Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-04T07:51:36.716Z Has data issue: false hasContentIssue false

Part I - Paradigms and Tools

Published online by Cambridge University Press:  31 January 2025

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Filipe S. Pereira
Affiliation:
Los Alamos National Laboratory
Massimo Germano
Affiliation:
Duke University, North Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Coarse Graining Turbulence
Modeling and Data-Driven Approaches and their Applications
, pp. 3 - 4
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, J. D. 1998. A History of Aerodynamics. 1st ed. Cambridge University Press.Google Scholar
Balachandar, S. 2024. Fundamentals of Dispersed Multiphase Flows. Cambridge University Press.CrossRefGoogle Scholar
Balakumar, B. J., Orlicz, G. C., Tomkins, C. D., and Prestridge, K. P. 2008. Simultaneous Particle-Image Velocimetry-Planar Laser-Induced Fluorescence Measurements of Richtmyer–Meshkov Instability Growth in a Gas Curtain with and without Reshock. Physics of Fluids, 20(124103).CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G. C., Prestridge, K. P., and Balakumar, B. J. 2012. Experimental Study of Initial Condition Dependence on Richtmyer–Meshkov Instability in the Presence of Reshock. Physics of Fluids, 24, 034103.CrossRefGoogle Scholar
Besnard, D., Harlow, F. H., Rauenzahn, R. M., and Zemach, C. 1992. Turbulence Transport Equations for Variable-Density Turbulence and Their Relationship to Two-Field Models. Technical Report LA-UR-92-12303. Los Alamos National Laboratory, Los Alamos, USA.CrossRefGoogle Scholar
Blaisdell, G. A., Mansour, N. N., and Reynolds, W. C. 1994. Compressibility Effects on the Passive Scalar Fux within Homogeneous Turbulence. Physics of Fluids, 6, 3498–3500.CrossRefGoogle Scholar
Book, D. L., Li, C., Patnaik, G., and Grinstein, F. F. 1991. Quantifying Residual Numerical Diffusion in Flux-Corrected Transport Algorithms. Journal of Scientific Computing, 6, 323–343.CrossRefGoogle Scholar
Boris, J. P. 1990. On Large Eddy Simulation Using Subgrid Turbulence Models. Pages 344–353 of: Whither Turbulence? Turbulence at the Crossroads, Lumley, J. L. (ed). Springer.Google Scholar
Boris, J. P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L. 1992. New Insights into Large Eddy Simulation. Fluid Dynamics Research, 10(4–6), 199–228.CrossRefGoogle Scholar
Bose, S. T., Moin, P., and You, D. 2010. Grid-Independent Large-Eddy Simulation Using Explicit Filtering. Physics of Fluids, 22, 105103.CrossRefGoogle Scholar
Box, G. E. P. 1979. Robustness in the Strategy of Scientific Model Building. Pages 201–236 of: Robustness in Statistics, Launer, R. L., and Wilkinson, G. N. (eds). Academic Press.Google Scholar
Brachet, M. E., Meiron, D. I., Orzag, S. A., Nickel, B. G., Morf, R. H., and Frisch, U. 1983. Small Scale Structure of the Taylor–Green Vortex. Journal of Fluid Mechanics, 130, 411–452.CrossRefGoogle Scholar
Brouillette, M. 2002. The Richtmyer–Meshkov Instability. Annual Review of Fluid Mechanics, 34, 445–468.CrossRefGoogle Scholar
Celik, I., Klein, M., Freitag, M., and Janicka, J. 2006. Assessment Measures for URANS/DES/LES: An Overview with Applications. Journal of Turbulence, 7, N48.CrossRefGoogle Scholar
Cohen, R. H., Dannevik, W. P., Dimits, A. M., Eliason, D. E., Mirin, A. A., Zhou, Y., Porter, D. H., and Woodward, P. R. 2002. Three-Dimensional Simulation of a Richtmyer–Meshkov Instability with a Two-Scale Initial Perturbation. Physics of Fluids, 14, 3692–3709.CrossRefGoogle Scholar
Colella, P. 1982. Glimm’s Method for Gas Dynamics. SIAM Journal on Scientific and Statistical Computing, 3(1), 76–110.CrossRefGoogle Scholar
Colella, P., and Woodward, P. R. 1984. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. Journal of Computational Physics, 54(1), 174–201.CrossRefGoogle Scholar
Davidson, P. A. 2006. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Dimotakis, P. E. 2000. The Mixing Transition in Turbulent Flows. Journal of Fluid Mechanics, 409, 69–98.CrossRefGoogle Scholar
Domaradzki, J. A., and Adams, N. A. 2002. Direct Modeling of Subgrid Scales of Turbulence in Large Eddy Simulations. Journal of Turbulence, 3(24), 1–19.CrossRefGoogle Scholar
Domaradzki, J. A., Xiao, Z., and Smolarkiewicz, P. 2003. Effective Eddy Viscosities in Implicit Large Eddy Simulations of Turbulent Flows. Physics of Fluids, 15, 3890–3893.CrossRefGoogle Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Youngs, D. 2007. Simulation of Transition and Turbulence Decay in the Taylor–Green Vortex. Journal of Turbulence, 8(20).CrossRefGoogle Scholar
Druault, P., Lardeau, S., Bonnet, J. P., Coiffet, F., F., Delville, J., Lamballais, E., Largeau, J. F., and Perret, L. 2004. Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation. AIAA Journal, 42, 447–456.Google Scholar
Fan, M., Wenren, Y., Dietz, W., Xiao, M., and Steinhoff, J. 2002. Computing Blunt Body Flows on Coarse Grids Using Vorticity Confinement. Journal of Fluids Engineering, 124(4), 876–885.CrossRefGoogle Scholar
Fasel, H. F., and von Terzi, D. A. 2006. A Methodology for Simulating Compressible Turbulent Flows. J. Appl. Mech., 73, 405–12.CrossRefGoogle Scholar
Frisch, U. 1995a. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Frolich, J., and von Terzi, D. A. 2008. Hybrid LES/RANS Methods for the Simulation of Turbulent Flows. Progress in Aerospace Sciences, 44, 349–77.Google Scholar
Fureby, C. 2009. LES Modeling of Combustion for Propulsion Applications. Philosophical Transactions of the Royal Society A, 367, 2957–2969.Google ScholarPubMed
Fureby, C., and Grinstein, F. F. 2002. Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flow. Journal of Computational Physics, 181(1), 68–97.CrossRefGoogle Scholar
Fureby, C., and Grinstein, F. F. 1999. Monotonically Integrated Large Eddy Simulation of Free Shear Flows. AIAA Journal, 37(5), 544–556.CrossRefGoogle Scholar
Fureby, C., and Tabor, G. 1997. Mathematical and physical constraints on large-eddy simulations. Theor. Computational Fluid Dynamics, 9, 85–102.CrossRefGoogle Scholar
George, W. K., and Davidson, L. 2004a. Role of Initial Conditions in Establishing Asymptotic Flow Behavior. AIAA Journal, 42, 438–446.CrossRefGoogle Scholar
George, W. K. 1989. The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures. In: Advances in Turbulence, George, W. K., and Arndt, R. E. A. (eds). Hemisphere Press.Google Scholar
George, W. K. 1990. Governing Equations, Experiments, and the Experimentalist. Experimental Thermal and Fluid Science, 3, 557–566.CrossRefGoogle Scholar
George, W. K., and Davidson, L. 2004b. Role of Initial Conditions in Establishing Asymptotic Flow Behavior. AIAA Journal, 42(3), 438–446.CrossRefGoogle Scholar
George, W. K., and Tutkun, M. 2009. Mind the Gap: A Guideline for Large Eddy Simulation. Philosophical Transactions of the Royal Society A, 1899, 2839–47.Google Scholar
Germano, M. 1992. The Filtering Approach. Journal of Fluid Mechanics, 238, 325–36.CrossRefGoogle Scholar
Germano, M. 1998. Readers’ Forum, Comment on Turbulence Modeling for Time-Dependent RANS and VLES: A Review. AIAA Journal, 36(9), 1766–1767.CrossRefGoogle Scholar
Germano, M. 2007. A Direct Relation between the Filtered Subgrid Stress and the Second Order Structure Function. Physics of Fluids, 19, 038102/2.CrossRefGoogle Scholar
Ghosal, S. 1996. An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence. Journal of Computational Physics, 125(1), 187–206.CrossRefGoogle Scholar
Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W. R., Ranta, D., and Stefan, R. 2008. The RAGE Radiation-Hydrodynamic Code. Computational Science & Discovery, 1(1), 015005.CrossRefGoogle Scholar
Gotoh, T., and Watanabe, T. 2012. Scalar Flux in a Uniform Mean Scalar Gradient in Homogeneous Isotropic Steady Turbulence. Physica D, 241, 141–148.CrossRefGoogle Scholar
Gowardhan, A. A., and Grinstein, F. F. 2011. Numerical Simulation of Richtmyer–Meshkov Instabilities in Shocked Gas Curtains. Journal of Turbulence, 12(43), 1–24.CrossRefGoogle Scholar
Gowardhan, A. A., Ristorcelli, J. R., and Grinstein, F. F. 2011. The Bipolar Behavior of the Richtmyer–Meshkov Instability. Physics of Fluids Letters, 23(071701).Google Scholar
Grinstein, F. F. 1995. Self-Induced Vortex Ring Dynamics in Subsonic Rectangular Jets. Physics of Fluids, 7(10), 2519–2521.CrossRefGoogle Scholar
Grinstein, F. F. 2001. Vortex Dynamics and Entrainment in Rectangular Free Jets. Journal of Fluid Mechanics, 437, 69–101.CrossRefGoogle Scholar
Grinstein, F. F. 2004. Boundary Conditions for Large Eddy Simulation. AIAA Journal Special Section, 42, 437–492.Google Scholar
Grinstein, F. F. 2009. On Integrating Large Eddy Simulation and Laboratory Turbulent Fow Experiments. Philosophical Transactions of the Royal Society A, 367, 2931–2945.Google Scholar
Grinstein, F. F. 2010. Vortex Dynamics and Transition in Free Shear Flows. Chap. 8 of: ILES: Computing Turbulent Fluid Dynamics, Grinstein, F. F., Margolin, L. G., and Rider, W. J. (eds). Cambridge University Press.Google Scholar
Grinstein, F. F. 2016. Coarse Grained Simulation and Turbulent Mixing. Cambridge University Press.CrossRefGoogle Scholar
Grinstein, F. F. 2017. Initial Conditions and Modeling for Simulations of Shock Driven Turbulent Material Mixing. Computers and Fluids, 151, 58–72.CrossRefGoogle Scholar
Grinstein, F. F. 2020. Coarse Grained Simulation of Convectively Driven Turbulent Mixing, Transition, and Turbulence Decay. Physica D: Nonlinear Phenomena, 407, 132419.CrossRefGoogle Scholar
Grinstein, F. F. 2024. Coarse Grained Simulation and Dynamic Bridging for Turbulent Mixing Predictions. Computers and Fluids, 271, 106185.CrossRefGoogle Scholar
Grinstein, F. F., and Fureby, C. 2007. On Flux-Limiting-Based Implicit Large Eddy Simulation. Journal of Fluids Engineering, 129(12), 1483–1492.Google Scholar
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2010. Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics. 2nd ed. Cambridge University Press.Google Scholar
Grinstein, F. F., Gowardhan, A. A., and Wachtor, A. J. 2011. Simulations of Richtmyer–Meshkov Instabilities in Planar Shock-Tube Experiments. Physics of Fluids, 23(034106).CrossRefGoogle Scholar
Grinstein, F. F., Saenz, J. A., Dolence, J. C., Masser, T. O., Rauenzahn, R. M., and Francois, M. M. 2019. Effects of Operator Splitting and Low Mach-Number Correction in Turbulent Mixing Transition Simulations. Computers and Mathematics with Applications, 78(2), 437–458.CrossRefGoogle Scholar
Grinstein, F. F., Saenz, J. A., Rauenzahn, R. M., Germano, M., and Israel, D. M. 2020. Dynamic Bridging Modeling for Coarse Grained Simulations of Shock Driven Turbulent Mixing. Physics of Fluids, 199, 104430.Google Scholar
Grinstein, F. F., Saenz, J. A., and Germano, M. 2021. Coarse Grained Simulations of Shock-Driven Turbulent Material Mixing. Physics of Fluids, 33(035131).CrossRefGoogle Scholar
Grinstein, F. F., Pereira, F. S., and Rider, W. J. 2023. Numerical Approximations Formulated as LES Models. Chap. 10 of: Numerical Methods in Turbulence Simulations, Moser, R. (ed). Elsevier.Google Scholar
Grégoire, O., Souffland, D., and Gauthier, S. 2005. A Second-Order Turbulence Model for Gaseous Mixtures induced by Richtmyer–Meshkov Instability. Journal of Turbulence, 6(1).CrossRefGoogle Scholar
Guillard, H., and Murrone, A. 2004. On the Behavior of Upwind Schemes in the Low Mach Number Limit: II. Godunov Type Schemes. Computers & Fluids, 33(4), 655–675.CrossRefGoogle Scholar
Gutmark, E., and Ho, C. M. 1983. Preferred Modes and the Spreading Rates of Jets. Physics of Fluids, 26, 2932.Google Scholar
Hahn, M., Drikakis, D., Youngs, D. L., and Williams, R. J. R. 2011. Richtmyer–Meshkov Turbulent Mixing Arising from an Inclined Material Interface with Realistic Surface Perturbations and Reshocked Flow. Physics of Fluids, 23, 046101.CrossRefGoogle Scholar
Haines, B. M., Grinstein, F. F., and Schwarzkopf, J. D. 2013. Reynolds-Averaged Navier–Stokes Initialization and Benchmarking in Shock-Driven Turbulent Mixing. Journal of Turbulence, 14(2), 46–70.CrossRefGoogle Scholar
Haines, B. M., Grinstein, F. F., and Fincke, J. R. 2014. Three-Dimensional Simulation Strategy to Determine the Effects of Turbulent Mixing on Inertial-Confinement-Fusion Capsule Performance. Physical Review E, 89(5).CrossRefGoogle ScholarPubMed
Harten, A., Lax, P. D., and van Leer, B. 1983. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review, 25(1), 35–61.CrossRefGoogle Scholar
Heisenberg, W. 1958. Physics and Philosophy: The Revolution in Modern Science. Harper & Row.Google Scholar
Hill, D. J., Pantano, C., and Pullin, D. I. 2006. Large-Eddy Simulation and Multiscale Modelling of a Richtmyer–Meshkov Instability with Reshock. Journal of Fluid Mechanics, 557, 29–61.CrossRefGoogle Scholar
Hirt, C. W. 1969. Computer Studies of Time-Dependent Turbulent Flows. Physics of Fluids, 12(12), II–219–II–227.Google Scholar
Hussain, A. K. M. F., and Husain, H. S. 1989. Elliptic Jets. Part I. Characteristics of Unexcited and Excited Jets. Journal of Fluid Mechanics, 208, 257–320.CrossRefGoogle Scholar
Hussain, A. K. M. F., and Reynolds, W. C. 1970. The Mechanics of an Organized Wave in Turbulent Shear Flow. Journal of Fluid Mechanics, 41(2), 241–258.CrossRefGoogle Scholar
Hussain, A. K. M. F., and Zedan, M. F. 1978. Effects of the Initial Condition on the Axisymmetric Free Shear Layer: Effect of the Initial Fluctuation Level. Physics of Fluids, 21, 1475–81.Google Scholar
Jiménez, J., Wray, A. A., Saffman, P. G., and Rogallo, R. S. 1993. The Structure of Intense Vorticity in Isotropic Turbulence. Journal of Fluid Mechanics, 255, 6590.CrossRefGoogle Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., and Uno, A. 2003. Energy Dissipation Rate and Energy Spectrum in High Resolution Direct Numerical Simulations of Turbulence in a Periodic Box. Physics of Fluids, 15(2), L21L24.CrossRefGoogle Scholar
Karamanos, G-S., and Karniadakis, G. E. 2000. A Spectral Vanishing Viscosity Method for Large-Eddy Simulations. Journal of Computational Physics, 163, 22–50.CrossRefGoogle Scholar
Kokkinakis, I. W., and Drikakis, D. 2015. Implicit Large Eddy Simulation of weakly compressible turbulent channel flow. Computer Methods in Applied Mechanics and Engineering, 287, 229–261.CrossRefGoogle Scholar
Leinov, E., Malamud, G., Elbaz, Y., Levin, A., Ben-dor, G., Shvarts, D., and Sadot, O. 2009. Experimental and Numerical Investigation of the Richtmyer–Meshkov Instability under Reshock Conditions. Journal of Fluid Mechanics, 626(449-75).CrossRefGoogle Scholar
Leonard, A. 1975. Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows. Adv. in Geophysics, 18A, 237–248.CrossRefGoogle Scholar
Lesieur, M. 2008. Turbulence in Fluids. Springer.CrossRefGoogle Scholar
Leweke, T., Le, Dizés, S., and Williamson, C. H. K. 2016. Dynamics and Instabilities of Vortex Pairs. Annual Review of Fluid Mechanics, 48(1), 507–541.CrossRefGoogle Scholar
Li, G., and Gutmark, E. J. 2006. Experimental Study of Boundary Condition Effects on Non-Reacting and Re-Acting Flow in a Multi-Swirl Gas Turbine Combustor. AIAA Journal, 44, 444.CrossRefGoogle Scholar
Lorenz, E. N. 1963. Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences, 3, 130–141.Google Scholar
Margolin, L. G. 2009. Finite-Scale Equations for Compressible Fluid flow. Phil. Trans. R. Soc. A, 367, 2861–71.CrossRefGoogle ScholarPubMed
Margolin, L. G., and Rider, W. J. 2002. A Rationale for Implicit Turbulence Modeling. International Journal of Numerical Methods in Fluids, 39, 821–41.CrossRefGoogle Scholar
Margolin, L. G., Rider, W. J., and Grinstein, F. F. 2006. Modeling Turbulent Flow with Implicit LES. Journal of Turbulence, 7(N15), 1–27.CrossRefGoogle Scholar
Margolin, L. G., and Rider, W. J. 2010. Numerical Regularization: The Numerical Analysis of Implicit Subgrid Models. Chap. 5 of: ILES: Computing Turbulent Fluid Dynamics, Grinstein, F. F., Margolin, L. G., and Rider, W. J. (eds). Cambridge University Press.Google Scholar
Misra, A., and Pullin, D. I. 1997. A Vortex-Based Subgrid Stress Model for Large-Eddy Simulation. Physics of Fluids, 9, 2443.CrossRefGoogle Scholar
Moore, W. C., and Balachandar, S. 2019. Lagrangian Investigation of Pseudo-Turbulence in Multiphase Flow Using Superposable Wakes. Physical Review Fluids, 4, 114301.CrossRefGoogle Scholar
Moser, R. D., Haering, S. W., and Yalla, G. R. 2021. Statistical Properties of Subgrid-Scale Turbulence Models. Annual Reviews of Fluid Mechanics, 53, 255–286.CrossRefGoogle Scholar
Mugler, C., and Gauthier, S. 2000. Two-Dimensional Navier–Stokes Simulations of Gaseous Mixtures Induced by Richtmyer–Meshkov Instability. Physics of Fluids, 12, 1783.CrossRefGoogle Scholar
Orlicz, G. C., Balakumar, B. J., Tomkins, C. D., and Prestridge, K. P. 2009. A Mach Number Study of the Richtmyer–Meshkov Instability in a Varicose, Heavy-Gas Curtain. Physics of Fluids, 21(064102).CrossRefGoogle Scholar
Overholt, M. R., and Pope, S. B. 1996. Direct Numerical Simulation of a Passive Scalar with Imposed Mean Gradient in Isotropic Turbulence. Physics of Fluids, 8, 3128–3148.CrossRefGoogle Scholar
Parish, E. J., and Duraisamy, K. 2017. Non-Markovian Closure Models for Large Eddy Simulations Using the Mori–Zwanzig Formalism. Physical Review Fluids, 2, 014604.CrossRefGoogle Scholar
Patnaik, G., Boris, J. P., Young, T. R., and Grinstein, F. F. 2007. Large Scale Urban Contaminant Transport Simulations with MILES. Journal of Fluids Engineering, 129, 1524–1532.CrossRefGoogle Scholar
Pereira, F. S., Eça, L., Vaz, G., and Girimaji, S. S. 2018. Challenges in Scale-Resolving Simulations of Turbulent Wake Flows with Coherent Structures. Journal of Computational Physics, 363, 98–115.CrossRefGoogle Scholar
Pereira, F. S., Eça, L., Vaz, G., and Girimaji, S. S. 2019. On the Simulation of the Flow Around a Circular Cylinder at Re = 140,000. International Journal of Heat and Fluid Flow, 76, 40–56.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., and Israel, D. 2020. Effect of the Numerical Discretization Scheme in Shock-Driven Turbulent Mixing. Computers and Fluids, 201(104487).CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., and Rauenzahn, R. 2021. Molecular Viscosity and Diffusivity Effects in Transitional and Shock-Driven Mixing Flows. Physical Review E, 103, 013106.CrossRefGoogle ScholarPubMed
Pereira, F. S., Grinstein, F. F., Israel, D. M., and Eça, L. 2022. Verification and Validation: The Path to Predictive Scale-Resolving Simulations of Turbulence. ASME Journal of Verification, Validation, and Uncertainty Quantification, 7(2), 021003.Google Scholar
Poggi, F., Thorembey, M.-H., and Rodriguez, G. 1998. Velocity Measurements in Turbulent Gaseous Mixtures Induced by Richtmyer–Meshkov Instability. Physics of Fluids, 10, 2698.CrossRefGoogle Scholar
Pope, S. B. 1990 (July). Computations of Turbulent Combustion: Progress and Challenges. In: Twenty Third Symposium (International) on Combustion.CrossRefGoogle Scholar
Pope, S. B. 2000. Turbulent Flows. 1st ed. Cambridge University Press.Google Scholar
Pope, S. B. 2004. Ten Questions Concerning the Large-Eddy Simulation of Turbulent flows. New Journal of Physics, 6(35), 1–24.CrossRefGoogle Scholar
Porter, D. H., Woodward, P. R., and Pouquet, A. 1998. Inertial Range Structures in Decaying Turbulent Flows. Physics of Fluids, 10(237–245).CrossRefGoogle Scholar
Pullin, D. I. 2000. A Vortex-Based Model for the Subgrid Flux of a Passive Scalar. Physics of Fluids, 12(2311).CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., and Andrews, M. J. 2005. A Numerical Study of the Influence of Initial Perturbations on the Turbulent Rayleigh–Taylor Instability. Journal of Fluid Mechanics, 536, 285–319.CrossRefGoogle Scholar
Reisner, J. M., Josephson, A. J., Gorkowski, K. J., Koo, E., Thompson, D. K., Schroeder, D., and Dubey, M. K. 2023. Informed Multi-Scale Approach Applied to the British Columbia Fires of Late Summer 2017. Journal of Geophysical Research: Atmospheres, 128, e2022JD037238.Google Scholar
Richardson, L. F. 1927. The Deferred Approach to the Limit. Trans. R. Soc. London Ser., A226, 229–361.Google Scholar
Richtmyer, R. D. 1960. Taylor Instability in Shock Acceleration of Compressible Fluids. Commun. Pure Appl. Maths., 13, 297–319.CrossRefGoogle Scholar
Ristorcelli, J. R. 2006. Passive Scalar Mixing: Analytic Study of Time Scale Ratio, Variance, and Mix Rate. Physics of Fluids, 18, 1–17.CrossRefGoogle Scholar
Ristorcelli, J. R. 2016. Material Conservation of Passive Scalar Mixing in Finite Scale Navier–Stokes Fluid Turbulence. Chap. 4 of: Coarse Grained Simulation and Turbulent Mixing, Grinstein, F. F. (ed). Cambridge University Press.Google Scholar
Ristorcelli, J. R., Gowardhan, A. A., and Grinstein, F. F. 2013. Two Classes of Richtmyer–Meshkov Instabilities: A Detailed Statistical Look. Physics of Fluids, 25(044106).CrossRefGoogle Scholar
Roache, P. J. 1997. Quantification of Uncertainty in Computational Fluid Dynamics. Annual Reviews of Fluid Mechanics, 29, 123–160.CrossRefGoogle Scholar
Sagaut, P., Deck, S., and Terracol, M. 2006. Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.CrossRefGoogle Scholar
Schiestel, R. 1987. Multiple-Time-Scale Modeling of Turbulent Flows in One-Point Closures. Physics of Fluids, 30(3), 722–731.Google Scholar
Schilling, O., and Latini, M. 2010. High-Order WENO Simulations of Three-Dimensional Reshocked Richtmyer–Meshkov Instability to Late Times: Dynamics, Dependence on Initial Conditions, and Comparisons to Experimental Data. Acta Mathematica Scientia, 30(2), 595–620.CrossRefGoogle Scholar
Schwarzkopf, J. D., Livescu, D., Baltzer, J. R., Gore, R. A., and Ristorcelli, J. R. 2016. A Two-Length Scale Turbulence Model for Single-Phase Multi-Fluid Mixing. Flow, Turbulence, and Combustion, 96, 1–43.CrossRefGoogle Scholar
Schwarzkopf, J. D., Livescu, D., Gore, R. A., Rauenzahn, R. M., and Ristorcelli, J. R. 2011. Application of a Second-Moment Closure Model to Mixing Processes Involving Multi-Component Miscible Fluids. Journal of Turbulence, 49, 1–35.Google Scholar
Slessor, M. D., Bond, C. L., and Dimotakis, P. E. 1998. Turbulent Shear-Layer Mixing at High Reynolds Numbers: Effects of Inflow Conditions. Journal of Fluid Mechanics, 376, 115–38.CrossRefGoogle Scholar
Speziale, C. G. 1998. Turbulence Modeling for Time-Dependent RANS and VLES : A Review. AIAA Journal, 36(2), 173–184.CrossRefGoogle Scholar
Sreenivasan, K. R. 1984. On the Scaling of the Turbulence Energy Dissipation Rate. Physics of Fluids, 27(1048).Google Scholar
Sreenivasan, K. R. 1998. An Update on the Energy Dissipation Rate in Isotropic Turbulence. Physics of Fluids, 10(528).CrossRefGoogle Scholar
Stolz, S., Adams, N. A., and Kleiser, L. 2001. The Approximate Deconvolution Model for Large-Eddy Simulations of Compressible Flows and its Application to Shock-Turbulent-Boundary-Layer Interaction. Physics of Fluids, 13(2985).Google Scholar
Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Thornber, B., Mosedale, A., and Drikakis, D. 2007. On the Implicit Large Eddy Simulation of Homogeneous Decaying Turbulence. Journal of Computational Physics, 226, 1902–1929.CrossRefGoogle Scholar
Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., and Williams, R. J. R. 2008. An Improved Reconstruction Method for Compressible Flows with Low Mach Number Features. Journal of Computational Physics, 227(10), 4873–4894.CrossRefGoogle Scholar
Thornber, B., Drikakis, D., Youngs, D. L., and Williams, R. J. R. 2010. The Influence of Initial Conditions on Turbulent Mixing due to Richtmyer–Meshkov Instability. Journal of Fluid Mechanics, 654, 99–139.CrossRefGoogle Scholar
Toro, E. F., Spruce, M., and Speares, W. 1994. Restoration of the Contact Surface in the HLL-Riemann Solver. Shock Waves, 4(1), 25–34.CrossRefGoogle Scholar
Townsend, A. A. 1976. Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tsinober, A. 2009. An Informal Conceptual Introduction to Turbulence. Springer.CrossRefGoogle Scholar
Tsinober, A. 2011. Models versus Physical Laws, First Principles, or Why Models Work? In: Workshop at Wolfgang Pauli Institute, Vienna, Austria, 2–4 February.Google Scholar
Tsinober, A. 2014. The Essence of Turbulence as a Physical Phenomenon. 1st ed. Springer.CrossRefGoogle Scholar
Uranga, A., Persson, P.-O., Drela, M., and Peraire, J. 2011. Implicit Large Eddy Simulation of Transition to Turbulence at Low Reynolds Numbers Using a Discontinuous Galerkin Method. International Journal for Numerical Methods in Engineering, 87, 232–261.CrossRefGoogle Scholar
van Leer, B. 1997. Towards the Ultimate Conservative Difference Scheme. Journal of Computational Physics, 135(2), 229–248.CrossRefGoogle Scholar
Vassilicos, J. C. 2015a. Dissipation in Turbulent Flows. Annual Review of Fluid Mechanics, 47, 95–114.CrossRefGoogle Scholar
Vassilicos, J. C. 2015b. Dissipation in Turbulent Flows. Annual Review of Fluid Mechanics, 47(1), 95–114.CrossRefGoogle Scholar
Verfaillie, S., Gutmark, E. J., Bonnet, J. P., and Grinstein, F. F. 2006. Linear Stochastic Estimation of a Swirling Jet. AIAA Journal, 44, 457–468.Google Scholar
Visbal, M. R., and Rizzetta, D. P. 2002. Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes. Journal of Fluids Engineering, 124(4), 836–847.CrossRefGoogle Scholar
von Kaenel, R., Adams, N. A., Kleiser, L., and Vos, J. B. 2003. The Approximate Deconvolution Model for Large-Eddy Simulation of Compressible Flows With Finite Volume Schemes. Journal of Fluids Engineering, 125, 375–381.CrossRefGoogle Scholar
Wachtor, A. J., Grinstein, F. F., DeVore, C. R., Ristorcelli, J. R., and Margolin, L. G. 2013. Implicit Large-Eddy Simulation of Passive Scalar Mixing in Statistically Stationary Isotropic Turbulence. Physics of Fluids, 25(025101).CrossRefGoogle Scholar
Wang, R., Wu, F., Xu, H., and Sherwin, S. J. 2021. Implicit Large-Eddy Simulations of Turbulent Flow in a Channel via Spectral/hp Element Methods. Physics of Fluids, 33, 035130.Google Scholar
Warming, R. F., and Hyett, B. J. 1974. The Modified Equation Approach and the Stability and Accuracy Analysis of Finite-Difference Methods. Journal of Comp. Phys., 14, 159–179.CrossRefGoogle Scholar
Wygnanski, I., Champagne, F., and Marasli, B. 1986. On The Large-Scale Structures In Two-Dimensional, Small-Deficit, Turbulent Wakes. Journal of Fluid Mechanics, 168, 31–71.CrossRefGoogle Scholar
Yao, J., and Hussain, F. 2022. Vortex Reconnection and Turbulence Cascade. Annual Review of Fluid Mechanics, 54, 317–347.CrossRefGoogle Scholar
Yeung, P. K., Xu, S., and Sreenivasan, K. R. 2002. Schmidt Number Effects on Turbulent Transport with Uniform Mean Scalar Gradient. Physics of Fluids, 14, 4178–4191.CrossRefGoogle Scholar
Zhou, Y. 2007. Unification and Extension of the Similarity Scaling Criteria and Mixing Transition for Studying Astrophysics Using High Energy Density Laboratory Experiments or Numerical Simulations. Physics of Plasmas, 14(082701).CrossRefGoogle Scholar
Zhou, Y. 2017a. Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flow, Turbulence, and Mixing. I. Physics Reports, 720–722, 1–136.Google Scholar
Zhou, Y. 2017b. Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flow, Turbulence, and Mixing. II. Physics Reports, 723–725, 1–160.Google Scholar
Zhou, Y., Grinstein, F. F., Wachtor, A. J., and Haines, B. M. 2014. Estimating the Effective Reynolds Number in Implicit Large-Eddy Simulation. Physical Review E, 89(1), 013303.CrossRefGoogle ScholarPubMed

