoogle Scholar
Nicoud, F., and Ducros, F. 1999. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turb. Comb., 62(3), 183–200.CrossRefGoogle Scholar
Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., and Lee, J. 2011. Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations. Physics of Fluids, 23(8), 085106.CrossRefGoogle Scholar
Normand, X., and Lesieur, M. 1992. Direct and Large-Eddy Simulations of Transition in the Compressible Boundary Layer. Theoretical and Computational Fluid Dynamics, 3(4), 231–252.CrossRefGoogle Scholar
Orr, W. M’F. 1907. The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part II: A Viscous Liquid. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 27, 69–138.Google Scholar
Park, G. I., and Moin, P. 2014. An Improved Dynamic Non-equilibrium Wall-Model for Large Eddy Simulation. Physics of Fluids, 26(1), 015108.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021. Modeling and Simulation of Transitional Rayleigh–Taylor Flow with Partially Averaged Navier–Stokes Equations. Physics of Fluids, 33(11), 115118.CrossRefGoogle Scholar
Pereira, F. M. S., Grinstein, F. F., and Israel, D. M. 2019. Effects of Operator Splitting and Low Mach Number Correction in Simulations of Shock-Driven Turbulent Mixing. Pages AJKFLUIDS2019–5105 in Proceedings of the ASME–JSME–KSME 2019 Joint Fluids Engineering Conference AJKFLUIDS2019 July 28 to August 1, 2019, San Francisco, CA, USA.Google Scholar
Piomelli, U., and Zang, T. A. 1991. Large-Eddy Simulation of Transitional Channel Flow. Computer Physics Communications, 65(1), 224–230.CrossRefGoogle Scholar
Piomelli, U., Zang, T. A., Speziale, C. G., and Lund, T. S. 1990a. Application of Renormalization Group Theory to the Large-Eddy Simulation of Transitional Boundary Layers. Pages 480–496 in Instability and Transition, Hussaini, M. Y., and Voigt, R. G. (eds). Springer.Google Scholar
Piomelli, U., Zang, T. A., Speziale, C. G., and Hussaini, M. Y. 1990b. On the Large-Large-Eddy Simulation of Transitional Wall-Bounded Flows. Physics of Fluids A, 2(2), 257–265.CrossRefGoogle Scholar
Ranjan, R. 2021 (August 2-6). Large-Eddy Simulation of Transition to Turbulence Using the Two-Level Simulation Approach. In: AIAA AVIATION 2021 FORUM.CrossRefGoogle Scholar
Rayleigh, L. 1882. Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density. Proceedings of the London Mathematical Society, s1–14(1), 170–177.Google Scholar
Reissmann, M., Hasslberger, J., Sandberg, R. D., and Klein, M. 2021. Application of Gene Expression Programming to A-posteriori LES Modeling of a Taylor–Green Vortex. Journal of Computational Physics, 424, 109859.CrossRefGoogle Scholar
Roberts, S. K., and Yaras, M. I. 2005. Large-Eddy Simulation of Transition in a Separation Bubble. Journal of Fluids Engineering, 128(2), 232–238.Google Scholar
Rollin, B., and Andrews, M. J. 2013. On Generating Initial Conditions for Turbulence Models: The Case of Rayleigh–Taylor Instability Turbulent Mixing. Journal of Turbulence, 14(3), 77–106.CrossRefGoogle Scholar
Sayadi, T., and Moin, P. 2012. Large Eddy Simulation of Controlled Transition to Turbulence. Physics of Fluids, 24(11), 114103.CrossRefGoogle Scholar
Schiestel, R., and Dejoan, A. 2005. Towards a New Partially Integrated Transport Model for Coarse Grid and Unsteady Turbulent Flow Simulations. Theoretical and Computational Fluid Dynamics, 18(6), 443–468.CrossRefGoogle Scholar
Schlatter, P. C. 2005. Large-eddy simulation of transition and turbulence in wall-bounded shear flow. Doctoral Thesis, ETH Zurich.CrossRefGoogle Scholar
Schlicting, H. 1933. Zur Entstehung der Turbulenz bei der Plattenströmung. Nachrichten der Gesellshaft der Wissenshaften zu Göttingen.Google Scholar