References

Abdol-Hamid, K. S., and Girimaji, S. S. 2004. A Two-Stage Procedure toward the Efficient Implementation of PANS and Other Hybrid Turbulence Models. Technical Report TM-2004-213260. National Aeronautics and Space Administration (NASA), Langley Research Center, Hampton, United States of America.Google Scholar
Achenbach, E. 1971. Influence of Surface Roughness on the Cross-Flow around a Circular Cylinder. Journal of Fluid Mechanics, 46(2), 321–335.CrossRefGoogle Scholar
AIAA CFD Drag Prediction Workshop. 2022. https://aiaa-dpw.larc.nasa.gov.Google Scholar
AIAA CFD High Lift Prediction Workshop. 2023. https://hiliftpw.larc.nasa.gov.Google Scholar
ASME. 2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer – ASME V&V 20–2009. ASME.Google Scholar
ASME VVUQ Symposium. 2023. American Society of Mechanical Engineers.Google Scholar
Basara, B., Pavlovic, Z., and Girimaji, S. 2018. A New Approach for the Calculation of the Cut-Off Resolution Parameter in Bridging Methods for Turbulent Flow Simulation. International Journal of Heat and Fluid Flow, 74, 76–88.CrossRefGoogle Scholar
Batten, P., Goldberg, U., and Chakravarthy, S. 2000. Sub-grid Turbulence Modeling for Unsteady Flow with Acoustic Resonance. In: Proceedings of the 38th American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting & Exhibit.CrossRefGoogle Scholar
Batten, P., Goldberg, U., and Chakravarthy, S. 2002. LNS – An Approach towards Embedded LES. In: Proceedings of the 40th American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting & Exhibit.CrossRefGoogle Scholar
Billson, M., Eriksson, L.-E., Davidson, L., and Jordan, P. 2004. Modeling of Synthetic Anisotropic Turbulence and Its Sound Emission. In: Proceedings of the 10th American Institute of Aeronautics and Astronautics (AIAA) and Council of European Aerospace Societies (CEAS) Aeroacoustics Conference.CrossRefGoogle Scholar
Boffeta, G., and Mazzino, A. 2017. Incompressible Rayleigh–Taylor Turbulence. Annual Review of Fluid Mechanics, 49, 119–143.Google Scholar
Boris, J. P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L. 1992. New Insights into Large Eddy Simulation. Fluid Dynamics Research, 10(4–6), 199–228.CrossRefGoogle Scholar
Bose, S. T., and Park, G. I. 2018. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. Annual Review of Fluid Mechanics, 50(1), 535–561.CrossRefGoogle ScholarPubMed
Boussinesq, J. 1877. Essai sur la Théorie des Eaux Courantes. Mémoires Présentés par Divers Savants à L’Académie des Sciences, 23(1).Google Scholar
Brachet, M. E., Meiron, D. I., Orzag, S. A., Nickel, B. G., Morf, R. H., and Frisch, U. 1983. Small Scale Structure of the Taylor–Green Vortex. Journal of Fluid Mechanics, 130, 411–452.CrossRefGoogle Scholar
Brouwer, J., Tukker, J., and van Rijsbergen, M. 2013 (17–18 September). Uncertainty Analysis of Finite Length Measurement Signals. In: Proceedings of the 3rd International Conference on Advanced Model Measurement Technology for EU Maritime Industry.Google Scholar
Caruelle, B. 2000. Simulations D’Écoulements Instationnaires Turbulents en Aérodynamique: Application à la Prédiction du Phénomène de Tremblement. Ph.D. thesis, Institut National Polytechnique Toulose, Toulouse, France.Google Scholar
Chaouat, B. 2017. The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows. Flow, Turbulence, and Combustion, 99, 279–327.CrossRefGoogle ScholarPubMed
Chaouat, B., and Schiestel, R. 2005. A New Partially Integrated Transport Model for Subgrid-Scale Stresses and Dissipation Rate for Turbulent Developing Flows. Physics of Fluids, 17(6).Google Scholar
Crow, S. C. 1970. Stability Theory for a Pair of Trailing Vortices. AIAA Journal, 8(12), 2172–2179.CrossRefGoogle Scholar
Dahlström, S., and Davidson, L. 2003. Hybrid RANS/LES Employing Interfaces Condition with Turbulent Structure. Pages 689–696 of: Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer.Google Scholar
D’Alessandro, V., Giammichele, L., Lops, C., and Ricci, R. 2020. Towards DES/DDES Computation of the Flow Field and Heat Transfer Adopting Elliptic Relaxation and Local Correlation Based Transition Approaches. Journal of Physics: Conference Series, 1599, 012042.Google Scholar
Davidson, L., and Friess, C. 2019. A New Formulation of fk for the PANS model. Journal of Turbulence, 20(5), 322–336.CrossRefGoogle Scholar
Davidson, P. A. 2006. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Deck, S. 2002. Simulation Numérique de Charges Latéras Instationnaires sur des Configurations de Lanceur. Ph.D. thesis, Université D’Orléans, Orléans, France.Google Scholar
Dol, H. S., Kok, J. C., and Oskam, B. 2002. Turbulence Modelling for Leading-Edge Vortex Flows. In: Proceedings of the 40th American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Donzis, D. A., Yeung, P. K., and Sreenivasan, K. R. 2008. Dissipation and Enstrophy in Isotropic Turbulence: Resolution Effects and Scaling in Direct Numerical Simulations. Physics of Fluids, 20(4), 045108.CrossRefGoogle Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Youngs, D. 2007. Simulation of Transition and Turbulence Decay in the Taylor–Green Vortex. Journal of Turbulence, 8(20).CrossRefGoogle Scholar
Eisfeld, B. 2004. Implementation of Reynolds Stress Models into the DLR-FLOWer Code. Technical report IB 124-2004/31. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Braunschweig, Germany.Google Scholar
Eisfeld, B., and Brodersen, O. 2005. Advanced Turbulence Modelling and Stress Analysis for the DLR-F6 Configuration. In: Proceedings of the 23rd American Institute of Aeronautics and Astronautics (AIAA) Applied Aerodynamics Conference.CrossRefGoogle Scholar
Eisfeld, B., Rumsey, C., and Togiti, V. 2016. Verification and Validation of a Second-Moment-Closure Model. American Institute of Aeronautics and Astronautics (AIAA) Journal, 54(5), 1524–1542.Google Scholar
Elmiligui, A., Abdol-Hamid, K. S., Massey, S. J., and Pao, S. P. 2004. Numerical Study of Flow Past a Circular Cylinder Using RANS, Hybrid RANS/LES and PANS Formulations. In: Proceedings of the 22nd American Institute of Aeronautics and Astronautics (AIAA) Applied Aerodynamics Conference and Exhibit.CrossRefGoogle Scholar
Fage, A., and Warsap, J. H. 1930. The Effects of Turbulence and Surface Roughness on the Drag of a Circular Cylinder. Reports and Memoranda 1283. Aeronautical Research Committee, London, United Kingdom.Google Scholar
Fasel, H. F., Seidel, J., and Wernz, S. 2002. A Methodology for Simulations of Complex Turbulent Flows. Journal of Fluids Engineering, 124(4), 993–942.CrossRefGoogle Scholar
Ferrante, A., and Elghobashi, S. E. 2004. A Robust Method for Generating Inflow Conditions for Direct Simulations of Spatially-Developing Turbulent Boundary Layers. Journal of Computational Physics, 198(1), 372–387.CrossRefGoogle Scholar
Fröhlich, J., and von Terzi, D. 2008. Hybrid LES/RANS Methods for the Simulation of Turbulent Flows. Progress in Aerospace Sciences, 44(5), 349–377.CrossRefGoogle Scholar
Georgiadis, N. J., Rizzetta, D. P., and Fureby, C. 2009. Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research. Technical Report TM-2009-215616. National Aeronautics and Space Administration (NASA), Glenn Research Center, Cleveland, United States of America.Google Scholar
Gerich, D., and Eckelmann, H. 1982. Influence of End Plates and Free Ends on the Shedding Frequency of Circular Cylinders. Journal of Fluid Mechanics, 122, 109–121.CrossRefGoogle Scholar
Germano, M. 1992. The Filtering Approach. Journal of Fluid Mechanics, 238, 325–36.CrossRefGoogle Scholar
Germano, M. 1999. From RANS to DNS: Towards a Bridging Model. In: Direct and Large-Eddy Simulation III, Voke, P. R., Sandham, N. D., and Kleiser, L. (eds). ERCOFTAC series, vol. 7. Springer.Google Scholar
Ghosal, S., and Moin, P. 1995. The Basic Equations for the Large Eddy Simulation of Turbulent Flows in Complex Geometries. Journal of Computational Physics, 118(1), 24–37.CrossRefGoogle Scholar
Girimaji, S., Haase, W., Peng, S.-H., and Schwamborn, D. (eds). 2015. Progress in Hybrid RANS-LES Modelling. Papers Contributed to the 5th Symposium on Hybrid RANS-LES Methods, 19–21 March 2014, College Station, A&M University, Texas, United States of America. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 130. Switzerland: Springer.Google Scholar
Girimaji, S. S. 2005. Partially-Averaged Navier–Stokes Model for Turbulence: A Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 73(3), 413–421.Google Scholar
Girimaji, S. S., and Abdol-Hamid, K. S. 2005 (10–13 January). Partially-Averaged Navier Stokes Model for Turbulence: Implementation and Validation. In: Proceedings of the 43rd American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Girimaji, S. S., and Wallin, S. 2013. Closure Modeling in Bridging Regions of Variable-Resolution (VR) Turbulence Computations. Journal of Turbulence, 14(1), 72–98.CrossRefGoogle Scholar
Girimaji, S. S., Jeong, E., and Srinivasan, R. 2006. Partially Averaged Navier–Stokes Method for Turbulence: Fixed Point Analysis and Comparison with Unsteady Partially Averaged Navier–Stokes. ASME Journal of Applied Mechanics, 73(3), 422–429.Google Scholar
Goc, K., Lehmkuhl, O., Park, G., Bose, S., and Moin, P. 2021. Large Eddy Simulation of Aircraft at Affordable Cost: A Milestone in Computational Fluid Dynamics. Flow, 1, E14.CrossRefGoogle Scholar
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2010. Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics. 2nd ed. Cambridge University Press.Google Scholar
Grinstein, F. F., Saenz, J. A., Rauenzahn, R. M., Germano, M., and Israel, D. M. 2020. Dynamic Bridging Modeling for Coarse Grained Simulations of Shock Driven Turbulent Mixing. Physics of Fluids, 199, 104430.Google Scholar
Gritskevich, M. S., Garbaruk, A. V., Schütze, J., and Menter, F. R. 2012. Development of DDES and IDDES Formulations for the k – ω Shear Stress Transport Model. Flow, Turbulence and Combustion, 88(3), 431–449.CrossRefGoogle Scholar
Güven, O., Farrel, C., and Patel, V. C. 1980. Surface-Roughness Effects on the Mean Flow Past Circular Cylinders. Journal of Fluid Mechanics, 98(4), 673–701.CrossRefGoogle Scholar
Haase, W., Braza, M., and Revell, A. (eds). 2009. DESider – An European Effort on Hybrid RANS-LES Modelling. Results of the European-Union Funded Project, 2004–2007. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103. Springer-Verlag.Google Scholar
Haller, G. 2005. An Objective Definition of a Vortex. Journal of Fluid Mechanics, 525, 1–26.CrossRefGoogle Scholar
Hamba, F. 2011. Analysis of Filtered Navier–Stokes Equation for Hybrid RANS/LES Simulation. Physics of Fluids, 23(015108).CrossRefGoogle Scholar
Hanjalić, K. 2005. Will RANS Survive LES? A View of Perspectives. Journal of Fluids Engineering, 127(5), 831–839.CrossRefGoogle Scholar
Hanjalić, K., and Launder, B. 2011. Modelling Turbulence in Engineering and the Environment. Second-Moment Routes to Closure. 1st ed. Cambridge University Press.CrossRefGoogle Scholar
Heinz, S. 2020. A Review of Hybrid RANS-LES Methods for Turbulent Flows: Concepts and Applications. Progress in Aerospace Sciences, 114, 100597.CrossRefGoogle Scholar
Hussain, A. K. M. F., and Reynolds, W. C. 1970. The Mechanics of an Organized Wave in Turbulent Shear Flow. Journal of Fluid Mechanics, 41(2), 241–258.CrossRefGoogle Scholar
Jasak, H. 1996. Error Analysis and Estimation in the Finite Volume Method with Applications to Fluid Flows. Ph.D. thesis, Imperial College of Science, Technology and Medicine, London, United Kingdom.Google Scholar
Jeong, J., and Hussain, F. 1995. On the Identification of a Vortex. Journal of Fluid Mechanics, 285, 69–94.CrossRefGoogle Scholar
Juretic, F. 2004. Error Analysis in Finite Volume CFD. Ph.D. thesis, Imperial College of Science, Technology and Medicine, London, United Kingdom.Google Scholar
Keating, A., Piomelli, U., Balaras, E., and Kaltenbach, H.-J. 2004. A Priori and A Posteriori Tests of Inflow Conditions for Large-Eddy Simulation. Physics of Fluids, 16(12), 4696–4712.CrossRefGoogle Scholar
Kida, S., and Takaoka, M. 1994. Vortex Reconnection. Annual Review of Fluid Mechanics, 26, 169–177.CrossRefGoogle Scholar
Kim, Y., Castro, I. P., and Xie, Z.-T. 2013. Divergence-Free Turbulence Inflow Conditions for Large-Eddy Simulations with Incompressible Flow Solvers. Computers & Fluids, 84, 56–68.CrossRefGoogle Scholar
Kok, J. C. 2017. A Stochastic Backscatter Model for Grey-Area Mitigation in Detached Eddy Simulations. Flow, Turbulence and Combustion, 99(1), 119–150.Google Scholar
Kok, J. C., Dol, H. S., Oskam, B., and van der Ven, H. 2004. Extra-Large Eddy Simulation of Massively Separated Flows. In: Proceedings of the 42nd American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Koopmann, G. H. 1967. The Vortex Wakes of Vibrating Cylinders at Low Reynolds Numbers. Journal of Fluid Mechanics, 28(3), 501–512.CrossRefGoogle Scholar
Lakshmipathy, S., and Girimaji, S. S. 2006. Partially-Averaged Navier–Stokes Method for Turbulent Flows: kω Model Implementation. In: Proceedings of the 44th American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Laporte, F., and Leweke, T. 2002. Elliptic Instability of Counter-Rotating Vortices: Experiment and Direct Numerical Simulation. American Institute of Aeronautics and Astronautics (AIAA) Journal, 40(12), 2483–2494.Google Scholar
Lawson, T. V., Anthony, K. C., Cockrell, D. J., Davenport, A. G., Flint, A. R., Freeston, D. H., Harris, R. I., Lyons, R. A., Mayne, J. R., Melling, R. J., Mowatt, G. A., Pedersen, J. R. C., Richards, D. J. W., Scruton, C., and Whitbread, R. E. 1986. Mean Forces, Pressures and Flow Field Velocities for Circular Cylindrical Structures: Single Cylinder with Two-Dimensional Flow. Technical Report ESDU 80025. Engineering Sciences Data Unit (ESDU), London, UK.Google Scholar
Leweke, T., and Williamson, C. 1998. Cooperative Elliptic Instability of a Vortex Pair. Journal of Fluid Mechanics, 360, 85–119.CrossRefGoogle Scholar
Leweke, T., Le, Dizés, S., and Williamson, C. H. K. 2016. Dynamics and Instabilities of Vortex Pairs. Annual Review of Fluid Mechanics, 48(1), 507–541.CrossRefGoogle Scholar
Livescu, D., Wei, T., and Brady, P. T. 2021. Rayleigh–Taylor Instability with Gravity Reversal. Physica D, 417, 132832.CrossRefGoogle Scholar
Lund, T. S., Wu, X., and Squires, K. D. 1998. Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations. Journal of Computational Physics, 140(2), 233–258.CrossRefGoogle Scholar
Mansoor, M. M., Dalton, S. M., Martinez, A. A., Desjardins, T., Charonko, J. J., and Prestridge, K. P. 2020. The Effect of Initial Conditions on Mixing Transition of the Richtmyer–Meshkov Instability. Journal of Fluid Mechanics, 904, A3.CrossRefGoogle Scholar
Menter, F., Hüppe, A., Matyushenko, A., and Kolmogorov, D. 2021. An Overview of Hybrid RANS–LES Models Developed for Industrial CFD. Applied Sciences, 11, 2459.CrossRefGoogle Scholar
Menter, F. R. 2016. Stress-Blended Eddy Simulation (SBES) – A New Paradigm in Hybrid RANS-LES Modeling. In: Proceedings of the 6th Hybrid RANS-LES Methods (HRLM) Symposium.Google Scholar
Menter, F. R., and Egorov, Y. 2010. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description. Flow, Turbulence and Combustion, 85(1), 113–138.CrossRefGoogle Scholar
Menter, F. R., and Kuntz, M. 2004. Adaptation of Eddy–Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles. In: Symposium on the Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains, McCallen, R., Browand, F., and Ross, J. (eds). Lecture Notes in Applied and Computational Mechanics, vol. 19. Springer.Google Scholar
Menter, F. R., Kuntz, M., and Bender, R. 2003a. A Scale-Adaptive Simulation Model for Turbulent Flow Predictions. In: Proceedings of the 41st American Institute of Aeronautics and Astronautics (AIAA) Aerospace Science Meeting and Exhibit.CrossRefGoogle Scholar
Menter, F. R., Kuntz, M., and Langtry, R. 2003b. Ten Years of Industrial Experience with the SST Turbulence Model. Pages 625–632 of: Proceedings of the 4th Turbulence, Heat and Mass Transfer.Google Scholar
Menter, F. R., Schütze, J., and Kurbatskii, K. A. 2011 (27–30 June). Scale-Resolving Simulation Techniques in Industrial CFD. In: Proceedings of the 6th American Institute of Aeronautics and Astronautics (AIAA) Theoretical Fluid Mechanics Conference.CrossRefGoogle Scholar
Mocket, C., Haase, W., and Schwamborn, D. (eds). 2018. Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES Methods. Results of the 7th Framework Research Project Go4Hybrid, Funded by the European Union, 2013–2015. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 134. Springer-Verlag.Google Scholar
Nelson, N. J., and Grinstein, F. F. 2015. Effects of Initial Condition Spectral Content on Shock-Driven Turbulent Mixing. Physical Review E, 92, 013014.CrossRefGoogle ScholarPubMed
Norberg, C. 1994. An Experimental Investigation of the Flow around a Circular Cylinder: Influence of Aspect Ratio. Journal of Fluid Mechanics, 258, 287–316.CrossRefGoogle Scholar
Norberg, C. 2002 (17–20 December). Pressure Distributions around a Circular Cylinder in Cross-Flow. In: Proceedings of the Symposium on Bluff Body Wakes and Vortex-Induced Vibrations – BBVIV-3.Google Scholar
Norberg, C. 2003. Fluctuating Lift on a Circular Cylinder: Review and New Measurements. Journal of Fluids and Structures, 17(1), 57–96.CrossRefGoogle Scholar
Norberg, C., and Sundén, B. 1987. Turbulence and Reynolds Number Effects on the Flow and Fluid Forces on a Single Cylinder in Cross Flow. Journal of Fluids and Structures, 1(3), 337–357.CrossRefGoogle Scholar
Oberkampf, W. L., and Roy, C. J. 2010. Verification and Validation in Scientific Computing. 1st ed. Cambridge University Press.CrossRefGoogle Scholar
Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. 2008. Experimental and Numerical Studies of the Flow over a Circular Cylinder at Reynolds Number 3900. Physics of Fluids, 20(085101,).CrossRefGoogle Scholar
Pereira, F. S. 2012 (October). Verification of ReFRESCO with the Method of Manufactured Solutions. M.Phil. thesis, Instituto Superior Técnico, Lisbon, Portugal.Google Scholar
Pereira, F. S., Vaz, G., and Eça, L. 2014 (28–30 September). On the Use of Hybrid Turbulence Models. In: 17th Numerical Towing Tank Symposium (NuTTS 2014).Google Scholar
Pereira, F. S., Vaz, G., and Eça, L. 2015 (15–18 September). An Assessment of Scale-Resolving Simulation Models for the Flow around a Circular Cylinder. In: Proceedings of the Eighth International Symposium On Turbulence Heat and Mass Transfer.CrossRefGoogle Scholar
Pereira, F. S., Vaz, G., Eça, L., and Girimaji, S. S. 2018a. Simulation of the Flow around a Circular Cylinder at Re= 3900 with Partially-Averaged Navier–Stokes Equations. International Journal of Heat and Fluid Flow, 69, 234–246.CrossRefGoogle Scholar
Pereira, F. S., Vaz, G., and Eça, L. 2019a. Evaluation of RANS and SRS Methods for Simulation of the Flow around a Circular Cylinder in the Sub-Critical Regime. Ocean Engineering, 186(106067).CrossRefGoogle Scholar
Pereira, F. S., Eça, L., and Vaz, G. 2019b. Investigating the Effect of the Closure in Partially-Averaged Navier–Stokes Equations. Journal of Fluids Engineering, 141(121402).CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021a. Modeling and Simulation of Transitional Rayleigh–Taylor Flow with Partially-Averaged Navier–Stokes Equations. Physics of Fluids, 33, 115118.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021b. Modeling and Simulation of Transitional Taylor–Green Vortex Flow with Partially Averaged Navier–Stokes Equations. Physical Review Fluids, 6, 054611.Google Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021c. Partially Averaged Navier–Stokes Equations Closure Modeling for Variable-Density Turbulent Flow. Physical Review Fluids, 6, 084602.Google Scholar
Pereira, F. S., Eça, L., Vaz, G., and Girimaji, S. S. 2021d. Toward Predictive RANS and SRS Computations of Turbulent External Flows of Practical Interest. Archives of Computational Methods in Engineering, 28, 3953–4029.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., and Eça, L. 2022. Verification and Validation: The Path to Predictive Scale-Resolving Simulations of Turbulence. ASME Journal of Verification, Validation, and Uncertainty Quantification, 7(2), 021003.Google Scholar
Pereira, F. S., Eça, L., Vaz, G., and Girimaji, S. S. 2018b. Challenges in Scale-Resolving Simulations of Turbulent Wake Flows with Coherent Structures. Journal of Computational Physics, 363, 98–115.CrossRefGoogle Scholar
Pereira, F. S., Eça, L., Vaz, G., and Girimaji, S. S. 2019c. On the Simulation of the Flow around a Circular Cylinder at Re = 140,000. International Journal of Heat and Fluid Flow, 76, 40–56.CrossRefGoogle Scholar
Pereira, F. S., Barthel, A., Bachman, S., Maltrud, M., Asay-Davis, A., Roberts, A., and van Roekel, L. 2024. Influence of Regionally Mesh Refinement and Enhanced Physics on Ocean Simulations Fidelity. Journal of Advances in Modeling Earth Systems, (In elaboration).Google Scholar
Piomelli, U., and Balaras, E. 2002. Wall-Layer Models for Large-Eddy Simulations. Annual Review of Fluid Mechanics, 34(1), 349–374.CrossRefGoogle Scholar
Piomelli, U., Balaras, E., Pasinato, H., Squires, K. D., and Spalart, P. R. 2003. The Inner-Outer Layer Interface in Large-Eddy Simulations with Wall-Layer Models. International Journal of Heat and Fluid Flow, 24(4), 538–550.CrossRefGoogle Scholar
Piquet, J. 1999. Turbulent Flows – Models and Physics. 2nd ed. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Pope, S. B. 1999. Modeling Complex Turbulent Flows. Pages 53–67 of: A Perspective on Turbulence Modeling. ICASE LaRC Interdisciplinary Series in Science and Engineering, vol. 7. Springer.Google Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Prasad, A., and Williamson, C. H. K. 1997a. The Instability of the Shear Layer Separating from a Bluff Body. Journal of Fluid Mechanics, 333, 375–402.CrossRefGoogle Scholar
Prasad, A., and Williamson, C. H. K. 1997b. Three-Dimensional Effects in Turbulent Bluff-Body Wakes. Journal of Fluid Mechanics, 343, 235–265.CrossRefGoogle Scholar
Rajagopalan, S., and Antonia, R. A. 2005. Flow around a Circular Cylinder – Structure of the Near Wake Shear Layer. Experiments in Fluids, 38(4), 393–402.CrossRefGoogle Scholar
Rayleigh, L. 1882. Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density. Proceedings of the London Mathematical Society, 14, 170–177.Google Scholar
Roache, P. J. 1998. Verification and Validation in Computational Science and Engineering. 1st ed. Hermosa Publishers.Google Scholar
Rotta, J. C. 1972. Turbulente Stromungen. Teubner Verlag.CrossRefGoogle Scholar
Sadeh, W. Z., and Saharon, D. B. 1982 (November). Turbulence Effect on Crossflow around a Circular Cylinder at Subcritical Reynolds Numbers. NASA Contractor Report 3622. National Aeronautics and Space Administration (NASA), Lewis Research Center, Cleveland, USA.Google Scholar
Saenz, J. A., Aslangil, D., and Livescu, D. 2021. Filtering, Averaging, and Scale Dependency in Homogeneous Variable Density Turbulence. Physics of Fluids, 33, 025115.CrossRefGoogle Scholar
Sagaut, P., Deck, S., and Terracol, M. 2006. Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.CrossRefGoogle Scholar
Schiestel, R. 1987. Multiple-Time-Scale Modeling of Turbulent Flows in One-Point Closures. Physics of Fluids, 30(3), 722–731.Google Scholar
Schiestel, R. 2008. Modeling and Simulation of Turbulent Flows. 1st ed. ISTE/Wiley.CrossRefGoogle Scholar
Schiestel, R., and Chaouat, B. 2022. Turbulence Modeling and Simulation Advances in CFD during the Past 50 Years. Comptes Rendus: Mécanique, 1–29.Google Scholar
Schiestel, R., and Dejoan, A. 2005. Towards a New Partially Integrated Transport Model for Coarse Grid and Unsteady Turbulent Flow Simulations. Theoretical and Computational Fluid Dynamics, 18(6), 443–468.CrossRefGoogle Scholar
Sharp, D. H. 1987. An Overview of Rayleigh–Taylor Instability. Physica D: Nonlinear Phenomena, 12(1–3), 3–18.Google Scholar
Shur, M. L., Spalart, P. R., Strelets, M. Kh., and Travin, A. K. 2008. A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modelled LES Capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649.CrossRefGoogle Scholar
Silva, T. S., Zecchetto, M., and da Silva, C. B. 2018. The Scaling of the Turbulent/Non-Turbulent Interface at High Reynolds Numbers. Journal of Fluid Mechanics, 843, 156–179.CrossRefGoogle Scholar
Slotnick, J. P., Khodadoust, A., Alonso, J., Darmofal, D., Lurie, W. Gropp E., and Mavriplis, D. J. 2014. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Techreport NASA/CR–2014-218178. National Aeronautics and Space Administration (NASA), Langley Research Center, Hampton, Virginia, USA.Google Scholar
Smagorinsky, J. 1963. General Circulation Experiments with the Primitive Equation I: The Basic Experiment. Monthly Weather Review, 91, 99–164.2.3.CO;2>CrossRefGoogle Scholar
Smirnov, A., Shi, S., and Celik, I. 2001. Random Flow Generation Technique for Large Eddy Simulations and Particle Dynamics Modeling. Journal of Fluids Engineering, 123(2), 359–371.CrossRefGoogle Scholar
Son, J. S., and Hanratty, T. J. 1969. Velocity Gradients at the Wall for Flow around a Cylinder at Reynolds Numbers from 5 × 103 to 105. Journal of Fluid Mechanics, 35(2), 353–368.CrossRefGoogle Scholar
Spalart, P. R. 2000. Strategies for Turbulence Modelling and Simulations. International Journal of Heat and Fluid Flow, 21(3), 252–263.CrossRefGoogle Scholar
Spalart, P. R. 2001. Young-Person’s Guide to Detached-Eddy Simulation Grids. Technical Report CR-2001-211032. National Aeronautics and Space Administration (NASA), Langley Research Center, Hampton, USA.Google Scholar
Spalart, P. R., and Venkatakrishnan, V. 2016. On the Role and Challenges of CFD in the Aerospace Industry. The Aeronautical Journal, 120(1223), 209–232.CrossRefGoogle Scholar
Spalart, P. R., Jou, W.-H., Strelets, M., and Allmaras, S. R. 1997. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In: Proceedings of the 1st Air Force Office of Scientific Research (AFOSR) International Conference on DNS/LES.Google Scholar
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. Kh., and Travin, A. 2006. A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics, 20, 181–195.CrossRefGoogle Scholar
Speziale, C. G. 1997. Computing Non-Equilibrium Turbulent Flows with Time-Dependent RANS and VLES. In: 15th International Conference on Numerical Methods in Fluid Dynamics, Kutler, P., and Chattot, J. Flores, J. J. (eds). Lecture Notes in Physics, vol. 490. Springer.Google Scholar
Speziale, C. G. 1998. Turbulence Modeling for Time-Dependent RANS and VLES: A Review. AIAA Journal, 36(2), 173–184.CrossRefGoogle Scholar
Szepessy, S., and Bearman, P. W. 1992. Aspect Ratio and End Plate Effects on Vortex Shedding from a Circular Cylinder. Journal of Fluid Mechanics, 234, 191–217.CrossRefGoogle Scholar
Tabor, G. R., and Baba-Ahmadi, M. H. 2010. Inlet Conditions for Large Eddy Simulation: A Review. Computers & Fluids, 39(4), 553–567.CrossRefGoogle Scholar
Taylor, G. 1950. The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. Proceeding of the Royal Society A, 201(1065), 192–196.Google Scholar
Taylor, G. I., and Green, A. E. 1937. Mechanism of the Production of Small Eddies from Large Ones. Proceedings of the Royal Society A, 158.Google Scholar
Tennekes, H., and Lumley, J. 1999. First Course of Turbulence. 7th ed. MIT Press.Google Scholar
Thornber, B., Drikakis, D., Youngs, D. L., and Williams, R. J. R. 2010. The Influence of Initial Conditions on Turbulent Mixing due to Richtmyer–Meshkov Instability. Journal of Fluid Mechanics, 654, 99–139.CrossRefGoogle Scholar
Thorpe, S. A. 2007. An Introduction to Ocean Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Tokumaru, P. T., and Dimotakis, P. E. 1991. Rotary Oscillation Control of a Cylinder Wake. Journal of Fluid Mechanics, 224, 77–90.CrossRefGoogle Scholar
Trucano, T. G., Pilch, M., and Oberkampf, W. L. 2002 (March). General Concepts for Experimental Validation of ASCI Code Applications. Technical Report SAND2002-0341. Sandia National Laboratories, Albuquerque, USA.Google Scholar
Valente, P. C., da Silva, C. B., and Pinho, P. T. 2014. The Effect of Viscoelasticity on the Turbulent Kinetic Energy Cascade. Journal of Fluid Mechanics, 760, 39–62.CrossRefGoogle Scholar
Virk, D., Hussain, F., and Kerr, R. M. 1995. Compressible Vortex Reconnection. Journal of Fluid Mechanics, 304, 47–86.CrossRefGoogle Scholar
West, G. S., and Apelt, C. J. 1982. The Effects of Tunnel Blockage and Aspect Ratio on the Mean Flow Past a Circular Cylinder with Reynolds Numbers between 104 and 105. Journal of Fluid Mechanics, 114, 361–377.CrossRefGoogle Scholar
Wilcox, D. C. 1988. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. American Institute of Aeronautics and Astronautics Journal, 26(11), 1299–1310.CrossRefGoogle Scholar
Wilcox, D. C. 2006. Turbulence Modeling for CFD. 3rd ed. La Cañada, USA: DCW Industries.Google Scholar
Williamson, C. H. K. 1996. Vortex Dynamics in the Cylinder Wake. Annual Review of Fluid Mechanics, 28, 477–539.CrossRefGoogle Scholar
Yao, J., and Hussain, F. 2020. Separation Scaling for Viscous Vortex Reconnection. Journal of Fluid Mechanics Rapids, 900(R4).Google Scholar
Zdravkovich, M. M. 1997. Flow Around Circular Cylinders. Volume 1: Fundamentals. First ed. Oxford Science Publications.CrossRefGoogle Scholar
Zhou, Y. 2017a. Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flow, Turbulence, and Mixing. I. Physics Reports, 720–722, 1–136.Google Scholar
Zhou, Y. 2017b. Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flow, Turbulence, and Mixing. II. Physics Reports, 723–725, 1–160.Google Scholar

References

Abbà, A., and Germano, M. 2012. A Mixed RANS/LES Model Applied to the Channel Flow. Pages 217–222 in Progress in Turbulence V, Talamelli, A., Oberlack, M., and Peinke, J. (eds). Springer.Google Scholar
Abbà, A., and Valdettaro, L. 2023. Tensorial Turbulent Viscosity Model for LES: Properties and Applications. Pages 9–20 in From Kinetic Theory to Turbulence Modeling – The Legacy of Carlo Cercignani, Barbante, P., Belgiorno, F. D., Lorenzani, S., and Valdettaro, L. (eds). Springer.Google Scholar
Abbà, A., Cimarelli, A., Klein, M., Ferrero, A., Grinstein, F. F., Larocca, F., Saenz, J. A., Scovazzi, G., and Germano, M. 2021. The Filtering Approach as a Tool for Modeling and Analyzing Turbulence. Pages 67–77 in Progress in Turbulence IX, Örlü, R., Talamelli, A., Peinke, J., and Oberlack, M. (eds). Proceedings in Physics, vol. 267. Springer.Google Scholar
Aubry, N. 1991. On the Hidden Beauty of the Proper Orthogonal Decomposition. Theoretical and Computational Fluid Dynamics, 2, 339–352.CrossRefGoogle Scholar
Boussinesq, J. 1877. Essai sur la théorie des eaux courantes. Memoires presentes par divers savants a l’Académie des sciences, 26, 1–680.Google Scholar
Bull, R., and Jameson, A. 2016. Explicit Filtering and Exact Reconstruction of the Sub-Filter Stresses in Large Eddy Simulation. Journal of Computational Physics, 306, 117–136.CrossRefGoogle Scholar
Celik, I., Cehreli, Z. N., and Yavuz, I. 2005. Index of Resolution Quality for Large Eddy Simulations. Journal of Fluids Engineering, 127, 949–958.CrossRefGoogle Scholar
Celik, I., Klein, M., Freitag, M., and Janicka, J. 2006. Assessment Measures for URANS/DES/LES: an Overview with Applications. Journal of Turbulence, 7, N48.CrossRefGoogle Scholar
Chang, N., Yuan, Z., and Wang, J. 2022. The Effect of Sub-Filter Scale Dynamics in Large Eddy Simulation of Turbulence. Physics of Fluids, 34, 095104.CrossRefGoogle Scholar
Cimarelli, A., Abbà, A., and Germano, M. 2019. General Formalism for a Reduced Description and Modelling of Momentum and Energy Transfer in Turbulence. Journal of Fluid Mechanics, 866, 865–896.CrossRefGoogle Scholar
Errante, M., Klein, M., Ferrero, A., Larocca, F., Scovazzi, G., and Germano, M. 2023. Mixed Averaging Procedures. Flow Turbulence and Combustion. Vol. 112, pag. 1001–1008, (2024).Google Scholar
Eyink, G. L. 2007–2008. Course Notes for Turbulence Theory. www.ams.jhu.edu/~eyink/Turbulence/notes.html.Google Scholar
Ferrero, A., Larocca, F., Scovazzi, G., and Germano, M. 2021. A Numerical Study of the Spanwise Turbulence Past a Cylinder Flow. Pages 91–96 in Progress in Turbulence IX, Örlü, R., Talamelli, A., Peinke, J., and Oberlack, M. (eds). Springer Proceedings in Physics, vol. 267.Google Scholar
Fröhlich, J., and von Terzi, D. 2008. Hybrid LES/RANS Methods for the Simulation of Turbulent Flows. Progress in Aerospace Sciences, 44(5), 349–377.CrossRefGoogle Scholar
Fuchs, L. 1996. An Exact SGS model for LES. Pages 23–26 in Advances in Turbulence VI, vol. 36, Gavrilakis, S., Machiels, L., and Monkewitz, P. A. (eds). Springer.Google Scholar
Galanti, B., and Tsinober, A. 2004. Is Turbulence Ergodic? Physics Letters, A330, 173–180.Google Scholar
Germano, M. 1986a. A Proposal for a Redefinition of the Turbulent Stress in the Filtered Navier–Stokes Equations. Physics of Fluids, 29, 2323–2324.Google Scholar
Germano, M. 1986b. Differential Filters for the Large Eddy Numerical Simulation of Turbulent Flows. Physics of Fluids, 29, 1755–1757.Google Scholar
Germano, M. 1986c. Differential Filters of Elliptic Type. Physics of Fluids, 29, 1757–1758.Google Scholar
Germano, M. 1990. Averaging Invariance of the Turbulent Equations and Similar Subgrid Modeling. Center for Turbulence Research Report, 116.Google Scholar
Germano, M. 1992. Turbulence: the Filtering Approach. Journal of Fluid Mechanics, 238, 325–336.CrossRefGoogle Scholar
Germano, M. 1996. A Statistical Formulation of the Dynamic Model. Physics of Fluids, 8, 565–570.CrossRefGoogle Scholar
Germano, M. 1998. Comment on “Turbulence Modeling for Time-Dependent RANS and VLES: A Review”. AIAA Journal, 36(9), 1766.CrossRefGoogle Scholar
Germano, M. 2000. Fundamentals of Large Eddy Simulation. Pages 81–130 in Advanced Turbulent Flows Computations, Peyret, R. and Krause, E. (eds). Springer.Google Scholar
Germano, M. 2004. Properties of the Hybrid RANS/ LES filter. Theoretical and Computational Fluid Dynamics, 17, 225–231.CrossRefGoogle Scholar
Germano, M. 2007. A Direct Relation between the Filtered Subgrid Stress and the Second Order Structure Function. Physics of Fluids, 19, 038102/2.CrossRefGoogle Scholar
Germano, M. 2014. On the Hybrid RANS-LES of Compressible flows. Pages 253–263 in Progress in Hybrid RANS-LES Modelling, Lamballais, E., Friedrich, R., Geurts, B. J., and Métais, O. (eds). Springer.Google Scholar
Germano, M. 2015. The Similarity Subgrid Stresses Associated to the Approximate Van Cittert Deconvolutions. Physics of Fluids, 27, 035111.CrossRefGoogle Scholar
Germano, M. 2023. Turbulence without Fluctuations. Pages 129–139 in From Kinetic Theory to Turbulence Modeling – The Legacy of Carlo Cercignani, Barbante, L. P., Belgiorno, F. D., Lorenzani, S., and Valdettaro, L. (eds). Springer.Google Scholar
Germano, M., and Sagaut, P. 2006. Formal Properties of the Additive RANS/DNS Filter. Pages 127–134 in Direct and Large-Eddy Simulation V, Lamballais, E., Friedrich, R., Geurts, B. J., and Métais, O. (eds). Springer.Google Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1990. A Dynamic Subgrid-Scale Eddy Viscosity Model. Proceedings of the 1990 Summer Program, 5–17.Google Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids, A3, 1760–1765.Google Scholar
Germano, M., Abbà, A., Cimarelli, A., Ferrero, A., Grinstein, F. F., Klein, M., Larocca, F., Saenz, J. A., and Scovazzi, G. 2021. The Filtering Approach as a Tool for Modeling and Analyzing Turbulence. Pages 67–77 in Progress in Turbulence IX, Örlü, R., Talamelli, A., Peinke, J., and Oberlack, M. (eds). Springer Proceedings in Physics, vol. 267.Google Scholar
Ghosal, S., Lund, T., Moin, P., and Akselvoll, K. 1995. A Dynamic Localization Model for Large-Eddy Simulation of Turbulent Flows. Journal of Fluid Mechanics, 286, 229–255.CrossRefGoogle Scholar
Girimaji, S. S. 2006. Partially Averaged Navier–Stokes Model for Turbulence: A Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 73, 413–421.Google Scholar
Grinstein, F. F. 2016. Coarse Grained Simulation and Turbulent Mixing. Cambridge University Press.CrossRefGoogle Scholar
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2010. Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics. 2nd ed. Cambridge University Press.Google Scholar
Grinstein, F. F., Saenz, J. A., Rauenzahn, R. M., Germano, M., and Israel, D. M. 2020. Dynamic Bridging Modeling for Coarse Grained Simulations of Shock Driven Turbulent Mixing. Computers and Fluids, 199, 104430.CrossRefGoogle Scholar
Grinstein, F. F., Pereira, F. S., and Rider W., J. 2023. Numerical Approximations Formulated as LES Models. Pages 393–434 in Numerical Methods in Turbulence Simulation, Moser, R. D. (ed). Academic Press.Google Scholar
GS, S., and Candler, G. V. 2018. Subgrid-Scale Effects in Compressible Variable-Density Decaying Turbulence. Journal of Fluid Mechanics, 846, 428–459.Google Scholar
Guermond, J. L., Oden, J. T., and Prudhomme, S. 2004. Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows. Journal of Mathematical Fluid Mechanics, 6, 194–248.CrossRefGoogle Scholar
Hamba, F. 2011. Analysis of Filtered Navier–Stokes Equation for Hybrid RANS/LES Simulation. Physics of Fluids, 23, 015108/13.CrossRefGoogle Scholar
Härtel, C., Kleiser, L., Unger, F., and Friedrich, R. 1994. Subgrid Scale Energy Transfer in the Near Wall Region of Turbulent Flows. Physics of Fluids, 6, 3130–3143.CrossRefGoogle Scholar
Harten, A. 1996. Multiresolution Representation of Data: A General Framework. SIAM Journal on Numerical Analysis, 33(3), 1205–1256.CrossRefGoogle Scholar
Kampé de Fériet, J. 1957a. La Notion de Moyenne Dans la Thèorie de la Turbulence. Rendiconti del Seminario Matematico e Fisico di Milano, 27, 167–207.Google Scholar
Kampé de Fériet, J. 1957b. Problèmes Mathématiques de la Théorie de la Turbulence Homogène. Pages 1–104 in Corso Sulla Teoria Della Turbolenza, Varenna 1–10 Settembre 1957, Torino, Italy, Levrotto e Bella, (ed) Re-edited by Springer, (2011).Google Scholar
Kampé de Fériet, J., and Betchov, R. 1951. Theoretical and Experimental Averages of Turbulent Functions. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 53, 389–398.Google Scholar
Klein, M., and Germano, M. 2018. Decomposition of the Reynolds Stress from Filtered Data. Physical Review Fluids, 3, 114606.CrossRefGoogle Scholar
Klein, M., and Germano, M. 2021. Analysis and Modelling of the Commutation Error. Fluids, 6(15).Google Scholar
Kuerten, J. G. M., Geurts, B. J., Vreman, A. W., and M., Germano. 1999. Dynamic Inverse Modeling and its Testing in Large Eddy Simulations of the Mixing Layer. Physics of Fluids, 11, 3778–3785.CrossRefGoogle Scholar
Lee, J. 1995. Chaos and Direct Numerical Simulation in Turbulence. Theoretical and Computational Fluid Dynamics, 7, 363–395.CrossRefGoogle Scholar
Leonard, A. 1975. Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows. Advances in Geophysics, 18A, 237–248.CrossRefGoogle Scholar
Lilly, D. K. 1992. A Proposed Modification of the Germano Subgrid Scale Closure Method. Physics of Fluids, A4, 633–635.Google Scholar
Lilly, D. K. 1966. On the Application of the Eddy Viscosity Concept in the Inertial Sub-Range of Turbulence. NCAR Manuscript, 123, Boulder, Colorado, USA.Google Scholar
Meneveau, C. 2012. Germano Identity-Based Subgrid-Scale Modeling: A Brief Survey of Variations on a Fertile Theme. Physics of Fluids, 24, 121301.CrossRefGoogle Scholar
Moin, P., and Kim, J. 1982. Numerical Investigation of Turbulent Channel Flow. Journal of Fluid Mechanics, 118, 341–377.CrossRefGoogle Scholar
Moser, R. D., Haering, S. W., and Yalla, G. R. 2021. Statistical Properties of Subgrid-Scale Turbulence Models. Annual Review of Fluid Mechanics, 53, 255–286.CrossRefGoogle Scholar
Najafiyazdi, M., Mongeau, L., and S., Nadarajah. 2023. Large Eddy Simulation on Unstructured Grids Using Explicit Differential Filtering: A Case Study of Taylor–Green Vortex. Journal of Computational Physics, 476, 111833.CrossRefGoogle Scholar
Nini, M., Abbà, A., Germano, M., and Restelli, M. 2016. Analysis of a Hybrid RANS/LES Model Using RANS Reconstruction. Pages 83–86 in Progress in Turbulence VI, Peinke, J., Kampers, G., Oberlack, M., Wac lawczyk, M., and Talamelli, A. (eds). Springer.Google Scholar
Oberlack, M. 1997. Invariant Modelling in Large-Eddy Simulation of Turbulence. Pages 3–22 in Annual Research Briefs. Center for Turbulence Research, Moin, P. (ed).Google Scholar
Otte, M. 2005. Mathematics, Sign and Activity. Pages 9–22 in Activity and Science – Grounding Mathematics, Hoffman, M. H. G., Lenhard, J. and Seeger, F. (eds). Springer.Google Scholar
Papoulis, A. 1965. Probability, Random Variables and Stochastic Processes. International Student Edition ed. Kogakusha, McGraw-Hill, LTD.Google Scholar
Pereira, F. S., Eça, L., Vaz, G., and Girimaji, S. S. 2021. Toward Predictive RANS and SRS Computations of Turbulent External Flows of Practical Interest. Archives of Computational Methods in Engineering, 28, 3953–4029.Google Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., and Eça, L. 2022. Verification and Validation: The Path to Predictive Scale-Resolving Simulations of Turbulence. ASME Journal of Verification, Validation, and Uncertainty Quantification, 7(2), 021003.Google Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Pope, S. B. 2004. Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows. New Journal of Physics, 6, 35.CrossRefGoogle Scholar
Rajamani, B., and Kim, J. 2010. A Hybrid-Filter Approach to Turbulence Simulation. Flow, Turbulence and Combustion, 85, 421–441.CrossRefGoogle Scholar
Reynolds, O. 1895. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philosophical Transactions of the Royal Society of London, A186, 123–164.Google Scholar
Richardson, L. F. 1927. The Deferred Approach to the Limit. Philosophical Transactions of the Royal Society of London Series, A226, 229–361.Google Scholar
Roache, P. J. 1997. Quantification of Uncertainty in Computational Fluid Dynamics. Annual Reviews of Fluid Mechanics, 29, 123–160.CrossRefGoogle Scholar
Sagaut, P. (2006). Large Eddy Simulation for Incompressible Flows. Springer, New York, USA, 3rd edition.Google Scholar
Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.Google Scholar
Sagaut, P., and Deck, S. 2009. Large Eddy Simulations for Aerodynamics: Status and Perspectives. Philosophical Transactions of the Royal Society of London, A367, 2849–2860.Google Scholar
San, O., Staples, A. E., and Iliescu, T. 2013. Approximate Deconvolution Large Eddy Simulation of a Stratified Two-Layer Quasigeostrophic Ocean Model. Ocean Modeling, 3, 1–20.Google Scholar
Sánchez-Rocha, M., and Menon, S. 2009. The Compressible Hybrid RANS/LES Formulation Using an Additive Operator. Journal of Computational Physics, 228, 2037–2062.CrossRefGoogle Scholar
Schiestel, R., and Dejoan, A. 2005. Towards a New Partially Integrated Transport Model for Coarse Grid and Unsteady Turbulent Flow Simulations. Theoretical and Computational Fluid Dynamics, 18, 443–468.CrossRefGoogle Scholar
Schumann, U. 1975. Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli. Journal of Computational Physics, 18, 376–404.CrossRefGoogle Scholar
Scotti, A., and Piomelli, U. 2001. Numerical Simulation of Pulsating Turbulent Channel Flow. Physics of Fluids, 13, 1367–1384.CrossRefGoogle Scholar
Smagorinsky, J. 1963. General Circulation Experiments with the Primitive Equations. I The Basic Experiment. Monthly Weather Reviews, 91, 99–164.Google Scholar
Spalart, P. R., Jou, W. H., Strelets, M., and Allmaras, S. R. 1997. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In: Advances in DNS/LES, Liu C., Liu Z. (eds). Greyden Press.Google Scholar
Speziale, C. G. 1985. Galilean Invariance of Subgrid-Scale Stress Models in the Large Eddy Simulation of Turbulence. Journal of Fluid Mechanics, 156, 55–62.CrossRefGoogle Scholar
Speziale, C. G. 1998. Turbulence Modeling for Time-Dependent RANS and VLES: A Review. AIAA Journal, 36(2), 173–184.CrossRefGoogle Scholar
Stolz, S., and Adams, N. A. 1999. An Approximate Deconvolution Procedure for Large Eddy Simulation. Physics of Fluids, 11, 1699–1701.CrossRefGoogle Scholar
Taneda, S. 1956. Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers. Journal of the Physical Society of Japan, 11, 1104–1108.Google Scholar
Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Tsinober, A. 2014. The Essence of Turbulence as a Physical Phenomenon. 1st ed. Springer.CrossRefGoogle Scholar
van Dyke, M. 1982. An Album of Fluid Motion. The Parabolic Press.CrossRefGoogle Scholar
Warming, R. F., and Hyett, B. J. 1974. The Modified Equation Approach and the Stability and Accuracy Analysis of Finite-Difference Methods. Journal of the Physical Society, 14, 159–179.Google Scholar
Werlé, M. 1982. Transition et décollement: visualisations en tunnel hydrodynamique de l’ONERA. https://publis.onera.fr/DOC169704_s1.pdf.Google Scholar