Schmid, P. J., and Henningson, D. S. 2001. Stability and Transition in Shear Flows. Applied Mathematical Sciences, vol. 142. Springer.Google Scholar
Schubauer, G. B., and Skramstad, H. K. 1947. Laminar Boundary-Layer Oscillations and Stability of Laminar Flow. Journal of Aeronautical Sciences, 14(2), 69–78.CrossRefGoogle Scholar
Shur, M., Spalart, P. R., Strelets, M., and Travin, A. 1999. Detached-Eddy Simulation of an Airfoil at High Angle of Attack. Pages 669–678 in Engineering Turbulence Modelling and Experiments 4, Rodi, W., and Laurence, D. (eds). Elsevier.Google Scholar
Simon, F. F., and Stephens, C. A. 1991. Modeling of the Heat Transfer in Bypass Transitional Boundary-Layer Flows. TP 3170. NASA.Google Scholar
Smagorinsky, J. 1963. General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91, 99–107.2.3.CO;2>CrossRefGoogle Scholar
Smith, A. M. O., and Gamberoni, N. 1956. Transition, Pressure Gradient and Stability Theory. Tech. rept. ES 26388. Douglas Aircraft Division.Google Scholar
Sommerfeld, A. 1908. Ein Beitrag Zur Hydrodynamischen Erklaerung Der Turbulenten Fluessigkeitsbewegüngen. In: Atti del IV Congresso Internazionale dei Matematici, Castelnuovo, G. (ed). vol. III.Google Scholar
Sørensen, N. N., Bechmann, A., and Zahle, F. 2011. 3D CFD Computations of Transitional Flows Using DES and a Correlation Based Transition Model. Wind Energy, 14(1), 77–90.CrossRefGoogle Scholar
Spalart, P. R., Jou, W.-H., Strelets, M., and Allmaras, S. R. 1997 (4–8 August). Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In: Proceedings of the First Air Force Office of Scientific Research (AFOSR) International Conference on DNS/LES.Google Scholar
Speziale, C. G. 1998. A Review of Material Frame-Indifference in Mechanics. Applied Mechanics Reviews, 51(8), 489–504.CrossRefGoogle Scholar
Steelant, J., and Dick, E. 1996. Modelling of Bypass Transition with Conditioned Navier–Stokes Equations Coupled to an Intermittency Transport Equation. International Journal for Numerical Methods in Fluids, 23(3), 193–220.3.0.CO;2-2>CrossRefGoogle Scholar
Steelant, J., and Dick, E. 2000. Modeling of Laminar-Turbulent Transition for High Freestream Turbulence. Journal of Fluids Engineering, 123(1), 22–30.Google Scholar
Stolz, S., Adams, N. A., and Kleiser, L. 2001. An Approximate Deconvolution Model for Large-Eddy Simulation with Application to Incompressible Wall-Bounded Flows. Physics of Fluids, 13(4), 997–1015.Google Scholar
Stuart, J. T. 1960. On the Non-Linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows. Part 1. The Basic Behaviour in Plane Poiseuille Flow. Journal of Fluid Mechanics, 9(3), 353–370.CrossRefGoogle Scholar
Suzen, Y., and Huang, P. 2000a. An Intermittency Transport Equation for Modeling Flow Transition. In: 38th Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Suzen, Y. B., and Huang, P. G. 2000b. Modeling of Flow Transition Using an Intermittency Transport Equation. Journal of Fluids Engineering, 122(2), 273–284.CrossRefGoogle Scholar
Suzen, Y. B., Xiong, G., and Huang, P. G. 2002. Predictions of Transitional Flows in Low-Pressure Turbines Using Intermittency Transport Equation. AIAA Journal, 40(2), 254–266.CrossRefGoogle Scholar
Taylor, G. I. 1950. The The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I. Proceedings of the Royal Society of London, 201(1065), 192–196.Google Scholar
Taylor, G. I., and Green, A. E. 1937. Mechanism of the Production of Small Eddies from Large Ones. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 158(895), 499–521.Google Scholar