References

Aitzhan, A., Sammak, S., Givi, P., and Nouri, A. G. 2022a. PeleLM-FDF large eddy simulator of turbulent reacting flows. Combustion Theory and Modelling, 26(6), 1–18.Google Scholar
Aitzhan, A., Nouri, A. G., Givi, P., and Babaee, H. 2022b. Reduced order modeling of turbulence-chemistry interactions using dynamically bi-orthonormal decomposition. ArXiv:2201.02097.CrossRefGoogle Scholar
Aliramezani, M., Koch, C. R., and Shahbakhti, M. 2022. Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions. Progress in Energy and Combustion Science, 88, 100967.CrossRefGoogle Scholar
Ansari, N., Jaberi, F. A., Sheikhi, M. R. H., and Givi, P. 2011a. Filtered density function as a modern CFD tool. Engineering Applications of Computational Fluid Dynamics, 1, 1–22.Google Scholar
Ansari, N., Goldin, G. M., Sheikhi, M. R. H., and Givi, P. 2011b. Filtered density function simulator on unstructured meshes. Journal of Computational Physics, 230(19), 7132–7150.CrossRefGoogle Scholar
Ansari, N., Pisciuneri, P. H., Strakey, P. A., and Givi, P. 2012. Scalar-filtered mass-density-function simulation of swirling reacting flows on unstructured grids. AIAA Journal, 50(11), 2476–2482.CrossRefGoogle Scholar
Ansari, N., Strakey, P. A., Goldin, G. M., and Givi, P. 2015. Filtered density function simulation of a realistic swirled combustor. Proceedings of the Combustion Institute, 35, 1433–1442.CrossRefGoogle Scholar
Bao, T., Chen, S., Johnson, T. T., Givi, P., Sammak, S., and Jia, X. 2022. Physics guided neural networks for spatio-temporal super-resolution of turbulent flows. Pages 118–128 in Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence. PMLR.Google Scholar
Beishuizen, N. A. 2008. PDF modelling and particle-turbulence interaction of turbulent spray flames. Thesis, Delft University of Technology.Google Scholar
Bhaya, R., De, A., and Yadav, R. 2014. Large eddy simulation of mild combustion using PDF-based turbulence-chemistry interaction models. Combustion Science and Technology, 186(9), 1138–1165.CrossRefGoogle Scholar
Bode, M., Gauding, M., Lian, Z., Denker, D., Davidovic, M., Kleinheinz, K., Jitsev, J., and Pitsch, H. 2019. Using physics-informed super-resolution generative adversarial networks for subgrid modeling in turbulent reactive flows. ArXiv:1911.11380.Google Scholar
Borghi, R. 2021. Ted O’Brien and turbulent combustion. Physics of Fluids, 33(8), 080401.CrossRefGoogle Scholar
Bray, K. N. C., Champion, M., Libby, P. A., and Swaminathan, N. 2006. Finite rate chemistry and presumed PDF models for premixed turbulent combustion. Combustion and Flame, 146(4), 665–673.CrossRefGoogle Scholar
Brunton, S. L., Noack, B. R., and Koumoutsakos, P. 2020. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52, 477–508.CrossRefGoogle Scholar
Cary, A., Chawner, E. D., Gropp, W., Kleb, B., Kolonay, R., Nielsen, E., and Smith, B. 2022. Realizing the vision of CFD in 2030. Computing in Science & Engineering, 24, 64–70.CrossRefGoogle Scholar
Chen, S., Sammak, S., Givi, P., Yurko, J. P., and Jia, X. 2021a. Reconstructing high-resolution turbulent flows using physics-guided neural networks. In: 2021 IEEE International Conference on Big Data. IEEE.Google Scholar
Chen, Z. X., Iavarone, S., Ghiasi, G., Kannan, V., D’Alessio, G., Parente, A., and Swaminathan, N. 2021b. Application of machine learning for filtered density function closure in MILD combustion. Combustion and Flame, 225, 160–179.CrossRefGoogle Scholar
Cleary, M. J., and Klimenko, A. Y. 2011. A detailed quantitative analysis of sparse-Lagrangian filtered density function simulations in constant and variable density reacting jet flows. Physics of Fluids, 23(11), 115102.CrossRefGoogle Scholar
Cleary, M. J., Klimenko, A. Y., Janicka, J., and Pfitzner, M. 2009. A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames. Proceedings of the Combustion Institute, 32 I(1), 1499–1507.Google Scholar
Colucci, P. J., Jaberi, Farhad A., Givi, P., and Pope, S. B. 1998. Filtered density function for large eddy simulation of turbulent reacting flows. Physics of Fluids, 10(2), 499–515.CrossRefGoogle Scholar
Curl, R. L. 1963. Dispersed phase mixing: I. Theory and effects in simple reactors. AIChE Journal, 9(2), 175–181.CrossRefGoogle Scholar
Damasceno, M. M. R., de Freitas Santos, J. G., and Vedovoto, J. M. 2018. Simulation of turbulent reactive flows using a FDF methodology: Advances in particle density control for normalized variables. Computers & Fluids, 170, 128–140.CrossRefGoogle Scholar
Dopazo, C. 1973. Non-isothermal turbulent reactive flows: Stochastic approaches. Thesis, State University of New York at Stony Brook.Google Scholar
Dopazo, C. 1976. A probabilistic approach to turbulent flame theory. Acta Astronautica, 3(9-10), 853–878.CrossRefGoogle Scholar
Dopazo, C. 1994. Recent developments in PDF methods. In: Turbulent Reacting Flows. Academic Press.Google Scholar
Dopazo, C., and O’Brien, E. E. 1974a. An approach to the autoignition of a turbulent mixture. Acta Astronautica, 1(9), 1239–1266.CrossRefGoogle Scholar
Dopazo, C., and O’Brien, E. E. 1974b. Functional formulation of nonisothermal turbulent reactive flows. Physics of Fluids, 17(11), 1968–1975.Google Scholar
Drozda, T. G., Sheikhi, M. R. H., Madnia, C. K., and Givi, P. 2007. Developments in formulation and application of the filtered density function. Flow, Turbulence and Combustion, 78(1), 35–67.Google Scholar
Duraisamy, K. 2021. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence. Physical Review Fluids, 6(5), 050504.CrossRefGoogle Scholar
Durbin, P. A., and Speziale, C. G. 1994. Realizability of second-moment closure via stochastic analysis. Journal of Fluid Mechanics, 280, 395–407.CrossRefGoogle Scholar
Fox, R. O. 2003. Computational Models for Turbulent Reacting Flows. Cambridge University Press.CrossRefGoogle Scholar
Frankel, S. H., Jiang, T. L., and Givi, P. 1992. Modeling of isotropic reacting turbulence by a hybrid mapping-EDQNM closure. AIChE Journal, 38(4), 535–543.CrossRefGoogle Scholar
Frankel, S. H., Adumitroaie, V., Madnia, C. K., and Givi, P. 1993. Large eddy simulations of turbulent reacting flows by assumed PDF methods. In: Engineering Applications of Large Eddy Simulations. ASME.Google Scholar
Fukami, K., Fukagata, K., and Taira, K. 2019. Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 870(May), 106–120.CrossRefGoogle Scholar
Galindo-Lopez, S., Salehi, F., Cleary, M. J., Masri, A. R., Neuber, G., Stein, O. T., Kronenburg, A., Varna, A., Hawkes, E. R., Sundaram, B., et al. 2018. A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion. Computers & Fluids, 172, 410–425.CrossRefGoogle Scholar
Gao, F., and O’Brien, E. E. 1993. A large-eddy simulation scheme for turbulent reacting flows. Physics of Fluids, 5(6), 1282–1284.Google Scholar
Garnier, E., Adams, N., and Sagaut, P. 2009. Large Eddy Simulation for Compressible Flows. Springer.CrossRefGoogle Scholar
Gatski, T. B., and Jongen, T. 2000. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Progress in Aerospace Sciences, 36(8), 655–682.CrossRefGoogle Scholar
Gatski, Thomas B, Sarkar, Sutanu, and Speziale, Charles G. 2012. Studies in Turbulence. Springer.Google Scholar
Ge, H. 2006. Probability density function modeling of turbulent non-reactive and reactive spray flows. Thesis, Ruprecht-Karls-Universität Heidelberg.Google Scholar
Ge, H., and Gutheil, E. 2006. Probability density function (PDF) simulation of turbulent spray flows. Atomization and Sprays, 16(5), 531–542.CrossRefGoogle Scholar
Ge, H., and Gutheil, E. 2008. Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combustion and Flame, 153(1-2), 173–185.CrossRefGoogle Scholar
Ge, H., Düwel, I., Kronemayer, H., Dibble, R. W., Gutheil, E., Schulz, C., and Wolfrum, J. 2008. Laser-based experimental and Monte Carlo PDF numerical investigation of an ethanol/air spray flame. Combustion Science and Technology, 180(8), 1529–1547.CrossRefGoogle Scholar
Ge, Y., Cleary, M. J., and Klimenko, A. Y. 2013. A comparative study of Sandia flame series (D-F) using sparse-Lagrangian MMC modelling. Proceedings of the Combustion Institute, 34(1), 1325–1332.CrossRefGoogle Scholar
Georgiadis, N. J., Rizzetta, D. P., and Fureby, C. 2010. Large-eddy simulation: Current capabilities, recommended practices, and future research. AIAA Journal, 48(8), 1772–1784.CrossRefGoogle Scholar
Germano, M. 1992. Turbulence: The filtering approach. Journal of Fluid Mechanics, 238, 325–336.CrossRefGoogle Scholar
Germano, M. 1996. A statistical formulation of dynamic model. Physics of Fluids, 8(2), 565–570.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760–1765.CrossRefGoogle Scholar
Gicquel, L. Y. M., Givi, P., Jaberi, F. A., and Pope, S. B. 2002. Velocity filtered density function for large eddy simulation of turbulent flows. Physics of Fluids, 14(3), 1196–1213.CrossRefGoogle Scholar
Givi, P. 1989. Model-free simulations of turbulent reactive flows. Progress in Energy and Combustion Science, 15(1), 1–107.CrossRefGoogle Scholar
Givi, P. 2006. Filtered density function for subgrid scale modeling of turbulent combustion. AIAA Journal, 44(1), 16–23.CrossRefGoogle Scholar
Givi, P. 2021. Perspective: Machine learning and quantum computing for reactive turbulence modeling and simulation. Mechanics Research Communications, 116, 103759.CrossRefGoogle Scholar
Givi, P., Daley, A. J., Mavriplis, D., and Malik, M. 2020. Quantum speedup for aeroscience and engineering. AIAA Journal, 58(8), 3715–3727.CrossRefGoogle Scholar
Gounder, J. D., Kourmatzis, A., and Masri, A. R. 2012. Turbulent piloted dilute spray flames: Flow fields and droplet dynamics. Combustion and flame, 159(11), 3372–3397.Google Scholar
Gourianov, N. 2022. Exploiting the structure of turbulence with tensor networks. Thesis, University of Oxford.Google Scholar
Gourianov, N., Lubasch, M., Dolgov, S., van den Berg, Q. Y., Babaee, H., Givi, P., Kiffner, M., and Jaksch, D. 2022. A quantum-inspired approach to exploit turbulence structures. Nature Computational Science, 2, 30–37.CrossRefGoogle ScholarPubMed
Grigoriu, M. 1995. Applied Non-Gaussian Processes. Prentice-Hall.Google Scholar
Han, W., Raman, V., and Chen, Z. 2016. LES/PDF modeling of autoignition in a lifted turbulent flame: Analysis of flame sensitivity to differential diffusion and scalar mixing time-scale. Combustion and Flame, 171, 69–86.CrossRefGoogle Scholar
Haworth, D. C., and Pope, S. B. 1986. A second-order Monte Carlo method for the solution of the Ito stochastic differential equation. Stochastic Analysis and Applications, 151–186.CrossRefGoogle Scholar
Haworth, D. C., and Pope, S. B. 1987a. Monte Carlo solutions of a joint PDF equation for turbulent flows in general orthogonal coordinates. Journal of Computational Physics, 72(2), 311–346.CrossRefGoogle Scholar
Haworth, D. C, and Pope, S. B. 1987b. A PDF modeling study of self-similar turbulent free shear flows. Physics of Fluids, 30(4), 1026–1044.Google Scholar
Haworth, D. C. 2010. Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science, 36(2), 168–259.CrossRefGoogle Scholar
Heinz, S. 2007. Unified turbulence models for LES and RANS, FDF and PDF simulations. Theoretical and Computational Fluid Dynamics, 21(2), 99–118.Google Scholar
Hopf, E. 1952. Statistical hydromechanics and functional calculus. Journal National Mechanics and Analysis, 1, 87–123.Google Scholar
Ievlev, V. M. 1973. Equations for the finite-dimensional probability distributions of pulsating variables in a turbulent flow. Dokl. Akad. Nauk SSSR, 208(5), 1044–1047. English translation: Soviet Physics Doklady 18, 117–119.Google Scholar
Ihme, M., Chung, W. T., and Mishra, A. A. 2022. Combustion machine learning: Principles, progress and prospects. Progress in Energy and Combustion Science, 91, 101010.CrossRefGoogle Scholar
Inkarbekov, M., Aitzhan, A., Kaltayev, A., and Sammak, S. 2020. A GPU-accelerated filtered density function simulator of turbulent reacting flows. International Journal of Computational Fluid Dynamics, 34(6), 381–396.CrossRefGoogle Scholar
Jaberi, F. A., Colucci, P. J., James, S., Givi, P., and Pope, S. B. 1999. Filtered mass density function for large-eddy simulation of turbulent reacting flows. Journal of Fluid Mechanics, 401, 85–121.CrossRefGoogle Scholar
Janicka, J., Kolbe, W., and Kollmann, W. 1979. Closure of the transport equation for the probability density function of turbulent scalar fields. Journal of Non-Equilibrium Thermodynamics, 4(1), 47–66.CrossRefGoogle Scholar
Jenny, P., Roekaerts, D., and Beishuizen, N. 2012. Modeling of turbulent dilute spray combustion. Progress in Energy and Combustion Science, 38(6), 846–887.CrossRefGoogle Scholar
Jiang, T.-L., and O’Brien, E. E. 1991. Simulation of scalar mixing by stationary isotropic turbulence. Physics of Fluids, 3(6), 1612–1624.Google Scholar
Klimenko, A. Y., and Pope, S. B. 2003. The modeling of turbulent reactive flows based on multiple mapping conditioning. Physics of Fluids, 15(7), 1907–1925.CrossRefGoogle Scholar
Kloeden, P. E., Platen, E., and Schurz, H. 1997. Numerical Solution of Stochastic Differential Equations through Computer Experiments. 2nd ed. Springer.Google Scholar
Kolla, H., Rogerson, J. W., Chakraborty, N., and Swaminathan, N. 2009. Scalar dissipation rate modeling and its validation. Combustion Science and Technology, 181(3), 518–535.CrossRefGoogle Scholar
Kolla, H. 2010. Scalar dissipation rate based flamelet modelling of turbulent premixed flames. Thesis, University of Cambridge.Google Scholar
Kuo, K. K., and Acharya, R. 2012. Fundamentals of Turbulent and Multiphase Combustion. Wiley.Google Scholar
Kuo, Y.-Y., and O’Brien, E. E. 1981. Two‐point probability density function closure applied to a diffusive‐reactive system. Physics of Fluids, 24(2), 194–201.Google Scholar
Kuron, M., Ren, Z., Hawkes, E. R., Zhou, H., Kolla, H., Chen, J. H., and Lu, T. 2017. A mixing timescale model for TPDF simulations of turbulent premixed flames. Combustion and Flame, 177, 171–183.CrossRefGoogle Scholar
Ladeinde, F., Givi, P., and Dopazo, C. 2021. Preface to special issue: In memory of Edward E. (Ted) O’Brien. Physics of Fluids, 33(8), 080402.CrossRefGoogle Scholar
Launder, B. E., and Spalding, D. B. 1972. Lectures in Mathematical Modeling of Turbulence. Academic Press.Google Scholar
Lindstedt, R. P., Louloudi, S. A., and Váos, E. M. 2000. Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proceedings of the Combustion Institute, 28(1), 149–156.CrossRefGoogle Scholar
Liu, J., and Wang, H. 2022. Machine learning assisted modeling of mixing timescale for LES/PDF of high-Karlovitz turbulent premixed combustion. Combustion and Flame, 238, 111895.CrossRefGoogle Scholar
Lu, T., and Law, C. K. 2009. Toward accommodating realistic fuel chemistry in large-scale computations. Progress in Energy and Combustion Science, 35(2), 192–215.CrossRefGoogle Scholar
Lundgren, T. S. 1967. Distribution functions in the statistical theory of turbulence. Physics of Fluids, 10(5), 969–975.Google Scholar
Lundgren, T. S. 1969. Model equation for nonhomogeneous turbulence. Physics of Fluids, 12(3), 485–497.Google Scholar
Lundgren, T. S. 1972. A closure hypothesis for the hierarchy of equations for turbulent probability distribution functions. In: Statistical Models and Turbulence. Springer.Google Scholar
Madnia, C. K., and Givi, P. 1993. Direct numerical simulation and large eddy simulation of reacting homogeneous turbulence. In: Large Eddy Simulations of Complex Engineering and Geophysical Flows. Cambridge University Press.Google Scholar
Madnia, C. K., Jaberi, F. A., and Givi, P. 2006. Large eddy simulation of heat and mass transport in turbulent flows. In: Handbook of Numerical Heat Transfer, 2nd ed. Wiley.Google Scholar
Magnussen, B. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. In: 19th Aerospace Sciences Meeting.CrossRefGoogle Scholar
McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology, 27(2), 255–265.CrossRefGoogle Scholar
Meester, R. 2012. Analysis of scalar mixing in hybrid RANS-PDF calculations of turbulent gas and spray flames. Thesis, Ghent University.Google Scholar
Meier, W., Weigand, P., Duan, X. R., and Giezendanner-Thoben, R. 2007. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combustion and Flame, 150(1–2), 2–26.CrossRefGoogle Scholar
Miller, R. S., and Foster, J. W. 2016. Survey of turbulent combustion models for large-eddy simulations of propulsive flowfields. AIAA Journal, 54(10), 2930–2946.CrossRefGoogle Scholar
Mira, D., Pérez Sánchez, E. J., Borrell, R., and Houzeaux, G. 2022. HPC-enabling technologies for high-fidelity combustion simulations. Proceedings of the Combustion Institute.CrossRefGoogle Scholar
Mohammadi, K., Immonen, J., Blackburn, L. D., Tuttle, J. F., Andersson, K., and Powell, K. M. 2022. A review on the application of machine learning for combustion in power generation applications. Reviews in Chemical Engineering.Google Scholar
Mokhtarpoor, R., Turkeri, H., and Muradoglu, M. 2014. A new robust consistent hybrid finite-volume/particle method for solving the PDF model equations of turbulent reactive flows. Computers & Fluids, 105, 39–57.CrossRefGoogle Scholar
Monin, A. S., and Yaglom, A. M. 1975. Statistical Fluid Mechanics. MIT Press.Google Scholar
Muradoglu, M., Jenny, P., Pope, S. B., and Caughey, D. A. 1999. A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. Journal of Computational Physics, 154(2), 342–371.CrossRefGoogle Scholar
Naderi, M. H., and Babaee, H. 2023. Adaptive sparse interpolation for accelerating nonlinear stochastic reduced-order modeling with time-dependent bases. Computer Methods in Applied Mechanics and Engineering, 405, 115813.CrossRefGoogle Scholar
Naud, B. 2003. PDF modeling of turbulent sprays and flames using a particle stochastic approach. Thesis, Technische Universiteit Delft.Google Scholar
Nik, M., Yilmaz, S., Sheikhi, M. R. H., and Givi, P. 2010. Grid resolution effects on VSFMDF/LES. Flow, Turbulence and Combustion, 85(3–4), 677–688.CrossRefGoogle Scholar
Nonaka, A., Day, M. S., and Bell, J. B. 2018. A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I: Single-level integration. Combustion Theory and Modelling, 22(1), 156–184.CrossRefGoogle Scholar
Nouri, A. G., Nik, M. B., Givi, P., Livescu, D., and Pope, S. B. 2017. Self-contained filtered density function. Physical Review Fluids, 2(9), 094603.CrossRefGoogle Scholar
Nouri, A. G., Babaee, H., Givi, P., Chelliah, H. K., and Livescu, D. 2022. Skeletal model reduction with forced optimally time dependent modes. Combustion and Flame, 235, 111684.CrossRefGoogle Scholar
O’Brien, E. E. 1980. The probability density function (PDF) approach to reacting turbulent flows. In: Turbulent Reacting Flows. Springer.Google Scholar
Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips, J. C. 2008. GPU computing. Proceedings of the IEEE, 96(5), 879–899.CrossRefGoogle Scholar
Pisciuneri, P. H., Yilmaz, S. L., Strakey, P. A., and Givi, P. 2013. An irregularly portioned FDF simulator. SIAM Journal of Scientific Computing, 35(4), C438C452.CrossRefGoogle Scholar
Pitsch, H., and Attili, A. 2020. Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer.CrossRefGoogle Scholar
Pope, S. B. 1976. The probability approach to the modelling of turbulent reacting flows. Combustion and Flame, 27, 299–312.CrossRefGoogle Scholar
Pope, S. B. 1977. The implications of the probability equations for turbulent combustion models. Combustion and Flame, 29, 235–246.CrossRefGoogle Scholar
Pope, S. B. 1979a. A rational method of determining probability distributions in turbulent reacting flows. Journal of Non-Equilibrium Thermodynamics, 4, 309–320.CrossRefGoogle Scholar
Pope, S. B. 1979b. The relationship between the probability approach and particle models for reaction in homogeneous turbulence. Combustion and Flame, 35, 41–45.CrossRefGoogle Scholar
Pope, S. B. 1981a. A Monte Carlo method for the PDF equations of turbulent reactive flow. Combustion Science and Technology, 25, 159–174.CrossRefGoogle Scholar
Pope, S. B. 1981b. Transport equation for the joint probability density function of velocity and scalars in turbulent flow. Physics of Fluids, 24(4), 588–596.Google Scholar
Pope, S. B. 1982. An improved turbulent mixing model. Combustion Science and Technology, 28, 131–145.CrossRefGoogle Scholar
Pope, S. B. 1985. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science, 11(2), 119–192.CrossRefGoogle Scholar
Pope, S. B. 1991. Computations of turbulent combustion: Progress and challenges. Symposium (International) on Combustion, 23(1), 591–612.CrossRefGoogle Scholar
Pope, S. B. 1994a. Lagrangian PDF methods for turbulent flows. Annual Review of Fluid Mechanics, 23, 63.Google Scholar
Pope, S. B. 1994b. On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Physics of Fluids, 6(2), 973–985.CrossRefGoogle Scholar
Pope, S. B. 1995. Particle method for turbulent flows: Integration of stochastic model equations. Journal of Computational Physics, 117(2), 332–349.CrossRefGoogle Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Pope, S. B. 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6(1), 35.CrossRefGoogle Scholar
Pope, S. B. 2013a. A model for turbulent mixing based on shadow-position conditioning. Physics of Fluids, 25(11).CrossRefGoogle Scholar
Pope, S. B. 2013b. Small scales, many species and the manifold challenges of turbulent combustion. Proceedings of the Combustion Institute, 34(1), 1–31.CrossRefGoogle Scholar
Popov, P. P., and Pope, S. B. 2014. Large eddy simulation/probability density function simulations of bluff body stabilized flames. Combustion and Flame, 161(12), 3100–3133.CrossRefGoogle Scholar
Popov, P. P., Wang, H., and Pope, S. B. 2015. Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows. Journal of Computational Physics, 294, 110–126.CrossRefGoogle Scholar
Raissi, M., Babaee, H., and Givi, P. 2019. Deep learning of turbulent scalar mixing. Physical Review Fluids, 4(Dec), 124501.CrossRefGoogle Scholar
Raju, M. S. 2002. On the importance of chemistry/turbulence interactions in spray computations. Numerical Heat Transfer: Part B: Fundamentals, 41(5), 409–432.CrossRefGoogle Scholar
Raman, V., and Pitsch, H. 2007. A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proceedings of the Combustion Institute, 31, 1711–1719.CrossRefGoogle Scholar
Raman, V., Fox, R. O., and Harvey, A. D. 2004. Hybrid finite-volume/transported PDF simulations of a partially premixed methane–air flame. Combustion and Flame, 136(3), 327–350.CrossRefGoogle Scholar
Raman, V., Pitsch, H., and Fox, R. O. 2006. Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion. Combustion Theory and Modelling, 10(3), 439–458.CrossRefGoogle Scholar
Ramezanian, D., Nouri, A. G., and Babaee, H. 2021. On-the-fly reduced order modeling of passive and reactive species via time-dependent manifolds. Computer Methods in Applied Mechanics and Engineering, 382, 113882.CrossRefGoogle Scholar
Ren, J., Wang, H., Wang, C., Luo, K., and Fan, J. 2023. A-priori and a-posterior studies of filtered probability density function models and NO formation prediction in turbulent stratified premixed combustion using machine learning. Fuel, 333, 126358.CrossRefGoogle Scholar
Ren, Z., and Goldin, G. M. 2011. An efficient time scale model with tabulation of chemical equilibrium. Combustion and Flame, 158(10), 1977–1979.CrossRefGoogle Scholar
Ren, Z., Lu, Z., Hou, L., and Lu, L. 2014. Numerical simulation of turbulent combustion: Scientific challenges. Science China Physics, Mechanics & Astronomy, 57(8), 1495–1503.CrossRefGoogle Scholar
Reveillon, J., and Vervisch, L. 2000. Accounting for spray vaporization in non-premixed turbulent combustion modeling: A single droplet model (SDM). Combustion and Flame, 121(1–2), 75–90.CrossRefGoogle Scholar
Rieth, M., Chen, J. Y., Menon, S., and Kempf, A. M. 2019. A hybrid flamelet finite-rate chemistry approach for efficient LES with a transported FDF. Combustion and Flame, 199, 183–193.CrossRefGoogle Scholar
Sabelnikov, V., and Soulard, O. 2005. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker–Planck equations for probability density functions of turbulent reactive scalars. Physical Review E, 72(1), 1–22.Google ScholarPubMed
Sagaut, P. 2010. Large Eddy Simulation for Incompressible Flows. 3rd ed. Springer.Google Scholar
Sammak, S., Brazell, M. J., Givi, P., and Mavriplis, D. J. 2016. A hybrid DG-Monte Carlo FDF simulator. Computers & Fluids, 140(13), 158–166.CrossRefGoogle Scholar
Sammak, S., Aitzhan, A., Givi, P., and Madnia, C. K. 2020a. High fidelity spectral-FDF-LES of turbulent scalar mixing. Combustion Science and Technology, 192(7), 1219–1232.CrossRefGoogle Scholar
Sammak, S., Ren, Z., and Givi, P. 2020b. Modern developments in filtered density function. In: Modeling and Simulation of Turbulent Mixing and Reaction: For Power, Energy and Flight. Springer.Google Scholar
Sheikhi, M. R. H. 2005. Joint velocity-scalar filtered density function for large eddy simulation of turbulent reacting flows. Thesis, University of Pittsburgh.Google Scholar
Sheikhi, M. R. H., Drozda, T. G., Givi, P., and Pope, S. B. 2003. Velocity-scalar filtered density function for large eddy simulation of turbulent flows. Physics of Fluids, 15(8), 2321–2337.CrossRefGoogle Scholar
Sheikhi, M. R. H., Givi, P., and Pope, S. B. 2007. Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Physics of Fluids, 19(9), 095106.CrossRefGoogle Scholar
Sheikhi, M. R. H., Givi, P., and Pope, S. B. 2009. Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows. Physics of Fluids, 21(7), 075102.CrossRefGoogle Scholar
Shi, Y., GreenJr, W. H.,Wong, H.-W., and Oluwole, O. O. 2011. Redesigning combustion modeling algorithms for the Graphics Processing Unit (GPU): Chemical kinetic rate evaluation and ordinary differential equation integration. Combustion and Flame, 158(5), 836–847.CrossRefGoogle Scholar
Sitaraman, H., Yellapantula, S., Henry de Frahan, M. T., Perry, B., Rood, J., Grout, R., and Day, M. 2021. Adaptive mesh based combustion simulations of direct fuel injection effects in a supersonic cavity flame-holder. Combustion and Flame, 232, 111531.CrossRefGoogle Scholar
Slotnick, J. P., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and Mavriplis, D. J. 2014. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Report. NASA: Washington, DC, USA.Google Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91(3), 99–164.2.3.CO;2>CrossRefGoogle Scholar
So, R. M. C., and Speziale, C. G. 1999. A review of turbulent heat transfer modeling. Annual Review of Heat Transfer, 10, 177–220.CrossRefGoogle Scholar
Spafford, K., Meredith, J., Vetter, J., Chen, J. H., Grout, R., and Sankaran, R. 2009. Accelerating S3D: A GPGPU case study. In: European Conference on Parallel Processing. Springer.Google Scholar
Speziale, C. G. 1991. Analytical methods for the development of Reynolds-stress closures in turbulence. Annual Review of Fluid Mechanics, 23(1), 107–157.CrossRefGoogle Scholar
Speziale, C. G. 1998. Turbulence modeling for time-dependent RANS and VLES: A review. AIAA Journal, 36(2), 173–184.CrossRefGoogle Scholar
Stein, O. T., Böhm, B., Dreizler, A., and Kempf, A. M. 2011. Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications. Flow, Turbulence and Combustion, 2(87), 425–447.Google Scholar
Stratonovich, R. L. 1963. Introduction to the Theory of Random Noise. Gordon and Breach.Google Scholar
Su, X., Wei, J., Wang, X., Zhou, H., Hawkes, E. R., and Ren, Z. 2023. A pairwise mixing model with kernel constraint and its appraisal in transported PDF simulations of ethylene flames. Combustion and Flame, 255, 112916.CrossRefGoogle Scholar
Subramaniam, A., Wong, M. L., Borker, R., Nimmagadda, S., and Lele, S. K. 2020. Turbulence enrichment using physics-informed generative adversarial networks. ArXiv:2003.01907.Google Scholar
Subramaniam, S., and Pope, S. B. 1998. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combustion and Flame, 115(4), 487–514.CrossRefGoogle Scholar
Tang, J. C. K., Wang, H., Bolla, M., Wehrfritz, A., and Hawkes, E. R. 2019. A DNS evaluation of mixing and evaporation models for TPDF modelling of nonpremixed spray flames. Proceedings of the Combustion Institute, 37(3), 3363–3372.Google Scholar
Tang, J. C. K. 2018. Modelling of multiphase flames using direct numerical simulation and transported PDF methods. Thesis, University of New South Wales.Google Scholar
Tang, Q., Zhao, W., Bockelie, M., and Fox, R. O. 2007. Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics. Combustion Theory and Modelling, 11(6), 889–907.CrossRefGoogle Scholar
Taulbee, D. B. 1989. Engineering turbulence models. In: Advances in Turbulence. Hemisphere Publishing Co.Google Scholar
Tirunagari, R. R., and Pope, S. B. 2016. LES/PDF for premixed combustion in the DNS limit. Combustion Theory and Modelling, 20(5), 834–865.Google Scholar
Turkeri, H., Zhao, X., Pope, S. B., and Muradoglu, M. 2019a. Large eddy simulation/probability density function simulations of the Cambridge turbulent stratified flame series. Combustion and Flame, 199, 24–45.CrossRefGoogle Scholar
Turkeri, H., Pope, S. B., and Muradoglu, M. 2019b. A LES/PDF simulator on block-structured meshes. Combustion Theory and Modelling, 23(1), 1–41.CrossRefGoogle Scholar
Valino, L. 1998. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow, Turbulence and Combustion, 60(2), 157–172.CrossRefGoogle Scholar
Villermaux, J., and Devillon, J. C. 1972. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modele d’interaction phénoménologique. In: Proceedings of the 2nd International Symposium on Chemical Teaction Engineering. Elsevier.Google Scholar
Vreman, A. W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16(10), 3670–3681.CrossRefGoogle Scholar
Wang, H., and Zhang, P. 2017. A unified view of pilot stabilized turbulent jet flames for model assessment across different combustion regimes. Proceedings of the Combustion Institute, 36(2), 1693–1703.CrossRefGoogle Scholar
Wang, H., Pant, T., and Zhang, P. 2018. LES/PDF modeling of turbulent premixed flames with locally enhanced mixing by reaction. Flow, Turbulence and Combustion, 100(1), 147–175.CrossRefGoogle Scholar
Wang, M. 2012. Combustion simulations using graphic processing units. Thesis, University of Connecticut.Google Scholar
Wilcox, D. C. 2006. Turbulence Modeling for CFD. 3rd ed. DCW Industries, Inc.Google Scholar
Wouters, H. A., Peeters, T. W., and Roekaerts, D. J. 1996. On the existence of a generalized Langevin model representation for second-moment closures. Physics of Fluids, 8(7), 1702–1704.CrossRefGoogle Scholar
Xie, W., Xie, Q., Zhou, H., and Ren, Z. 2019. An exponential distribution scheme for the two-way coupling in transported PDF method for dilute spray combustion. Combustion Theory and Modelling, 24(1), 105–128.Google Scholar
Xu, G., Daley, A. J., Givi, P., and Somma, R. D. 2018. Turbulent mixing simulation via a quantum algorithm. AIAA Journal, 56(2), 687–699.CrossRefGoogle Scholar
Xu, G., Daley, A. J., Givi, P., and Somma, R. D. 2019. Quantum algorithm for the computation of the reactant conversion rate in homogeneous turbulence. Combustion Theory and Modelling, 23(6), 1090–1104.CrossRefGoogle Scholar
Xu, J., and Pope, S. B. 1999. Assessment of numerical accuracy of PDF/Monte Carlo methods for turbulent reacting flows. Journal of Computational Physics, 152, 192–230.CrossRefGoogle Scholar
Yang, Y., Wang, H., Pope, S. B., and Chen, J. H. 2013. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame. Proceedings of the Combustion Institute, 34(1), 1241–1249.Google Scholar
Yang, T., Yin, Y., Zhou, H., and Ren, Z. 2021. Review of Lagrangian stochastic models for turbulent combustion. Acta Mechanica Sinica, 37(9), 1349.CrossRefGoogle Scholar
Yang, T., Xie, Q., Zhou, H., and Ren, Z. 2020. On the modeling of scalar mixing timescale in filtered density function simulation of turbulent premixed flames. Physics of Fluids, 32(11), 115130.CrossRefGoogle Scholar
Yang, T., Yin, Y., Zhou, H., Mo, Y., Chen, Y., and Ren, Z. 2022. Consistent submodel coupling in hybrid particle/finite volume algorithms for zone-adaptive modelling of turbulent reactive flows. Combustion Theory and Modelling, 26(7), 1159–1184.CrossRefGoogle Scholar
Yang, T., Zhou, H., Yin, Y., and Ren, Z. 2023. Zone-adaptive modeling of turbulent flames with multiple chemical mechanisms. Proceedings of the Combustion Institute, 39(2), 2409–2418.CrossRefGoogle Scholar
Yilmaz, S. L., Nik, M. B., Sheikhi, M. R. H., Strakey, P. A., and Givi, P. 2011. An irregularly portioned Lagrangian Monte Carlo method for turbulent flow simulation. Journal of Scientific Computing, 47(1), 109–125.CrossRefGoogle Scholar
Yilmaz, S. L., Ansari, N., Pisciuneri, P. H., Nik, M. B., Otis, C. C., and Givi, P. 2013. Applied filtered density function. Journal of Applied Fluid Mechanics, 6(3), 311–320.Google Scholar
Yilmaz, L., Nik, M. B., Givi, P., and Strakey, P. A. 2010. Scalar filtered density function for large eddy simulation of a Bunsen burner. Journal of Propulsion and Power, 26(1), 84–93.CrossRefGoogle Scholar
Yin, Y., Yang, T., Zhou, H., and Ren, Z. 2022. Assessment of finite-rate chemistry effects in a turbulent dilute ethanol spray flame. Journal of Propulsion and Power, 38(4), 607–622.CrossRefGoogle Scholar
Yoshizawa, A., and Horiuti, K. 1985. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. Journal of the Physical Society of Japan, 54(8), 2834–2839.CrossRefGoogle Scholar
Zhang, P., Masri, A. R., and Wang, H. 2017. Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF. Combustion Theory and Modelling, 21(5), 897–924.Google Scholar
Zhang, Y. Z., and Haworth, D. C. 2004. A general mass consistency algorithm for hybrid particle/finite-volume PDF methods. Journal of Computational Physics, 194(1), 156–193.CrossRefGoogle Scholar
Zhao, X., Haworth, D. C., and Huckaby, E. D. 2012. Transported PDF modeling of nonpremixed turbulent CO/H2/N2 jet flames. Combustion Science and Technology, 184(5), 676–693.CrossRefGoogle Scholar
Zhou, H., Ren, Z., Rowinski, D. H., and Pope, S. B. 2020. Filtered density function simulations of a near-limit turbulent lean premixed flame. Journal of Propulsion and Power, 36(3), 381–399.CrossRefGoogle Scholar
Zhou, H., Li, Z., Yang, T., Hawkes, E. R., Ren, Z., Wang, H., and Wehrfritz, A. 2021. An evaluation of gas-phase micro-mixing models with differential mixing timescales in transported PDF simulations of sooting flame DNS. Proceedings of the Combustion Institute, 38(2), 2731–2739.CrossRefGoogle Scholar
Zhou, L., Song, Y., Ji, W., and Wei, H. 2022. Machine learning for combustion. Energy and AI, 7, 100128.CrossRefGoogle Scholar
Zhu, M., Bray, K. N. C., Rumberg, O., and Rogg, B. 2000. PDF transport equations for two-phase reactive flows and sprays. Combustion and Flame, 122(3), 327–338.CrossRefGoogle Scholar