Tester, B. W., Coder, J. G., Combs, C. S., and Schmisseur, J. D. 2018. Hybrid RANS/LES Simulation of Transitional Shockwave/Boundary-Layer Interaction. In: 2018 Fluid Dynamics Conference.CrossRefGoogle Scholar
Thomson, F. R. S., Sir, W. 1871. XLVI. Hydrokinetic Solutions and Observations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(281), 362–377.CrossRefGoogle Scholar
Tollmein, W. 1929. Über die Entstehung der Turbulenz. Nachrichten der Gesellshaft der Wissenshaften zu Göttingen.Google Scholar
Travin, A., Shur, M., Strelets, M., and Spalart, P. 2000. Detached-Eddy Simulations Past a Circular Cylinder. Flow, Turbulence and Combustion, 63(1), 293–313.CrossRefGoogle Scholar
Uranga, A., Persson, P.-O., Drela, M., and Peraire, J. 2011. Implicit Large Eddy Simulation of transition to turbulence at Low Reynolds Numbers Using a Discontinuous Galerkin Method. International Journal for Numerical Methods and Engineering, 87(1–5), 232–261.CrossRefGoogle Scholar
Van Driest, E. R. 1956. On the Turbulent Flow Near a Wall. J. Aero. Sci., 23, 1007–1011.CrossRefGoogle Scholar
van Ingen, J. 2008. The eN Method for Transition Prediction. Historical Review of Work at TU Delft. In: 38th Fluid Dynamics Conference and Exhibit. Seattle, Washington, USA.Google Scholar
van Ingen, J. L. 1956 (Sept.). A Suggested Semi-empirical Method for the Calculation of the Boundary Layer Transition Region. VTH- 74. Delft, Nederland.Google Scholar
Venkatachari, B. S., Paredes, P., Choudhari, M. M., Li, F., and Chang, C.-L. 2022. Transition Analysis for the CRM-NLF Wind Tunnel Configuration Using Transport Equation Models and Linear Stability Correlations. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Voke, P. R., and Yang, Z. 1995. Numerical Study of Bypass Transition. Physics of Fluids, 7(9), 2256–2264.CrossRefGoogle Scholar
Walters, D. K., and Cokljat, D. 2008. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. Journal of Fluids Engineering, 130(12).CrossRefGoogle Scholar
Walters, D. K., and Leylek, J. H. 2004. A New Model for Boundary Layer Transition Using a Single-Point RANS Approach. Journal of Turbomachinery, 126(1), 193–202.CrossRefGoogle Scholar
Wilson, P. G., and Pauley, L. L. 1998. Two- and Three-Dimensional Large-Eddy Simulations of a Transitional Separation Bubble. Physics of Fluids, 10(11), 2932–2940.CrossRefGoogle Scholar
Woodruff, S. 2021. WMLES of Boundary-Layer Transition. In: AIAA Scitech 2021 Forum.CrossRefGoogle Scholar
Woodruff, S. 2022. WMLES of K-Type and Bypass Boundary-Layer Transition. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Xing, T. 2015. A General Framework for Verification and Validation of Large Eddy Simulations. Journal of Hydrodynamics, Series B, 27(2), 163–175.CrossRefGoogle Scholar
Yakhot, V., and Orszag, S. A. 1986. Renormalization Group Analysis of Turbulence. I. Basic Theory. Journal of Scientific Computing, 1(1), 3–51.CrossRefGoogle Scholar
Yin, Z., and Durbin, P. A. 2016. An Adaptive DES Model That Allows Wall-Resolved Eddy Simulation. International Journal of Heat and Fluid Flow, 62, 499–509.CrossRefGoogle Scholar
Yin, Z., Ge, X., and Durbin, P. 2021. Adaptive Detached Eddy Simulation of Transition under the Influence of Free-Stream Turbulence and Pressure Gradient. Journal of Fluid Mechanics, 915, A115.CrossRefGoogle Scholar
Zastawny, M., and Lardeau, S. 2022. Validation of Intermittency-Based Transition Prediction Models. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar
Zore, K., Matyushenko, A., Shah, S., Aliaga, C., Stokes, J., and Menter, F. 2022. Laminar-Turbulent Transition Prediction on Industrial CFD Applications. In: AIAA SCITECH 2022 Forum.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×