References

Bardina, J., Ferziger, J. H., and Reynolds, W. C. 1980. Improved Sub-grid Scale Models for Large Eddy Simulation. AIAA-paper, 80(1357).Google Scholar
Berselli, L. C., Iliescu, T., and Layton, W. J. 2006. Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation. Springer.Google Scholar
Bihlo, A., and Bluman, G. 2013. Conservative parametrization schemes. Journal of Mathematical Physics, 54, 08313–1–24.CrossRefGoogle Scholar
Bytev, V. O. 1972. Group properties of the Navier–Stokes equations. Chislennye metody mehaniki sploshnoy sredy, 3, 13–17.Google Scholar
Donaldson, C. duP., and Rosenbaum, H. 1968. Calculation of the Turbulent Shear Flows through Closure of the Reynolds Equations by Invariant Modeling. Aeronautical Research Associates of Princeton.Google Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3(7), 1760–1765.CrossRefGoogle Scholar
Grigoriev, Y. N., Ibragimov, N. H., Kovalev, V. F., and Meleshko, S. V. 2010. Symmetries of Integro-Differential Equations. Springer.CrossRefGoogle Scholar
Khujadze, G., and Oberlack, M. 2004. DNS and scaling laws from new symmetry groups of ZPG turbulent nboundary layer flow. Theoretical and Computational Fluid Dynamics, 18, 391–411.CrossRefGoogle Scholar
Klingenberg, D., and Oberlack, M. 2022. Statistically invariant eddy viscosity models. Physics of Fluids, 34(5), 055114.CrossRefGoogle Scholar
Klingenberg, D., Oberlack, M., and Pluemacher, D. 2020. Symmetries and turbulence modeling. Physics of Fluids, 32(2), 025108.CrossRefGoogle Scholar
Kwasnicki, M. 2017. Ten Equivalent Definitions of the Fractional Laplace Operator. Fractional Calculus and Applied Analysis, 20(1), 7–51.CrossRefGoogle Scholar
Li, C., Li, C., Humphries, T., and Plowman, H. 2019. Remarks on the generalized fractional Laplacian operator. Mathematics, 7(4), 320.Google Scholar
Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, 4(3), 633–635.Google Scholar
Liu, S., Meneveau, C., and Katz, J. 1994. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119.CrossRefGoogle Scholar
Oberlack, M. 1997. Invariant modelling in large-eddy simulation of turbulence. Pages 3–22 in Annual Research Briefs, Moin, P. (ed). Center for Turbulence Research, Stanford University/NASA Ames, CA, USA.Google Scholar
Oberlack, M. 1999a. Similarity in non-rotating and rotating turbulent pipe flows. Journal of Fluid Mechanics, 379, 1–22.CrossRefGoogle Scholar
Oberlack, M. 1999b. Similarity in non-rotating and turbulent pipe flows. Journal of Fluid Mechanics, 379, 1–22.Google Scholar
Oberlack, M. 2000. On symmetries and invariant solutions of laminar and turbulent wall-bounded flows. Zeitschrift für Angewandte Mathematik und Mechanik, 80(11–12), 791–800.3.0.CO;2-5>CrossRefGoogle Scholar
Oberlack, M. 2001. A unified approach for symmetrics in plane parallel turbulent shear flows. Journal of Fluid Mechanics, 427, 299–328.CrossRefGoogle Scholar
Oberlack, M. 2002. On the decay exponent of isotropic turbulence. PAMM 2002, 1, 294–297.Google Scholar
Oberlack, M. 2011. On a class of SGS filters for LES with shape preserving concatenation properties. Communications in Nonlinear Science and Numerical Simulation, 16(11), 4403–4407.CrossRefGoogle Scholar
Oberlack, M., and Guenther, S. 2003. Shear-free turbulent diffusion: Classical and new scaling laws. Fluid Dynamics Research, 33, 453–476.CrossRefGoogle Scholar
Oberlack, M., and Rosteck, A. 2010. New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems – S, 3(3), 451–471.Google Scholar
Oberlack, M., Waclawczyk, M., Rosteck, A., and Avsarkisov, V. 2015. Symmetries and their importance for statistical turbulence theory. Bulletin of the JSME, Mechanical Engineering Reviews, 2(2), 1–72.Google Scholar
Oberlack, Martin, Hoyas, Sergio, Kraheberger, Stefanie V., Alcántara-Ávila, Francisco, and Laux, Jonathan. 2022. Turbulence Statistics of Arbitrary Moments of Wall-Bounded Shear Flows: A Symmetry Approach. Physical Review Letters, 128(Jan), 024502.CrossRefGoogle ScholarPubMed
Popovich, R., and Bihlo, A. 2012. Symmetry preserving parametrization schemes. Journal of Mathematical Physics, 53, 07312–1–36.Google Scholar
Razafindralandy, D., Hamdouni, A., and Oberlack, M. 2007. Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier–Stokes equations. European Journal of Mechanics – B/Fluids, 26(4), 531–550.CrossRefGoogle Scholar
Schaefer-Rolffs, U. 2019. The scale invariance criterion for geophysical fluids. European Journal of Mechanics – B/Fluids, 74, 92–98.CrossRefGoogle Scholar
Schaefer-Rolffs, U., Knöpfel, R., and Becker, E. 2015. A scale invariance criterion for LES parametrizations. Meteorologische Zeitschrift, 24(1), 3–13.CrossRefGoogle Scholar
Schumann, U. 1977. Realizability of Reynolds stress turbulence models. Physics of Fluids, 20, 721–725.Google Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Monthly Weather Review, 91, 99–107.2.3.CO;2>CrossRefGoogle Scholar
Spencer, A. J. M. 1971. Theory of invariants. Pages 239–352 in Continuum Physics, Vol. 1, Eringen, A. C. (ed). Academic Press.Google Scholar
Speziale, C. G. 1985. Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. Journal of Fluid Mechanics, 156, 55–62.Google Scholar
Vreman, B., Geurts, B., and Kuerten, H. 1994. On the formulation of the dynamic mixed subgrid-scale model. Physics of Fluids, 6(12), 4057–4059.CrossRefGoogle Scholar
Waclawczyk, M., Staffolani, N., Oberlack, M., Rosteck, A., Wilczek, M., and Friedrich, R. 2014. Statistical symmetries of the Lundgren–Monin–Novikov hierarchy. Physical Review E, 90(1), 013022.CrossRefGoogle ScholarPubMed

References

Bazilevs, Y., Calo, V. M., Cottrell, J. A., Hughes, T. J. R., Reali, A., and Scovazzi, G. 2007. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197(1–4), 173–201.CrossRefGoogle Scholar
Bernstein, David. 2007. Optimal prediction of Burgers’s equation. Multiscale Modeling and Simulation, 6(1), 27–52.CrossRefGoogle Scholar
Castillo, E., and Codina, R. 2019. Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier–Stokes problem. Computer Methods in Applied Mechanics and Engineering, 349, 701–721.CrossRefGoogle Scholar
Chorin, A., Hald, O., and Kupferman, R. 2002. Optimal prediction with memory. Journal of Physics D, 166(3–4), 239–257.Google Scholar
Codina, Ramon. 2000. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Computer Methods in Applied Mechanics and Engineering, 190(13), 1579–1599.CrossRefGoogle Scholar
Codina, Ramon. 2002. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Computer Methods in Applied Mechanics and Engineering, 191(39), 4295–4321.CrossRefGoogle Scholar
Codina, Ramon. 2008. Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Applied Numerical Mathematics, 58(3), 264–283.CrossRefGoogle Scholar
Codina, Ramon, and Blasco, Jordi. 2002. Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Computing and Visualization in Science, 4(3), 167–174.CrossRefGoogle Scholar
Codina, Ramon, Principe, Javier, Guasch, Oriol, and Badia, Santiago. 2007. Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 196(21), 2413–2430.CrossRefGoogle Scholar
Franca, L. P., Frey, S. L., and Hughes, T. J. R. 1992. Stabilized finite element methods: 1. Application to the advective–diffusive model. Computer Methods in Applied Mechanics and Engineering, 95(2), 253–276.CrossRefGoogle Scholar
Germano, M. 1992. Turbulence: the filtering approach. Journal of Fluid Mechanics, 238, 325–336.CrossRefGoogle Scholar
Ginard, Margarida Moragues. 2015. Variational multiscale stabilization and local preconditioning for compressible flow. Ph.D. thesis, Universitat Politécnica de Catalunya.Google Scholar
Gouasmi, Ayoub, Parish, Eric J., and Duraisamy, Karthik. 2017. A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism. Proceedings of the Royal Society of London A, 473(20170385).CrossRefGoogle Scholar
Hald, Ole H., and Stinis, P. 2007. Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions. Proceedings of the National Academy of Sciences, 104(16), 6527–6532.CrossRefGoogle ScholarPubMed
Heppe, Burkhard MO. 1998. Generalized Langevin equation for relative turbulent dispersion. Journal of Fluid Mechanics, 357, 167–198.CrossRefGoogle Scholar
Hughes, Thomas J. R. 1995. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgridscale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127, 387–401.CrossRefGoogle Scholar
Hughes, Thomas J. R., Feijoo, GR, Mazzei, L, and Qunicy, J. B. 1998. The variational multiscale method – a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166, 173–189.CrossRefGoogle Scholar
Hughes, T. J. R., and Sangalli, G. 2007. Variational multiscale analysis: The fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM Journal on Numerical Analysis, 45(2), 539–557.CrossRefGoogle Scholar
Lee, Wonjung. 2021. Quasi-Markovian property of strong wave turbulence. Physical Review E, 103(5), 052101.Google ScholarPubMed
Lin, Yen Ting, Tian, Yifeng, Livescu, Daniel, and Anghel, Marian. 2021. Data-driven learning for the Mori–Zwanzig formalism: A generalization of the Koopman learning framework. SIAM Journal on Applied Dynamical Systems, 20(4), 2558–2601.CrossRefGoogle Scholar
Moin, P., and Kim, J. 1980. On the numerical solution of time-dependent viscous incompressible fluid flows involving solid boundaries. Journal of Computational Physics, 381–392.CrossRefGoogle Scholar
Moser, R., Kim, J., and Mansour, N. 1999. Direct numerical simulation of channel flow up to R = 590. Physics of Fluids, 11(4), 943–945.CrossRefGoogle Scholar
Parish, Eric J. 2018. Variational Multiscale Modeling and Memory Effects in Turbulent Flow Simulations. Ph.D. thesis, University of Michigan.Google Scholar
Parish, Eric, and Duraisamy, Karthik. 2016. Reduced order modeling of turbulent flows using statistical coarse-graining. In: 46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum.CrossRefGoogle Scholar
Parish, Eric J., and Duraisamy, Karthik. 2017a. A dynamic subgrid scale model for Large Eddy Simulations based on the Mori–Zwanzig formalism. Journal of Computational Physics, 349, 154–175.CrossRefGoogle Scholar
Parish, Eric J., and Duraisamy, Karthik. 2017b. Non-Markovian closure models for large eddy simulation using the Mori–Zwanzig Formalism. Physical Review Fluids, 2(1), 014604.CrossRefGoogle Scholar
Parish, Eric J., and Duraisamy, Karthik. 2017c. A Unified Framework for Multiscale Modeling using the Mori–Zwanzig Formalism and the Variational Multiscale Method. ArXiv:1712.09669.Google Scholar
Pradhan, Aniruddhe, and Duraisamy, Karthik. 2020. Variational multiscale closures for finite element discretizations using the Mori–Zwanzig approach. Computer Methods in Applied Mechanics and Engineering, 368, 113152.CrossRefGoogle Scholar
Price, Jacob, and Stinis, Panos. 2017. Renormalized reduced order models with memory for long time prediction. ArXiv:1707.01955v1.Google Scholar
Price, Jacob R. 2018. Multiscale Techniques for Nonlinear Dynamical Systems: Applications and Theory. Ph.D. thesis, University of Washington.Google Scholar
Rogallo, Robert S. 1981 (September). Numerical Experiments in Homogeneous Turbulence. Technical Memorandum 81315. NASA.Google Scholar
Sondak, David, and Oberai, Assad A. 2012. Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation. Physics of Plasmas, 19(10), 102308.CrossRefGoogle Scholar
Stinis, Panos. 2012. Mori–Zwanzig reduced models for uncertainty quantification I: Parametric uncertainty. ArXiv:1211.4285.Google Scholar
Stinis, Panos. 2015. Renormalized Mori–Zwanzig reduced models for systems without scale separation. Proceedings of the Royal Society of London A, 471(20140446).CrossRefGoogle Scholar
Taylor, G. I., and Green, A. E. 1937. Mechanism of the production of small eddies from large ones. Proceedings of the Royal Society of London A, 158, 499–521.Google Scholar
Tian, Yifeng, Lin, Yen Ting, Anghel, Marian, and Livescu, Daniel. 2021. Data-driven learning of Mori–Zwanzig operators for isotropic turbulence. Physics of Fluids, 33(12).CrossRefGoogle Scholar
Wang, Z., and Oberai, A. A. 2010. Spectral analysis of the dissipation of the residual-based variational multiscale method. Computer Methods in Applied Mechanics and Engineering, 199(13–16).CrossRefGoogle Scholar
Woodward, Michael, Tian, Yifeng, Mohan, Arvind T, Lin, Yen Ting, Hader, Christoph, Livescu, Daniel, Fasel, Hermann F, and Chertkov, Misha. 2023. Data-driven Mori–Zwanzig: Approaching a reduced order model for hypersonic boundary layer transition. Page 1624 of: AIAA SCITECH 2023 Forum.CrossRefGoogle Scholar
Zhu, Yuanran. 2021. Nonequilibrium statistical mechanics for stationary turbulent dispersion. ArXiv:2106.07120.Google Scholar
Zhu, Yuanran, and Venturi, Daniele. 2017. Faber approximation to the Mori–Zwanzig equation. ArXiv:1708.03806v2.Google Scholar

References

Augusto, D. A., and Barbosa, H. J. C. 2000. Symbolic regression via genetic programming. Pages 173–178 in Proceedings Sixth Brazilian Symposium on Neural Networks, Vol. 1. IEEE.Google Scholar
Beck, A., and Kurz, M. 2021. A perspective on machine learning methods in turbulence modeling. GAMM-Mitteilungen, 44(1), e202100002.CrossRefGoogle Scholar
Bode, M., Gauding, M., Lian, Z., Denker, D., Davidovic, M., Kleinheinz, K., Jitsev, J., and Pitsch, H. 2021. Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows. Proceedings of the Combustion Institute, 38(2), 2617–2625.CrossRefGoogle Scholar
Brunton, S. L., Proctor, J. L., and Kutz, J. N. 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15), 3932–3937.CrossRefGoogle ScholarPubMed
Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E. 2021. Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica, 37, 1727–1738.CrossRefGoogle Scholar
Chen, J.-Y., Blasco, J. A., Fueyo, N., and Dopazo, C. 2000. An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks. Proceedings of the Combustion Institute, 28(1), 115–121.CrossRefGoogle Scholar
Chen, T., and Guestrin, C. 2016. XGBoost: A scalable tree boosting system. Pages 785–794 of: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.Google Scholar
Chung, W. T., Mishra, A. A., and Ihme, M. 2022. Interpretable data-driven methods for subgrid-scale closure in LES for transcritical LOX/GCH4 combustion. Combustion and Flame, 239, 111758.CrossRefGoogle Scholar
Duraisamy, K. 2021. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence. Phys. Rev. Fluids, 6(5), 050504.CrossRefGoogle Scholar
Duraisamy, K., Iaccarino, G., and Xiao, H. 2019. Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 51(1), 357–377.CrossRefGoogle Scholar
Ferreira, C. 2001. Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems, 13(2), 87–129.Google Scholar
Font, B., Weymouth, G. D., Nguyen, V.-T., and Tutty, O. R. 2021. Deep learning of the spanwise-averaged Navier–Stokes equations. Journal of Computational Physics, 434, 110199.CrossRefGoogle Scholar
Fukami, K., Fukagata, K., and Taira, K. 2019. Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 870, 106–120.CrossRefGoogle Scholar
Galindo, L., Perset, K., and Sheeka, F. 2021. An overview of national AI strategies and policies. https://goingdigital.oecd.org/data/notes/No14_ToolkitNote_AIStrategies.pdf. Accessed: January 15, 2023.Google Scholar
Gamahara, M., and Hattori, Y. 2017. Searching for turbulence models by artificial neural network. Phys. Rev. Fluids, 2, 054604.CrossRefGoogle Scholar
Gartner Research. 2023. Understanding Gartner’s hype cycles. www.gartner.com/en/documents/3887767. Accessed: 2023–01–12.Google Scholar
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., and Chen, T. 2018. Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377.CrossRefGoogle Scholar
Hassanian, R., Riedel, M., and Bouhlali, L. 2022. The capability of recurrent neural networks to predict turbulence flow via spatiotemporal features. Pages 000335–000338 in 2022 IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC).CrossRefGoogle Scholar
He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual learning for image recognition. Pages 770–778 in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).CrossRefGoogle Scholar
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRefGoogle ScholarPubMed
Holland, J. H. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press.CrossRefGoogle Scholar
Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.CrossRefGoogle Scholar
Hutter, F., Kotthoff, L., and Vanschoren, J. 2019. Automated Machine Learning: Methods, Systems, Challenge. Springer Nature.CrossRefGoogle Scholar
Ihme, M, Schmitt, C, and Pitsch, H. 2009. Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proceedings of the Combustion Institute, 32(1), 1527–1535.CrossRefGoogle Scholar
Ihme, M., Chung, W. T., and Mishra, A. A. 2022. Combustion machine learning: Principles, progress and prospects. Progress in Energy and Combustion Science, 91, 101010.CrossRefGoogle Scholar
Jaffri, A., and Choudhary, F. 2022. Gartner hype cycle for artificial intelligence. www.gartner.com/doc/reprints. Accessed: 2023–01–12.Google Scholar
Jolliffe, I. T., and Cadima, J. 2016. Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.Google ScholarPubMed
Kasten, C., Fahr, J., and Klein, M. 2022a. An efficient way of introducing gender into evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 27(4), 1005–1014.Google Scholar
Kasten, C., Shin, J., Sandberg, R., Pfitzner, M., Chakraborty, N., and Klein, M. 2022b. Modeling subgrid-scale scalar dissipation rate in turbulent premixed flames using gene expression programming and deep artificial neural networks. Physics of Fluids, 34(8), 085113.CrossRefGoogle Scholar
Kasten, C., Shin, J., Pfitzner, M., and Klein, M. 2022c. Modelling filtered reaction rate in turbulent premixed flames using feature importance analysis, gene expression programming and tiny artificial neural networks. International Journal of Heat and Fluid Flow, 97, 109032.CrossRefGoogle Scholar
Kempf, A., Flemming, F., and Janicka, J. 2005. Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proceedings of the Combustion Institute, 30(1), 557–565.CrossRefGoogle Scholar
Kim, J., Kim, H., Kim, J., and Lee, C. 2022. Deep reinforcement learning for large-eddy simulation modeling in wall-bounded turbulence. Physics of Fluids, 34(10), 105132.CrossRefGoogle Scholar
Koza, J. R. 1994. Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4, 87–112.CrossRefGoogle Scholar
Lapeyre, C. J., Misdariis, A., Cazard, N., Veynante, D., and Poinsot, T. 2019. Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255–264.CrossRefGoogle Scholar
Li, H., Zhao, Y., Wang, J., and Sandberg, R. D. 2021. Data-driven model development for large-eddy simulation of turbulence using gene-expression programing. Physics of Fluids, 33(12), 125127.CrossRefGoogle Scholar
Li, H., Waschkowski, F., Zhao, Y., and Sandberg, R. D. 2023. Turbulence model development based on a novel method combining gene expression programming with an artificial neural network. ArXiv:2301.07293.Google Scholar
Ling, J., Kurzawski, A., and Templeton, J. 2016. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807, 155–166.CrossRefGoogle Scholar
Liu, Y., Hu, R., Kraus, A., Balaprakash, P., and Obabko, A. 2022. Data-driven modeling of coarse mesh turbulence for reactor transient analysis using convolutional recurrent neural networks. Nuclear Engineering and Design, 390, 111716.CrossRefGoogle Scholar
Lundberg, S. M., and Lee, S.-I. 2017. A unified approach to interpreting model predictions. Pages 4768–4777 in NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems.Google Scholar
McCulloch, W., and Pitts, W. 1943. A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 127–147.CrossRefGoogle Scholar
Meneveau, C. 1994. Statistics of turbulence subgrid‐scale stresses: Necessary conditions and experimental tests. Physics of Fluids, 6(2), 815–833.CrossRefGoogle Scholar
Mitchell, T. 1997. Machine Learning. McGraw Hill.Google Scholar
Nikolaou, Z. M., Chrysostomou, C., Vervisch, L., and S, Cant. 2019. Progress variable variance and filtered rate modelling using convolutional neural networks and flamelet methods. Flow Turbulence Combust, 103, 485–501.CrossRefGoogle Scholar
Nillson, N. J. 2010. The Quest for Artificial Intelligence. Cambridge University Press.Google Scholar
Novati, G., de Laroussilhe, H. L., and Koumoutsakos, P. 2021. Automating turbulence modelling by multi-agent reinforcement learning. Nature Machine Intelligence, 3, 87–96.CrossRefGoogle Scholar
Parish, E. J., and Duraisamy, K. 2016. A paradigm for data-driven predictive modeling using field inversion and machine learning. Journal of Computational Physics, 305, 758–774.CrossRefGoogle Scholar
Reissmann, M., Hasslberger, J., Sandberg, R. D., and Klein, M. 2020. Application of Gene Expression Programming to a posteriori LES modeling of a Taylor Green Vortex. Journal of Computational Physics, 424, 109859.Google Scholar
Ren, J., Wang, H., Luo, K., and Fan, J. 2021. A priori assessment of convolutional neural network and algebraic models for flame surface density of high Karlovitz premixed flames. Physics of Fluids, 33(3), 036111.CrossRefGoogle Scholar
Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., and Sabeti, P. C. 2011. Detecting Novel Associations in Large Data Sets. Science, 334(6062), 1518–1524.CrossRefGoogle ScholarPubMed
Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–340.CrossRefGoogle ScholarPubMed
Rumelhart, D., Hinton, G., and Williams, R. 1986. Learning representations by back-propagating errors. Nature, 323, 533–536.CrossRefGoogle Scholar
Sarghini, F., De Felice, G., and Santini, S. 2003. Neural networks based subgrid scale modeling in large eddy simulations. Computers & Fluids, 32(1), 97–108.CrossRefGoogle Scholar
Schmelzer, M., Dwight, R. P., and Cinnella, P. 2020. Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow, Turbulence and Combustion, 104, 579–603.CrossRefGoogle Scholar
Schober, P., Boer, C., and Schwarte, L. A. 2018. Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768.CrossRefGoogle ScholarPubMed
Schoepplein, M., Weatheritt, J., Sandberg, R. D., Talei, M., and Klein, M. 2018. Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames. Journal of Computational Physics, 374, 1166–1179.CrossRefGoogle Scholar
Seltz, A., Domingo, P., Vervisch, L., and Nikolaou, Z. M. 2019. Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks. Combustion and Flame, 210, 71–82.CrossRefGoogle Scholar
Sen, B. A., Hawkes, E. R., and Menon, S. 2010. Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics. Combustion and Flame, 157(3), 566–578.Google Scholar
Shin, J., Ge, Y., Lampmann, A., and Pfitzner, M. 2021. A data-driven subgrid scale model in Large Eddy Simulation of turbulent premixed combustion. Combustion and Flame, 231, 111486.CrossRefGoogle Scholar
Shin, J., Hansinger, M., Pfitzner, M, and Klein, M. 2022. A Priori Analysis on Deep Learning of Filtered Reaction Rate. Flow Turbulence and Combustion, 109, 383–409.CrossRefGoogle Scholar
Swaminathan, N., and Parente, A. 2022. Machine Learning and Its Application to Reacting Flows. Springer.Google Scholar
Vaddireddy, H., Rasheed, A., Staples, A. E., and San, O. 2020. Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data. Physics of Fluids, 32(1), 015113.CrossRefGoogle Scholar
Vollant, A., Balarac, G., and Corre, C. 2017. Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedure. Journal of Turbulence, 18, 854–878.CrossRefGoogle Scholar
Waschkowski, F., Li, H., Deshmukh, A., Grenga, T., Zhao, Y., Pitsch, H., Klewicki, J., and Sandberg, R. D. 2022a. Gradient information and regularization for gene expression programming to develop data-driven physics closure models. ArXiv:2211.12341.Google Scholar
Waschkowski, F., Zhao, Y., Sandberg, R. D., and Klewicki, J. 2022b. Multi-objective CFD-driven development of coupled turbulence closure models. Journal of Computational Physics, 452, 110922.CrossRefGoogle Scholar
Weatheritt, J., and Sandberg, R. D. 2016. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship. Journal of Computational Physics, 325, 22–37.CrossRefGoogle Scholar
Xie, C., Li, K., Ma, C., and Wang, J. 2019. Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network. Physical Review Fluids, 4(10), 104605.CrossRefGoogle Scholar
Xing, V., Lapeyre, C., Jaravel, T., and Poinsot, T. 2021. Generalization capability of convolutional neural networks for progress variable variance and reaction rate subgrid-scale modeling. Energies, 14(16), 5096.CrossRefGoogle Scholar
Yao, S., Wang, B., Kronenburg, A., and Stein, O. T. 2021. Conditional scalar dissipation rate modeling for turbulent spray flames using artificial neural networks. Proceedings of the Combustion Institute, 38(2), 3371–3378.CrossRefGoogle Scholar
Yellapantula, S., Perry, B. A., and Grout, R. W. 2021. Deep learning-based model for progress variable dissipation rate in turbulent premixed flames. Proceedings of the Combustion Institute, 38(2), 2929–2938.CrossRefGoogle Scholar
Zhao, Y., Akolekar, H. D., Weatheritt, J., Michelassi, V., and Sandberg, R. D. 2020. RANS turbulence model development using CFD-driven machine learning. Journal of Computational Physics, 411, 109413.CrossRefGoogle Scholar
Zhou, Z., He, G., Wang, S., and Jin, G. 2019. Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network. Computers and Fluids, 195, 104319.CrossRefGoogle Scholar

References

AIAA. 1998. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. Technical report AIAA-G-077-1998. American Institute of Aeronautics and Astronautics, Reston, Virginia, USA.Google Scholar
AIAA. 1999. Assessment of Experimental Uncertainty with Application to Wind Tunnel Testing. Technical report AIAA S-071. American Institute of Aeronautics and Astronautics, Reston, Virginia, USA.Google Scholar
Annon. 2023. ADIFOR 2.0 Automatic Differentiation of Fortran. www.mcs.anl.gov/research/projects/adifor/.Google Scholar
ASME. 2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer – ASME V&V 20–2009. ASME.Google Scholar
ASME. 2016. Multivariate Metrics – Supplement 1 of ASME V&V 20–2009. ASME.Google Scholar
ASME. 2022. Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulations – ASME V&V 1–2022. ASME.Google Scholar
Blackwell, B. F., and Dowding, K. J. 2006. Sensitivity Analysis and Uncertainty Propagation of Computational Models. Pages 443–469 in Handbook of Numerical Heat Transfer, 2nd ed. Minkowycz, W. J., Sparrow, E. M. and Murthy, J. Y. (eds). Wiley.Google Scholar
Blottner, F. G. 1990. Accurate Navier–Stokes Results for the Hypersonic Flow over a Spherical Nosetip. AIAA Journal of Spacecraft and Rockets, 27, 113–122.CrossRefGoogle Scholar
Boehm, B. W. 1981. Software Engineering Economics. 1st ed. Prentice-Hall.Google Scholar
Box, G. E. P. 1979. Robustness in the Strategy of Scientific Model Building. Pages 201–236 in Robustness in Statistics, Launer, R. L., and Wilkinson, G. N. (eds). Academic Press.Google Scholar
Brachet, M. E., Meiron, D. I., Orzag, S. A., Nickel, B. G., Morf, R. H., and Frisch, U. 1983. Small Scale Structure of the Taylor–Green Vortex. Journal of Fluid Mechanics, 130, 411–452.CrossRefGoogle Scholar
Calvo, M. P., Murua, A., and Sanz-Serna, J. M. 1994. Modified Equations for ODEs. Contemporary Mathematics, 172, 63–63.CrossRefGoogle Scholar
Celik, I., and Hu, G. 2004. Single Grid Error Estimation Using Error Transport Equation. Journal of Fluids Engineering, 126, 778–790.CrossRefGoogle Scholar
Celik, I., and Karatekin, O. 1997. Numerical Experiments on Application of Richardson Extrapolation with Nonuniform Grids. ASME Journal of Fluids Engineering, 139, 584–590.Google Scholar
Celik, I., Chen, C. J., Roache, P. J., and Scheuerer, G. 1993. Symposium on Quantification of Uncertainty in Computational Fluid Dynamics, ASME Fluids Engineering Division Summer Conference.Google Scholar
Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., and Raad, P. E. 2008. Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications. ASME Journal of Fluids Engineering, 130, 078001.Google Scholar
Coleman, H. W., and Steele, W. G. 1999. Experimentation and Uncertainty Analysis for Engineers. 2nd ed. Wiley.Google Scholar
Crow, S. C. 1970. Stability Theory for a Pair of Trailing Vortices. AIAA Journal, 8(12), 2172–2179.CrossRefGoogle Scholar
Dol, H. S., Kok, J. C., and Oskam, B. 2002 (14–17 January). Turbulence Modelling for Leading-Edge Vortex Flows. In: Proceedings of the 40th American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
Drikakis, D., Fureby, C., Grinstein, F. F., and Youngs, D. 2007. Simulation of Transition and Turbulence Decay in the Taylor–Green Vortex. Journal of Turbulence, 8(20).CrossRefGoogle Scholar
Eça, L. 2022. Verification and Validation in Industrial CFD. Instituto Superior Tecnico, University of Lisbon, Lisbon, Portugal.Google Scholar
Eça, L., and Hoekstra, M. 2009. Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of Numerical Solutions. Computers & Fluids, 38(8), 1580–1591.CrossRefGoogle Scholar
Eça, L., and Hoekstra, M. 2014. A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies. Journal of Computational Physics, 262, 104–130.CrossRefGoogle Scholar
Eça, L., Hoekstra, M., and Vaz, G. 2012. Manufactured Solutions for Steady-Flow Reynolds-Averaged Navier–Stokes Solvers. International Journal of Computational Fluid Dynamics, 26, 313–332.CrossRefGoogle Scholar
Eça, L., M., C., Vaz, G., Hoekstra, M., and Pereira, F. S. 2016. On Code Verification of RANS Solvers. Journal of Computational Physics, 310, 418–439.Google Scholar
Eça, L., Lopes, R., Pereira, F. S., and Vaz, G. 2019a (May 17–22). Numerical and Parameter Uncertainties: Are They Independent. Pages VVS2019–5125 in ASME 2019 Verification and Validation Symposium.CrossRefGoogle Scholar
Eça, L., Vaz, G., Toxopeus, S., and Hoekstra, M. 2019b. Numerical Errors in Unsteady Flow Simulations. ASME Journal of Verification, Validation, and Uncertainty Quantification, 4, 021001.Google Scholar
Eça, L., Pereira, F. S., Vaz, G., Lopes, R., and Toxopeus, S. 2020 (May 20–22). On The Role of Discretization Errors in the Quantification of Parameter Uncertainties. Pages VVS2020–13055 in ASME 2020 Verification and Validation Symposium.CrossRefGoogle Scholar
Eisfeld, B. 2004 (December). Implementation of Reynolds Stress Models into the DLR-FLOWer Code. Technical report IB 124-2004/31. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Braunschweig, Germany.Google Scholar
Eisfeld, B., and Brodersen, O. 2005 (6–9 June). Advanced Turbulence Modelling and Stress Analysis for the DLR-F6 Configuration. In: Proceedings of the 23rd American Institute of Aeronautics and Astronautics (AIAA) Applied Aerodynamics Conference.CrossRefGoogle Scholar
Eisfeld, B., Rumsey, C., and Togiti, V. 2016. Verification and Validation of a Second-Moment-Closure Model. American Institute of Aeronautics and Astronautics (AIAA) Journal, 54(5), 1524–1542.Google Scholar
Étienne, S., Garon, A., and Pelletier, D. 2012. Some Manufactured Solutions for Verification of Fluid-Structure Interaction Codes. Computers & Structures, 106–107, 56–67.Google Scholar
Fureby, C., and Grinstein, F. F. 2002. Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flow. Journal of Computational Physics, 181(1), 68–97.CrossRefGoogle Scholar
Germano, M. 1992. The Filtering Approach. Journal of Fluid Mechanics, 238, 325–336.CrossRefGoogle Scholar
Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W. R., Ranta, D., and Stefan, R. 2008. The RAGE Radiation-Hydrodynamic Code. Computational Science & Discovery, 1(1), 015005.CrossRefGoogle Scholar
Gottlieb, S., Ketcheson, D. I, and Shu, C.-W. 2009. High Order Strong Stability Preserving Time Discretizations. Journal of Scientific Computing, 38(3), 251–289.CrossRefGoogle Scholar
Griffiths, D. F., and Sanz-Serna, J. M. 1986. On the Scope of the Method of Modified Equations. SIAM Journal on Scientific and Statistical Computing, 7(3), 994–1008.CrossRefGoogle Scholar
Grinstein, F. F., and Pereira, F. S. 2021. Impact of Numerical Hydrodynamics in Turbulent Mixing Transition Simulations. Physics of Fluids 33, 035126 (2021); doi:10.1063/5.0034983.CrossRefGoogle Scholar
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2010. Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics. 2nd ed. Cambridge University Press.Google Scholar
Grinstein, F. F., Pereira, F. S., and Rider, W. J. 2023. Numerical Approximations Formulated as LES Models. Chap. 10 of Numerical Methods in Turbulence Simulations, Moser, R. (ed). Elsevier.Google Scholar
Heinz, S. 2020. A Review of Hybrid RANS-LES Methods for Turbulent Flows: Concepts and Applications. Progress in Aerospace Sciences, 114, 100597.CrossRefGoogle Scholar
Helton, J. C., and Davis, F. J. 2000. Sampling Based Methods. Pages 101–153 of: Sensitivity Analysis. Saltelli, A., Chan, K. and Scott, E. M. (eds). Wiley.Google Scholar
Helton, J. C., and Davis, F. J. 2003. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliability Engineering & System Safety, 81, 23–69.CrossRefGoogle Scholar
Helton, J. C., Johnson, J. D., Sallaberry, C. J., and Storlie, C. B. 2006. Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis. Reliability Engineering & System Safety, 91(10–11), 1175–1209.CrossRefGoogle Scholar
Hills, R. G. 2006. Model Validation: Model Parameter and Measurement Uncertainty. Journal of Heat Transfer, 128(4), 339–351.CrossRefGoogle Scholar
Hirt, C. W. 1968. Heuristic Stability Theory for Finite-Difference Equations. Journal of Computational Physics, 2(4), 339–355.CrossRefGoogle Scholar
Iman, R. L., and Shortencarier, M. J. 1984 (Mar.). A FORTRAN 77 Program and User’s Guide for the Generation of Latin Hypercube and Random Samples for Use With Computer Models. Techreport SAND83-2356. Sandia National Laboratories, Albuquerque, New Mexico, USA.Google Scholar
Jeong, J., and Hussain, F. 1995. On the Identification of a Vortex. Journal of Fluid Mechanics, 285, 69–94.CrossRefGoogle Scholar
Kida, S., and Takaoka, M. 1994. Vortex Reconnection. Annual Review of Fluid Mechanics, 26, 169–177.CrossRefGoogle Scholar
Knupp, P., and Salari, K. 2002. Verification of Computer Codes in Computational Science and Engineering. 1st ed. CRC Press.CrossRefGoogle Scholar
Laporte, F., and Leweke, T. 2002. Elliptic Instability of Counter-Rotating Vortices: Experiment and Direct Numerical Simulation. AIAA Journal, 40(12), 2483–2494.CrossRefGoogle Scholar
Lee, S. J., Kim, H. R., Kim, W. J., and Van, S. H. 2003. Wind Tunnel Tests on Flow Characteristics of the KRISO 3,600 TEU Containership and 300K VLCC2 Double-Deck Ship Models. Journal of Ship Research, 47(1), 24–38.CrossRefGoogle Scholar
Leweke, T., and Williamson, C. 1998. Cooperative Elliptic Instability of a Vortex Pair. Journal of Fluid Mechanics, 360, 85–119.CrossRefGoogle Scholar
Leweke, T., Le Dizés, S., and Williamson, C. H. K. 2016. Dynamics and Instabilities of Vortex Pairs. Annual Review of Fluid Mechanics, 48(1), 507–541.CrossRefGoogle Scholar
Margolin, L. G., and Rider, W. J. 2002. A Rationale for Implicit Turbulence Modelling. International Journal for Numerical Methods in Fluids, 39(9), 821–841.CrossRefGoogle Scholar
Margolin, L. G., and Rider, W. J. 2005. The Design and Construction of Implicit LES Models. International Journal for Numerical Methods in Fluids, 47(10–11), 1173–1179.CrossRefGoogle Scholar
Martins, J. R. R. A. 2023. A Guide to the Complex-Step Derivative Approximation. https://mdolab.engin.umich.edu/wiki/guide-complex-step-derivative-approximation.Google Scholar
McKay, M. D., Beckman, R. J., and Conover, W. J. 1979. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2), 239–245.Google Scholar
Menter, F. R., Kuntz, M., and Langtry, R. 2003 (12–17 October). Ten Years of Industrial Experience with the SST Turbulence Model. Pages 625–632 in Proceedings of the Fourth Turbulence, Heat and Mass Transfer.Google Scholar
Muralha, J., Eça, L., and Klaij, C. M. 2020. Code Verification of a Pressure-Based Solver for Subsonic Compressible Flows. Journal of Verification, Validation, and Uncertainty Quantification, 5, 041001.CrossRefGoogle Scholar
Norberg, C. 2003. Fluctuating Lift on a Circular Cylinder: Review and New Measurements. Journal of Fluids and Structures, 17(1), 57–96.CrossRefGoogle Scholar
Oberkampf, W. L., and Roy, C. J. 2010. Verification and Validation in Scientific Computing. 1st ed. Cambridge University Press.CrossRefGoogle Scholar
Oberkampf, W. L., and Truncano, T. G. 2002. Verification and Validation in Computational Fluid Dynamics. Progress in Aerospace Sciences, 38, 209–272.CrossRefGoogle Scholar
Pelletier, D., and Roache, P. J. 2006. Verification and Validation of Computational Heat Transfer. Chapter 13 in Handbook of Numerical Heat Transfer, 2nd ed. Minkowycz, W. J., Sparrow, E. M. and Murthy, J. Y. (eds). Wiley.Google Scholar
Pereira, F. S. 2012 (October). Verification of ReFRESCO with the Method of Manufactured Solutions. M.Phil. thesis, Instituto Superior Técnico, Lisbon, Portugal.Google Scholar
Pereira, F. S., Eça, L., and Vaz, G. 2017. Verification and Validation Exercises for the Flow around the KVLCC2 Tanker at Model and Full-Scale Reynolds Numbers. Ocean Engineering, 129, 133–148.CrossRefGoogle Scholar
Pereira, F. S., Vaz, G., Eça, L., and Girimaji, S. S. 2018. Simulation of the Flow around a Circular Cylinder at Re = 3,900 with Partially-Averaged Navier–Stokes Equations. International Journal of Heat and Fluid Flow, 69, 234–246.CrossRefGoogle Scholar
Pereira, F. S., Vaz, G., and Eça, L. 2019a. Evaluation of RANS and SRS Methods for Simulation of the Flow Around a Circular Cylinder in the Sub-Critical Regime. Ocean Engineering, 186(106067).CrossRefGoogle Scholar
Pereira, F. S., Eça, L., and Vaz, G. 2019b. Simulation of Wingtip Vortex Flows with Reynolds-Averaged Navier–Stokes and Scale-Resolving Simulation Methods. AIAA Journal, 57, 932–948.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021a. Modeling and Simulation of Transitional Rayleigh–Taylor Flow with Partially-Averaged Navier–Stokes Equations. Physics of Fluids, 33, 115118.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021b. Modeling and Simulation of Transitional Taylor–Green Vortex Flow with Partially Averaged Navier–Stokes Equations. Physical Review Fluids, 6, 054611.Google Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., Rauenzahn, R., and Girimaji, S. S. 2021c. Partially Averaged Navier–Stokes Equations Closure Modeling for Variable-Density Turbulent Flow. Physical Review Fluids, 6, 084602.Google Scholar
Pereira, F. S., Eça, L., Vaz, G., and Girimaji, S. S. 2021d. Toward Predictive RANS and SRS Computations of Turbulent External Flows of Practical Interest. Archives of Computational Methods in Engineering, 28, 3953–4029.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., and Eça, L. 2022a. Verification and Validation: The Path to Predictive Scale-Resolving Simulations of Turbulence. ASME Journal of Verification, Validation, and Uncertainty Quantification, 7(2), 021003.Google Scholar
Pereira, F. S., Pellone, S., Desjardins, T., Charonko, J., and Doss, F. 2024. Modeling and Simulation of Rayleigh–Taylor and Richtmeyer–Meshov Mixing Flows with Scale-Resolving Simulation Method (in elaboration).Google Scholar
Pereira, F. S., Grinstein, F. F., and Israel, D. 2020. Effect of the Numerical Discretization Scheme in Shock-Driven Turbulent Mixing. Computers and Fluids, 201, 104487.CrossRefGoogle Scholar
Pereira, F. S., Grinstein, F. F., Israel, D. M., and Eça, L. 2022b. Verification and Validation: The Path to Predictive Scale-Resolving Simulations of Turbulence. Journal of Verification, Validation, and Uncertainty Quantification, 7(2), 021003.CrossRefGoogle Scholar
Phillips, T. S., Derlaga, J. M., Roy, C. J., and Borggaard, J. 2017. Error Transport Equation Boundary Conditions for the Euler and Navier–Stokes Equations. Journal of Computational Physics, 330, 46–64.CrossRefGoogle Scholar
Phillips, T. S., and Roy, C. J. 2011. Residual Methods for Discretization Error Estimation. Pages AIAA 2011–3870 in 20th AIAA Computational Fluid Dynamics Conference.CrossRefGoogle Scholar
Pope, S. B. 1999. A Perspective on Turbulence Modeling. Pages 53–67 in Modeling Complex Turbulent Flows, 1st ed. Salas, M. D., Hefner, J. N. and Sakell, L. (eds). ICASE LaRC Interdisciplinary Series in Science and Engineering, vol. 7. Springer.Google Scholar
Rayleigh, Lord. 1882. Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density. Proceedings of the London Mathematical Society, 14, 170–177.Google Scholar
Richardson, L. F. 1911. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society of London Series A, 210, 307–357.Google Scholar
Richardson, L. F., and Gaunt, J. A. 1927. The Deferred Approach to the Limit. Philosophical Transactions of the Royal Society of London Series A, 226, 299–361.Google Scholar
Rider, W., Witkowski, W., Kamm, J. R., and Wildey, T. 2016. Robust Verification Analysis. Journal of Computational Physics, 307, 146–163.CrossRefGoogle Scholar
Roache, P. J. 1994. Perspective: A Method for Uniform Reporting of Grid Refinement Studies. ASME Journal of Fluids Engineering, 116(3), 405–413.CrossRefGoogle Scholar
Roache, P. J. 1998. Verification and Validation in Computational Science and Engineering. 1st ed. Hermosa Publishers.Google Scholar
Roache, P. J. 2003 (6–9 January). Error Bars for CFD. Pages AIAA 2003–0408 in 41st AIAA Aerospace Sciences Meeting.CrossRefGoogle Scholar
Roache, P. J. 2004. Building PDE Codes to Be Verifiable and Validatable. Computing in Science and Engineering, 6, 30–38.CrossRefGoogle Scholar
Roache, P. J. 2009. Fundamentals of Verification and Validation. Hermosa Publishers.Google Scholar
Roy, C. J., and Oberkampf, W. L. 2011. A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing. Computer Methods in Applied Mechanics and Engineering, 200(25–28), 2131–2144.CrossRefGoogle Scholar
Roy, C. J., and Oberkampf, W. L. 2012. A Holistic Approach to Uncertainty Quantification with Application to Supersonic Nozzle Thrust. International Journal for Uncertainty Quantification, 2(4), 363–381.CrossRefGoogle Scholar
Roy, C. J., Nelson, C. C., Smith, T. M., and Ober, C. C. 2004. Verification of Euler/Navier–Stokes Codes using the Method of Manufactured Solutions. International Journal of Numerical Methods in Fluids, 44, 599–620.CrossRefGoogle Scholar
Shu, C.-W. 1988. Total-Variation-Diminishing Time Discretizations. SIAM Journal on Scientific and Statistical Computing, 9(6), 1073–1084.CrossRefGoogle Scholar
Shunn, L., Ham, F., and Moin, P. 2012. Verification of Variable-Density Flow Solvers Using Manufactured Solutions. Journal of Computational Physics, 231, 3801–3827.CrossRefGoogle Scholar
Smagorjnsky, J. 1983. The Beginnings of Numerical Weather Prediction and General Circulation Modeling: Early Recollections. Pages 3–37 of: Advances in Geophysics, vol. 25. Elsevier.Google Scholar
Spalart, P. R., and Venkatakrishnan, V. 2016. On the Role and Challenges of CFD in the Aerospace Industry. The Aeronautical Journal, 120(1223), 209–232.CrossRefGoogle Scholar
Stern, F., Muste, M., Beninati, M.-L., and Eichinger, W. E. 1999. Summary of Experimental Uncertainty Assessment Methodology with Example. IIHR Technical report No. 406. University of Iowa, Iowa City, Iowa, USA.Google Scholar
Stern, F., Wilson, R. V., Coleman, H. W., and Paterson, E. G. 2001. Comprehensive Approach to Verification and Validation of CFD Simulations – Part 1: Methodology and Procedures. ASME Journal of Fluids Engineering, 123, 793–802.CrossRefGoogle Scholar
Strang, G. 1968. On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506–517.CrossRefGoogle Scholar
Taylor, G. 1950. The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. Proceedings of the Royal Society A, 201(1065), 192–196.Google Scholar
Taylor, G. I., and Green, A. E. 1937. Mechanism of the Production of Small Eddies from Large Ones. Proceedings of the Royal Society A, 158.Google Scholar
Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., and Williams, R. J. R. 2008. An Improved Reconstruction Method for Compressible Flows with Low Mach Number Features. Journal of Computational Physics, 227(10), 4873–4894.CrossRefGoogle Scholar
Trucano, T. G., Pilch, M., and Oberkampf, W. L. 2002 (March). General Concepts for Experimental Validation of ASCI Code Applications. Technical Report SAND2002-0341. Sandia National Laboratories, Albuquerque, USA.Google Scholar
Veluri, S. P., Roy, C. J., and Luke, E. A. 2012. Comprehensive Code Verification Techniques for Finite Volume CFD Codes. Computers & Fluids, 70, 59–72.CrossRefGoogle Scholar
VonNeumann, J., and Richtmyer, R. D. 1950. A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Applied Physics, 21(3), 232–237.CrossRefGoogle Scholar
Warming, R. F., and Hyett, B. J. 1974. The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods. Journal of computational physics, 14(2), 159–179.CrossRefGoogle Scholar
Wilson, B. M., and Koskelo, A. 2020. A Practical Validation Assessment Workflow. Journal of Verification, Validation, and Uncertainty Quantification, 5, 011004.CrossRefGoogle Scholar
Wolfram, S. 1991. Mathematica: A System for Doing Mathematics by Computer. Addison Wesley Longman.Google Scholar
Wyss, G. D., and Jorgensen, K. H. 1998 (Feb.). A User Guide to LHS: Sandia’s Latin Hypercube Sampling Software. techreport SAND98-0210. Sandia National Laboratories, Albuquerque, New Mexico, USA.Google Scholar
Xing, T., and Stern, F. 2010. Factors of Safety for Richardson Extrapolation. ASME Journal of Fluids Engineering, 132, 061403.CrossRefGoogle Scholar
Yao, J., and Hussain, F. 2020. Separation Scaling for Viscous Vortex Reconnection. Journal of Fluid Mechanics, 900(R4).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×